JP2004301777A - 放射線検出器 - Google Patents

放射線検出器 Download PDF

Info

Publication number
JP2004301777A
JP2004301777A JP2003097441A JP2003097441A JP2004301777A JP 2004301777 A JP2004301777 A JP 2004301777A JP 2003097441 A JP2003097441 A JP 2003097441A JP 2003097441 A JP2003097441 A JP 2003097441A JP 2004301777 A JP2004301777 A JP 2004301777A
Authority
JP
Japan
Prior art keywords
radiation
phosphor
radiation detector
subject
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097441A
Other languages
English (en)
Inventor
Kunihiko Nakayama
邦彦 中山
Koichi Nitto
光一 日塔
Chikara Konagai
主税 小長井
Keisuke Kitsukawa
敬介 橘川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003097441A priority Critical patent/JP2004301777A/ja
Publication of JP2004301777A publication Critical patent/JP2004301777A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】放射線検出器の感度向上と、被検体の内部構造を撮影した画像情報の鮮明度向上とを実現し、加えて、放射線検出器の軽量化・小型化を実現すること。
【解決手段】放射線源22からの放射線aを入射する側に頂点をもつ四角錐がxy平面上にマトリクス状にて複数配置される凹凸型蛍光体24と、凹凸型蛍光体24側の接触面が凹凸型蛍光体24の四角錐と一致する四角錐である片凹凸型FOP25と、片凹凸型FOP25の可視光出射側に平面型受光素子26とを有する。回路基板29には、平面型受光素子26より転送される可視光bから得られるアナログ情報をデジタル化するA/D変換部27のみを有し、A/D変換部27と画像処理部28とを通信ケーブル32を介して接続させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、被検体の画像情報を取得する放射線検出器の技術分野に係り、特に、発電所等のプラントを構成する配管、弁等の画像情報を取得して配管、弁等の内部欠陥検査を実施する放射線検出器に関する。
【0002】
【従来の技術】
放射線検出器として、入射させる放射線(X線、α線、β線、γ線)の発光作用を利用したシンチレーション型の放射線検出器の他に、入射される放射線の電離作用を利用する電離箱型、GM計数管型、半導体検出器型等の放射線検出器がある。
【0003】
シンチレーション型の放射線検出器では、放射線によって放出された電子が結晶内で電離や励起を起こし、電子が結晶内の元のエネルギーレベル位置に戻る過程で吸収したエネルギーに比例した強度の可視光等の光子を発生させる。一般的に、シンチレーション型の放射線検出器を構成するシンチレーションの材料として、GOS(Gadolinium Oxysulphide Phosphor Screen)、YOS(Ytterbium Oxysulphide Phosphor Screen)、NaI、CsI等が挙げられる。
【0004】
シンチレーション型の放射線検出器は、他の放射線検出器と比較して高感度の検出器であり、比較的高エネルギーの放射線検出器として用いられる。
【0005】
ここで、発電所等のプラントにおいて、保温材を付けた状態、または、プラント運転状態にて、被検体、例えば、プラントを構成する配管・弁等の接続部検査や内部減肉検査、内部異物の確認検査等の欠陥検査を実施するためには、シンチレーション型の放射線検出器を用いることが有効である。外部からの視覚では検査し得ない被検体の内部構造をシンチレーション型の放射線検出器にて撮影して画像化することで、被検体の内部欠陥検査を実施する。
【0006】
例えば、プラントを構成する配管等の溶接面内側に気泡状の隙間部が内在すると、配管内部を流動するガスまたは流体等によって、隙間部から溶接面の腐食が急速に進行し、腐食部から溶接面からガスまたは流体が漏洩することになる。
【0007】
図10は、従来の放射線検出器を示す断面図である。
【0008】
この放射線検出器1は、xy平面上に設けられるものとし、放射線源2からz軸方向に放射状の放射線aが出射されるものとする。
【0009】
放射線検出器1は、放射線aを出射させる放射線源2と、円筒形状の被検体Sと、放射線aのうち被検体Sを透過する放射線a1、被検体Sを外れ直接に平面型蛍光体4に入射される放射線a2のそれぞれに反応して、放射線a1,a2を可視光b1,b2にそれぞれ変換する板状の平面型蛍光体4と、平面型蛍光体4からの可視光b1,b2を伝達する光学伝送素子である板状の平面型FOP(Fiber Optic Plate)5とが備えられる。
【0010】
また、放射線検出器1は、画素6aをマトリクス状に複数備え、平面型FOP5からの可視光b1,b2を電気信号に変換する板状の平面型受光素子6と、A/D変換部7と画像処理部8とを有する回路基板9と、放射線aのうち回路基板9に直接に入射される放射線a3を遮蔽する放射線遮蔽材10とから構成される。
【0011】
続いて、放射線検出器1の動作について説明する。
【0012】
まず、図10に示された放射線検出器1の放射線源2と平面型蛍光体4との間に被検体Sを位置させるようにセットする。
【0013】
そして、放射線検出器1に備える放射線源2から放射状に出射された放射線aのうち被検体Sを透過した放射線a1と、被検体Sを外れた放射線a2とが、平面型蛍光体4にそれぞれ入射される。
【0014】
平面型蛍光体4表面では、放射線a1,a2とによって放射線強度分布を有する像が形成され、平面型蛍光体4内部では、放射線a1,a2の放射線強度分布に対応した強度分布を有する可視光b1,b2にそれぞれ変換される。そして、可視光b1,b2は、平面型蛍光体4から平面型FOP5に転送される。
【0015】
また、平面型FOP5では、平面型蛍光体4からの可視光b1を光ファイバ素線5a毎に分別し、可視光b1を各光ファイバ素線5a内部を介して平面型受光素子6に転送させる。
【0016】
平面型受光素子6を構成する画素6aでは、少なくとも1以上の光ファイバ素線5aからの可視光b1,b2を電気信号に変換する。そして、マトリクス状の各画素6aによって構成される平面型受光素子6では、マトリクス状の電気信号であるアナログ情報からアナログ画像が取得される。
【0017】
回路基板9では、回路基板9に備えるA/D変換部7によって、各画素6a毎のアナログ情報をデジタル化し、デジタル情報を総合してデジタル画像化する信号処理が実施される。そして、画像処理部8では、デジタル信号を基に被検体Sのデジタル画像を表示し、被検体Sの内部構造についての表示等を行なう。また、必要に応じて、デジタル画像の加工・編集等を行うこともできる(例えば、特許文献1参照。)。
【0018】
【特許文献1】
特開2002−48870号公報(第3頁、図1,2)
【0019】
【発明が解決しようとする課題】
従来のシンチレーション型の放射線検出器1によって得られるデジタル画像の鮮明度は、放射線aの強度に影響され易い。放射線源2からの放射線aに反応する平面型蛍光体4の厚さは1μm程度と薄く、片凹凸型FOP5表面対して発生する可視光bの成分は、放射線aの強度が弱い場合には非常に微弱となってしまう。よって、微弱な可視光bの成分は、平面型受光素子5の感度以下となる場合があり、鮮明な被検体Sのデジタル画像が得られない。
【0020】
一方、可視光bの成分を増加させるために、放射線aに反応する平面型蛍光体4のz軸方向の厚さを増すように平面型蛍光体4を成形・加工することができる。しかし、平面型蛍光体4のz軸方向の厚さが大きいと、平面型蛍光体4全体の均一性・稠密性が失われ易く、均一性・稠密性の維持が困難となる。
【0021】
加えて、平面型蛍光体4の内部にて発生する可視光bは散乱するが、平面型蛍光体4のz軸方向の厚さが大きいと、z軸方向に散乱して伝送される可視光bの伝送距離が延長される。よって、平面型蛍光体4の出射側では、散乱した可視光bが広範囲の複数の画素6aに入射することになる。すなわち、取得される被検体Sの画像情報の解像度や鮮明度が劣化する。
【0022】
加えて、放射線検出器1において、放射線源2から入射される放射線aのうち放射線a2は、被検体Sを外れて直接に平面型蛍光体4に入射する。よって、可視光b1に対して可視光b2の強度が強くなり過ぎて、被検体Sの画像情報にハレーション事象が発生して、取得される画像情報の鮮明度を劣化させる。
【0023】
さらに、画像情報を得るための平面型受光素子6を設置した回路基盤9は、放射線検出器1全体の形状を大きくさせたり、放射線遮蔽体10を多く必要として重量を増加させる。特に、保温材を付けた状態、または、プラント運転状態において被検体Sを撮影しようとすると、放射線検出器1の設置の制約がある。
【0024】
また、放射線検出器1は幾何学的構造のため、多種形状の被検体Sに関する画像情報は平面型受光素子6の表面に拡大投影され、実際の被検体Sの寸法よりも拡大された画像情報になる。よって、被検体Sに内在する欠陥箇所の寸法精度が悪い。
【0025】
本発明は上記従来技術の課題を解決するためになされたものであり、あらゆる放射線の強度に対応できる幾何学構造を有する蛍光体によって感度向上を実現できると共に、放射線吸収体によって被検体の内部構造を撮影した画像の鮮明度向上を実現できる放射線検出器を提供することを目的とする。
【0026】
さらに、本発明の他の目的は、放射線検出器を構成する回路基板から画像処理部を分離独立させることによって、回路基板の必要容量を縮小でき、回路基板および回路基板を保護する放射線遮蔽体の軽量化・小型化を実現できる放射線検出器を提供することにある。
【0027】
また、本発明の別の目的は、寸法精度が良好な等倍の画像情報を得ることで、被検体に内在する欠陥箇所の寸法精度向上を実現できる放射線検出器を提供することにある。
【0028】
【課題を解決するための手段】
本発明に係る放射線検出器は、上述した課題を解決するために請求項1に記載したように、放射線源から被検体に放射線を入射して、入射された放射線を蛍光体にて可視光に変換し、この可視光から前記被検体の画像情報を得る放射線検出器において、前記放射線源からの放射線を入射する側に凹凸形状をもつ凹凸型蛍光体と、前記凹凸型蛍光体との接触面形状が前記凹凸型蛍光体の凹凸形状と一致する凹凸形状である光学伝送素子と、前記光学伝送素子の可視光出射側に受光素子とを有することを特徴とする。
【0029】
さらに、本発明に係る放射線検出器は、請求項2に記載したように、前記凹凸型蛍光体の凹凸形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面形状とが、前記放射線源からの放射線を入射する側に頂点をもつ多角錐構造を有して互いに重なり合い、前記光学伝送素子には、多角錐構造がマトリクス状または格子状にて複数配置されることを特徴とする。
【0030】
また、本発明に係る放射線検出器は、請求項3に記載したように、前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とがのこぎり歯状断面を有して互いに重なり合うように設置されたことを特徴とする。
【0031】
加えて、本発明に係る放射線検出器は、請求項4に記載したように、前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが波状断面を有して互いに重なり合うように設置されたことを特徴とする。
【0032】
さらに、本発明に係る放射線検出器は、請求項5に記載したように、前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが連続的な円弧状断面を有して互いに重なり合うように設置されたことを特徴とする。
【0033】
また、本発明に係る放射線検出器は、請求項6に記載したように、前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが前記被検体の外側面とほぼ一致した半円筒状形状を有して重なり合うように設置されたことを特徴とする。
【0034】
加えて、本発明に係る放射線検出器は、請求項7に記載したように、回路基板には、受光素子より転送される可視光から得られるアナログ情報をデジタル化するA/D変換部のみを有し、前記A/D変換部と画像処理部とを通信媒体を介して接続させることを特徴とする。
【0035】
さらに、本発明に係る放射線検出器は、請求項8に記載したように、放射線源から被検体に放射線を入射して、入射された放射線を蛍光体にて可視光に変換し、この可視光から前記被検体の画像情報を得る放射線検出器において、前記放射線源から出射される放射線のうち前記被検体を外れて蛍光体に入射される放射線を遮蔽するために、放射線吸収体を備えたことを特徴とする。
【0036】
また、本発明に係る放射線検出器は、請求項9に記載したように、前記放射線吸収体は、半円筒部または板部の少なくとも一方を有し、前記放射線吸収体を前記被検体の形状または構造に適合できるように、形状を調節可能とする形状可変構造を有することを特徴とする。
【0037】
加えて、本発明に係る放射線検出器は、請求項10に記載したように、前記放射線吸収体は、半円筒部または簾部の少なくとも一方を有し、前記放射線吸収体を前記被検体の形状または構造に適合できるように、形状を調節可能とする形状可変構造を有することを特徴とする。
【0038】
【発明の実施の形態】
以下、本発明に係る放射線検出器の実施の形態について、図面を参照して説明する。
【0039】
なお、添付図面中、同一の構成要素には同一符号を付して重複した説明を省略する。
【0040】
図1は、本発明に係る放射線検出器の第1の実施形態を示す断面図である。
【0041】
図1は、放射線検出器21を示し、この放射線検出器21は、xy平面上に設けられ、放射線源22からz軸方向に放射状の放射線aが出射される。
【0042】
放射線検出器21は、放射線aを出射させる放射線源22と、例えば、円筒形状の配管等の被検体Sと、放射線aのうち放射線源22から被検体Sを透過する放射線a1、被検体Sを外れて直接に凹凸型蛍光体24に入射される放射線a2のそれぞれに反応して、放射線a1,a2を可視光b1,b2にそれぞれ変換する凹凸型蛍光体(シンチレータ)24と、可視光b1,b2を伝達する光学伝送素子である片面凹凸型FOP(Fiber Optic Plate)25と、片面凹凸型FOP25からの可視光b1,b2を電気信号に変換する受光素子である平面型受光素子26とが備えられる。
【0043】
片面凹凸型FOP25は、数μmの光ファイバ素線25aをxy平面上にマトリクス状にて複数束にした光学デバイスであり、可視光bを高効率・低歪みで伝達することができる。また、平面型受光素子26は、デジタル画像を構成する画素26aをxy平面上にマトリクス状にて複数備えたCMOS(Complementary Metal Oxide Semiconductor)型等によって構成される。
【0044】
片面凹凸型FOP25を形成する光ファイバ素線25aのコア径をr、平面型受光素子26を形成する画素26aの幅をdとすると、コア径rは、画素26aの幅d以下になるように構成する。画素26aの幅dの制限により、凹凸型蛍光体24上の放射線強度分布に応じて発生する可視光b1,b2の強度分布が解像度劣化を起こさずに画素26aに転送されて、平面型受光素子26には像として像転送される。
【0045】
図2は、放射線検出器21を示す斜視図である。
【0046】
図2に示された放射線検出器21は、図1に示された放射線検出器21に備えた凹凸型蛍光体24の斜視図を示し、この凹凸型蛍光体24は、放射線入射側に頂点をもつ多角錐構造、例えば、放射線入射側に頂点をもつ四角錐が、xy平面上にマトリクス状にて配置される。図2に示された放射線検出器21の凹凸型蛍光体24では、放射線入射側に頂点をもつ四角錐がxy平面上にマトリクス状にて配置される場合を示したが、特に、マトリクス状に限定するものではなく、例えば、市松模様状の配置でもよい。
【0047】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、多角錐構造、例えば、四角錐にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の四角錐は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の接触面の形状を均一にカバーするように構成される。
【0048】
なお、図2に示された放射線検出器21には、説明のため凹凸型蛍光体24と、片面凹凸型FOP25と、平面型受光素子26とのみを表示するものとする。
【0049】
また、図1に示された放射線検出器21は、A/D変換部27を有する回路基板29と、放射線aのうち回路基板29に直接に入射される放射線a3を遮蔽する放射線遮蔽材30とから構成される。
【0050】
さらに、放射線検出器21には、画像処理部28として機能する画像処理装置31が設けられる。この画像処理装置31は、回路基板29に備えるA/D変換部27と通信媒体としての通信ケーブル32を介して接続される。通信ケーブル32は有線通信媒体として示したが、通信ネットワーク等を利用した無線通信媒体としてもよい。
【0051】
凹凸型蛍光体24の放射線入射側の表面において、入射される放射線aのうち被検体23を外れた放射線a2の入射領域を、例えば、鉛材料のように密度の大きな放射線吸収体33で脱着自在に被覆させる。放射線吸収体33には、例えば、板状放射線吸収体33aを用いる。板状放射線吸収体33aによる被覆範囲は、被検体Sの側面形状に適合させ、被検体Sと板状放射線吸収体33aとの隙間を無くすように成形・加工される。
【0052】
続いて、放射線検出器21の動作について説明する。
【0053】
まず、図1に示された放射線検出器21の放射線源22と凹凸型蛍光体24との間に、被検体Sを位置させるようにセットする。
【0054】
そして、放射線検出器21に備える放射線源22から放射線aが放射状に出射される。出射された放射線aのうち被検体Sを透過した放射線a1は、凹凸型蛍光体24に入射される。また、放射線aのうち被検体Sを外れた放射線a2は、板状放射線吸収体33aによって、例えば、放射線a1の強度以下に減衰され、凹凸型蛍光体24に入射される。
【0055】
凹凸型蛍光体24表面では、エネルギー強度の強い放射線a1と、エネルギー強度の弱い放射線a2とによって放射線強度分布を有する像が形成される。凹凸型蛍光体24内部では、放射線a1,a2の放射線強度分布に対応した強度分布を有する可視光b1,b2にそれぞれ変換される。そして、可視光b1,b2は、凹凸型蛍光体24から片面凹凸型FOP25に、放射線強度分布を維持した状態で転送される。
【0056】
ところで、図2に示された放射線検出器21では、凹凸型蛍光体24は多数の四角錐がマトリクス状にて凹凸形状を有するので、放射線a1,a2から変換された可視光b1,b2は、四角錐の側面である斜面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1,b2の伝送距離を相対的に増加させることができる。
【0057】
また、図1に示された放射線検出器21に備える片面凹凸型FOP25では、凹凸型蛍光体24からの可視光b1,b2を光ファイバ素線25a毎に分別し、可視光b1,b2を各光ファイバ25a素線内部を介して平面型受光素子26に像転送させる。
【0058】
平面型受光素子26を構成する画素26aでは、少なくとも1以上の光ファイバ素線25aからの可視光b1,b2をアナログ情報として電気信号に変換する。そして、マトリクス状の各画素26aによって構成される平面型受光素子26では、マトリクス状のアナログ情報からアナログ画像が取得される。
【0059】
回路基板29では、回路基板29に備えるA/D変換部27によって、各画素26a毎のアナログ情報をデジタル化し、デジタル情報を総合してデジタル画像化する信号処理が実施される。そして、回路基板29にて信号処理されたデジタル信号は、通信ケーブル32を介して画像処理装置31に伝送される。
【0060】
画像処理装置31では、デジタル信号を基に被検体Sのデジタル画像を表示し、被検体Sの内部構造についての表示等を行なう。また、必要に応じて、デジタル画像の加工・編集等を行なうこともできる。
【0061】
なお、放射線検出器21に備える放射線源22から放射状に出射された放射線aのうち凹凸型蛍光体24から外れて、基板回路29に入射される放射線a3は、放射線遮蔽材30によって遮蔽され、放射線a3から基板回路29を保護し、その劣化を防止している。
【0062】
図1に示された放射線検出器21を利用すると、放射線a1,a2に反応して凹凸型蛍光体24にて発生する可視光b1,b2の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0063】
また、放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を放射線吸収体33aを用いて減衰させ、放射線a1,a2の強度を同程度とすることによって、被検体Sの画像情報のハレーション事象を有効的に防止できる。
【0064】
さらに、放射線検出器21を構成する回路基板29から画像処理装置31を分離独立させることによって、回路基板29の必要容量を縮小でき、回路基板29および回路基板29の劣化を防止している放射線遮蔽材30の軽量化・小型化を実現できる。
【0065】
図3は、被検体Sの一例を示す概略図である。
【0066】
図3は、被検体Sの一例を示し、この被検体Sとして、例えば、円筒形状の配管34と、この配管34にソケット溶接されたソケット35と、溶接部36とを備えた配管接続部を示す。
【0067】
溶接部36を被検体Sとして検査対象とし、図1に示された放射線検出器21にて被検体Sの内部欠陥検査を実施する。この内部欠陥検査では、放射線検出器21にて、放射線源22から放射線aを出射し、被検体Sである溶接部36に関する画像情報を取得する。そして、溶接部36に内在する欠陥、例えば、溶接部36内側の溶接不良による溶接欠陥検査を実施できる。
【0068】
図4は、放射線吸収体の例を示す概略図である。
【0069】
図4(A)は、図3に示された被検体Sと、図1に示された放射線検出器21の放射線吸収体33の一例とをそれぞれ示し、この放射線吸収体33として放射線吸収体33bを適用することによって、被検体Sの溶接部36内側の溶接不良による溶接欠陥検査を実施する場合を示す。
【0070】
図4(A)に示された放射線吸収体33bは、図3に示された被検体Sに備える配管34の円筒側面を覆う半円筒部41と、この半円筒部41に付帯される板部42とから構成される。なお、発電所等のプラントにおいて、図3に示された被検体Sとしての配管34およびソケット35は、規格設定された既知量である場合が多い。
【0071】
半円筒部41は、ソケット35の外径とほぼ等しい外径となるような外径および厚さ(半径方向の厚さ)を有する。さらに、半円筒部41は、溶接部36に接触する端部43を有し、端部43にはテーパー加工が施される。
【0072】
また、半円筒部41は、例えば、配管34またはソケット35と同等の材質であり、半円筒部41は、配管34を透過する放射線の放射線強度を調整して、取得される被検体Sの画像情報がハレーション事象を起こさないように、配管34を透過する放射線強度を適切に調整する機能を有する。
【0073】
板部42は、例えば、変形可能な鉛材料から構成され、配管34と、ソケット35と、溶接部36との被検体Sの側面周辺に入射される放射線a2の散乱進入を抑えられるように設計される。また、必要に応じて板部42を配管34および溶接部36と隙間なく密着させるために変形させることができる。板部42に備える突起部44によって溶接部36と板部42との気密性がよくなる。
【0074】
図1に示された放射線検出器21の動作によって、被検体Sとしての溶接部36を外れて配管34に入射される放射線a2の成分は、放射線吸収体33bの半円筒部41にて吸収される。一方、溶接部36を外れて直接に凹凸型蛍光体24に入射される放射線a2の成分は、放射線吸収体33bの板部42にて吸収される。
【0075】
図4(B)は、図3に示された被検体Sと、図1に示された放射線検出器21の放射線吸収体33の他の例とをそれぞれ示し、この放射線吸収体33として放射線吸収体33cを適用することによって、被検体Sの溶接部36内側の溶接不良による溶接欠陥検査を実施する場合を示す。
【0076】
図4(B)に示された放射線吸収体33cは、図3に示された被検体Sに備える配管34の円筒側面を覆う半円筒部41と、この半円筒部41に付帯される簾部45とから構成される。なお、発電所等のプラントにおいて、図3に示された被検体Sとしての配管34およびソケット35は、規格設定された既知量である場合が多い。
【0077】
半円筒部41は、ソケット35の外径とほぼ等しい外径となるような外径および厚さ(半径方向の厚さ)を有する。さらに、半円筒部41は、溶接部36に接触する端部43を有し、端部43にはテーパー加工が施される。
【0078】
また、半円筒部41は、例えば、配管34またはソケット35と同等の材質であり、半円筒部41は、配管34を透過する放射線の放射線強度を調整して、取得される被検体Sの画像情報がハレーション事象を起こさないように配管34を透過する放射線強度を適切に調整する機能を有する。
【0079】
簾部45は、例えば、複数の棒状部46の束から構成され、配管34と、ソケット35と、溶接部36との被検体Sの側面周辺に入射される放射線a2の散乱進入を抑えられるように設計される。また、必要に応じて簾部45を配管34および溶接部36と隙間なく密着させる。棒状部46を部分的にスライドさせると、溶接部36と板部42との気密性がよくなる。
【0080】
図1に示された放射線検出器21の動作によって、被検体Sとしての溶接部36を外れて配管34に入射される放射線a2の成分は、放射線吸収体33cの半円筒部41にて吸収される。一方、溶接部36を外れて直接に凹凸型蛍光体24に入射される放射線a2の成分は、放射線吸収体33cの簾部45にて吸収される。
【0081】
図3に示された被検体Sの内部欠陥検査において、入射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を図4に示された放射線吸収体33bまたは放射線吸収体33cを用いて減衰させ、放射線a1,a2の強度を同程度とすることによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0082】
図5は、本発明に係る放射線検出器の第2の実施形態を示す斜視図である。
【0083】
図5に示された放射線検出器21Aは、図1に示された放射線検出器21に備えた凹凸型蛍光体24の斜視図を示し、この凹凸型蛍光体24は、放射線入射側に頂点をもつ多角錐構造、例えば、放射線入射側に頂点をもつ六角錐が、xy平面上に稠密ハニカム状に配置される。図5に示された放射線検出器21Aの凹凸型蛍光体24では、放射線入射側に頂点をもつ六角錐がxy平面上に稠密ハニカム状に配置される場合を示したが、特に、稠密ハニカム状に限定するものではなく、非稠密な配置でもよい。
【0084】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面形状は、多角錐構造、例えば、六角錐にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の六角錐は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の接触面を均一にカバーするように構成される。
【0085】
なお、図5に示された放射線検出器21Aには、説明のため凹凸型蛍光体24と、片面凹凸型FOP25と、平面型受光素子26とのみを表示するものとする。
【0086】
また、放射線検出器21Aの動作は、図1に示された放射線検出器21と同様の動作であるので、放射線検出器21Aの動作について説明を省略する。
【0087】
ところで、図5に示された放射線検出器21Aでは、凹凸型蛍光体24は多数の六角錐が稠密ハニカム状にて凹凸形状を有するので、放射線a1,a2から変換された可視光b1,b2は、六角錐の側面である斜面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1,b2の伝送距離を相対的に増加させることができる。
【0088】
図5に示された放射線検出器21Aを利用すると、放射線a1,a2に反応して凹凸型蛍光体24にて発生する可視光b1,b2の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0089】
また、入射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を減衰させ、放射線吸収体33を用いて放射線a1,a2の強度を同程度とすることによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0090】
さらに、放射線検出器21を構成する回路基板29から画像処理装置31を分離独立させることによって、回路基板29の必要容量を縮小でき、回路基板29および回路基板29の劣化を防止している放射線遮蔽材30の軽量化・小型化を実現できる。
【0091】
図6は、本発明に係る放射線検出器の第3の実施形態を示す斜視図である。
【0092】
図6に示された放射線検出器21Bは、図1に示された放射線検出器21に備えた凹凸型蛍光体24の斜視図を示し、この凹凸型蛍光体24は、xz断面において、z軸方向に隆起したのこぎり歯状断面が形成される。そして、凹凸型蛍光体24は、のこぎり歯状断面がy軸方向に平行関係を保って延びる構造を有する。
【0093】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、のこぎり歯状断面にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の表面を均一にカバーするように構成される。
【0094】
なお、図6に示された放射線検出器21Bには、説明のため凹凸型蛍光体24と、片面凹凸型FOP25と、平面型受光素子26とのみを表示するものとする。
【0095】
続いて、放射線検出器21Bの動作は、図1に示された放射線検出器21と同様の動作であるので、放射線検出器21Bの動作について説明を省略する。
【0096】
ところで、図6に示された放射線検出器21Bでは、凹凸型蛍光体24は、のこぎり歯状にて凹凸形状を有するので、放射線a1,a2から変換された可視光b1,b2は、のこぎり歯状の側面である斜面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1,b2の伝送距離を相対的に増加させることができる。
【0097】
図6に示された放射線検出器21Bを利用すると、放射線a1,a2に反応して凹凸型蛍光体24にて発生する可視光b1,b2の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0098】
また、入射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を減衰させ、放射線吸収体33を用いて放射線a1,a2の強度を同程度とすることによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0099】
さらに、放射線検出器21を構成する回路基板29から画像処理装置31を分離独立させることによって、回路基板29の必要容量を縮小でき、回路基板29および回路基板29の劣化を防止している放射線遮蔽材30の軽量化・小型化を実現できる。
【0100】
図7は、本発明に係る放射線検出器の第4の実施形態を示す斜視図である。
【0101】
図7に示された放射線検出器21Cは、図1に示された放射線検出器21に備えた凹凸型蛍光体24の斜視図を示し、この凹凸型蛍光体24は、xz断面において、z軸方向に隆起した波状断面が形成される。そして、凹凸型蛍光体24は、波状断面がy軸方向に平行関係を保って延びる構造を有する。
【0102】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、波状断面にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の表面を均一にカバーするように構成される。
【0103】
なお、図7に示された放射線検出器21Cには、説明のため凹凸型蛍光体24と、片面凹凸型FOP25と、平面型受光素子26とのみを表示するものとする。
【0104】
続いて、放射線検出器21Cの動作は、図1に示された放射線検出器21と同様の動作であるので、放射線検出器21Cの動作について説明を省略する。
【0105】
ところで、図7に示された放射線検出器21Cでは、凹凸型蛍光体24は、波状にて凹凸形状を有するので、放射線a1,a2から変換された可視光b1,b2は、波状の側面である曲面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1,b2の伝送距離を相対的に増加させることができる。
【0106】
図7に示された放射線検出器21Cを利用すると、放射線a1,a2に反応して凹凸型蛍光体24にて発生する可視光b1,b2の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0107】
また、入射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を減衰させ、放射線a1,a2の強度を同程度とすることによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0108】
さらに、放射線検出器21を構成する回路基板29から画像処理装置31を分離独立させることによって、回路基板29の必要容量を縮小でき、回路基板29および回路基板29の劣化を防止している放射線遮蔽材30の軽量化・小型化を実現できる。
【0109】
図8は、本発明に係る放射線検出器の第5の実施形態を示す斜視図である。
【0110】
図8に示された放射線検出器21Dは、図1に示された放射線検出器21に備えた凹凸型蛍光体24の斜視図を示し、この凹凸型蛍光体24は、xz断面において、z軸方向に隆起した連続的な円弧状断面が形成される。そして、凹凸型蛍光体24は、連続的な円弧状断面がy軸方向に平行関係を保って延びる構造を有する。
【0111】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、連続的な円弧状断面にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の表面を均一にカバーするように構成される。
【0112】
なお、図8に示された放射線検出器21Dには、説明のため凹凸型蛍光体24と、片面凹凸型FOP25と、平面型受光素子26とのみを表示するものとする。
【0113】
続いて、放射線検出器21Dの動作は、図1に示された放射線検出器21と同様の動作であるので、放射線検出器21Dの動作について説明を省略する。
【0114】
ところで、図8に示された放射線検出器21Dでは、凹凸型蛍光体24は、連続的な円弧状にて凹凸形状を有するので、放射線a1,a2から変換された可視光b1,b2は、連続的な円弧状の側面である曲面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1,b2の伝送距離を相対的に増加させることができる。
【0115】
図8に示された放射線検出器21Dを利用すると、放射線a1,a2に反応して凹凸型蛍光体24にて発生する可視光b1,b2の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0116】
また、入射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2の強度を減衰させ、放射線a1,a2の強度を同程度とすることによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0117】
さらに、放射線検出器21を構成する回路基板29から画像処理装置31を分離独立させることによって、回路基板29の必要容量を縮小でき、回路基板29および回路基板29の劣化を防止している放射線遮蔽材30の軽量化・小型化を実現できる。
【0118】
図9は、本発明に係る放射線検出器の第6の実施形態を示す断面図である。
【0119】
図9は、放射線検出器21Eを示し、この放射線検出器21Eは、xy平面上に設けられ、放射線源22からz軸方向に放射状の放射線aが出射される。
【0120】
放射線検出器21は、放射線aを出射させる放射線源22と、例えば、円筒形状の配管等の被検体Sと、放射線aのうち放射線源22から被検体Sを透過する放射線a1に反応して、放射線a1を可視光b1に変換する凹凸型蛍光体24と、可視光b1を伝達する光学伝送素子である片面凹凸型FOP25と、片面凹凸型FOP25からの可視光b1を電気信号に変換する受光素子である平面型受光素子26とが備えられる。
【0121】
片面凹凸型FOP25は、数μmの光ファイバ素線25aをxy平面上にマトリクス状にて複数束にした光学デバイスであり、可視光bを高効率・低歪みで伝達することができる。また、平面型受光素子26は、デジタル画像を構成する画素26aをxy平面上にマトリクス状にて複数備えたCMOS型等によって構成される。
【0122】
片面凹凸型FOP25を形成する光ファイバ素線25aのコア径をr、平面型受光素子26を形成する画素26aの幅をdとすると、コア径rは、画素26aの幅d以下になるように構成する。画素26aの幅dの制限により、凹凸型蛍光体24上の放射線強度分布に応じて発生する可視光b1の強度分布が解像度劣化を起こさずに画素26aに転送されて、平面型受光素子26には像として像転送される。
【0123】
発電所等のプラントにおいて、被検体Sとして円筒形状を有する配管等は、規格設定された既知量である場合が多い。よって、凹凸型蛍光体24の形状は、円筒形状の被検体Sの外側面にほぼ一致するようにy軸方向に延びる半円筒形状を有し、図1に示された放射線検出器1の放射線aのうち放射線a2を検出させない構成とする。
【0124】
また、片面凹凸型FOP25の凹凸型蛍光体24側の接触面形状は、半円筒にて構成される。片面凹凸型FOP25の凹凸型蛍光体24側の接触面は、凹凸型蛍光体24を均一にカバーするような構成とする。一方、片面凹凸型FOP25の平面型受光素子26側の接触面は、平面型受光素子26の表面を均一にカバーするように構成される。
【0125】
また、A/D変換部27と画像処理部28とを有する回路基板29と、放射線aのうち回路基板29に直接に入射される放射線a3を遮蔽する放射線遮蔽材30とから構成される。
【0126】
続いて、放射線検出器21Eの動作について説明する。
【0127】
まず、図9に示された放射線検出器21Eの放射線源22と凹凸型蛍光体24との間に、被検体Sを位置させるようにセットする。
【0128】
そして、放射線検出器21に備える放射線源22から放射線aが放射状に出射される。出射された放射線aのうち被検体Sを透過した放射線a1は、凹凸型蛍光体24に入射される。
【0129】
凹凸型蛍光体24表面では、エネルギー強度の強い放射線a1によって放射線強度分布を有する像が形成される。凹凸型蛍光体24内部では、放射線a1の放射線強度分布に対応した強度分布を有する可視光b1に変換される。そして、可視光b1は、凹凸型蛍光体24から片面凹凸型FOP25に、放射線強度分布を維持した状態で転送される。
【0130】
ところで、図9に示された放射線検出器21Eでは、凹凸型蛍光体24は、半円筒形状が設置された凹凸形状を有するので、放射線a1から変換された可視光b1は、半円筒形状の側面である曲面内部をz軸方向に透過することになる。凹凸型蛍光体24は、例えば、図10に示された従来の放射線検出器1に備える平面型蛍光体4から凹凸加工・製作されるとする。凹凸型蛍光体24の厚さは平面型蛍光体4と同等であっても、凹凸型蛍光体24を伝送する可視光b1の伝送距離を相対的に増加させることができる。
【0131】
また、片面凹凸型FOP25では、凹凸型蛍光体24からの可視光b1を光ファイバ素線25a毎に分別し、可視光b1を各光ファイバ25a素線内部を介して平面型受光素子26に転送させる。
【0132】
平面型受光素子26を構成する画素26aでは、少なくとも1以上の光ファイバ素線25aからの可視光b1をアナログ情報として電気信号に変換する。そして、マトリクス状の各画素26aによって構成される平面型受光素子26では、マトリクス状のアナログ情報からアナログ画像が取得される。
【0133】
回路基板29では、回路基板29に備えるA/D変換部27によって、各画素26a毎のアナログ情報をデジタル化し、デジタル情報を総合してデジタル画像化する信号処理が実施される。そして、回路基板29にて信号処理されたデジタル信号を基に被検体Sのデジタル画像を表示し、被検体Sの内部構造についての表示等を行なう。また、必要に応じて、デジタル画像の加工・編集等を行なうこともできる。
【0134】
なお、放射線検出器21に備える放射線源22から放射状に出射された放射線aのうち凹凸型蛍光体24から外れて、基板回路29に入射される放射線a3は、放射線遮蔽材30によって遮蔽され、放射線a3から基板回路29を保護し、その劣化を防止している。
【0135】
図9に示された放射線検出器21Eを利用すると、放射線a1に反応して凹凸型蛍光体24にて発生する可視光b1の伝送距離を幾何学的に増加させることによって、放射線強度に影響されることなく、取得される画像情報の鮮明度向上を実施できる。
【0136】
また、放射される放射線aのうち被検体Sを外れて直接に凹凸型蛍光体24に入射する放射線a2を検出させないことによって、被検体Sの画像のハレーション事象を有効的に防止できる。
【0137】
また、取得される画像が実際の被検体Sの寸法よりも拡大されないので、寸法精度が良好な等倍の画像情報を得ることができる。
【0138】
【発明の効果】
本発明に係る放射線検出器によると、あらゆる放射線の強度に対応できる幾何学構造を有する蛍光体によって感度向上を実現できると共に、放射線吸収体によって被検体の内部構造を撮影した画像の鮮明度向上を実現できる。
【0139】
さらに、本発明に係る放射線検出器によると、放射線検出器を構成する回路基板から画像処理部を分離独立させることによって、回路基板の必要容量を縮小でき、回路基板と回路基板を保護する放射線遮蔽体との軽量化・小型化を実現できる。
【0140】
また、本発明に係る放射線検出器によると、寸法精度が良好な等倍の画像情報を得ることで、被検体に内在する欠陥箇所の寸法精度向上を実現できる。
【図面の簡単な説明】
【図1】本発明に係る放射線検出器の第1の実施形態を示す断面図。
【図2】本発明に係る放射線検出器の第1の実施形態を示す斜視図。
【図3】被検体の一例を示す概略図。
【図4】放射線吸収体の例を示す概略図。
【図5】本発明に係る放射線検出器の第2の実施形態を示す斜視図。
【図6】本発明に係る放射線検出器の第3の実施形態を示す斜視図。
【図7】本発明に係る放射線検出器の第4の実施形態を示す斜視図。
【図8】本発明に係る放射線検出器の第5の実施形態を示す斜視図。
【図9】本発明に係る放射線検出器の第6の実施形態を示す断面図。
【図10】従来の放射線検出器を示す断面図。
【符号の説明】
21,21A,21B,21C,21D,21E 放射線検出器
22 放射線源
24 凹凸型蛍光体(シンチレータ)
25 片面凹凸型FOP
27 A/D変換部
28 画像処理部
29 回路基板
30 放射線遮蔽材
32 通信ケーブル
33 放射線吸収体
41 半円筒部
42 板部
45 簾部

Claims (10)

  1. 放射線源から被検体に放射線を入射して、入射された放射線を蛍光体にて可視光に変換し、この可視光から前記被検体の画像情報を得る放射線検出器において、
    前記放射線源からの放射線を入射する側に凹凸形状をもつ凹凸型蛍光体と、
    前記凹凸型蛍光体との接触面形状が前記凹凸型蛍光体の凹凸形状と一致する凹凸形状である光学伝送素子と、
    前記光学伝送素子の可視光出射側に受光素子とを有することを特徴とする放射線検出器。
  2. 前記凹凸型蛍光体の凹凸形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面形状とが、前記放射線源からの放射線を入射する側に頂点をもつ多角錐構造を有して互いに重なり合い、前記光学伝送素子は、多角錐構造がマトリクス状または格子状にて複数配置されることを特徴とする請求項1記載の放射線検出器。
  3. 前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とがのこぎり歯状断面を有して互いに重なり合うように設置されたことを特徴とする請求項1記載の放射線検出器。
  4. 前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが波状断面を有して互いに重なり合うように設置されたことを特徴とする請求項1記載の放射線検出器。
  5. 前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが連続的な円弧状断面を有して互いに重なり合うように設置されたことを特徴とする請求項1記載の放射線検出器。
  6. 前記凹凸型蛍光体の断面形状と、前記光学伝送素子の前記凹凸型蛍光体側の接触面の断面形状とが前記被検体の外側面とほぼ一致した半円筒状形状を有して重なり合うように設置されたことを特徴とする請求項1記載の放射線検出器。
  7. 回路基板には、受光素子より転送される可視光から得られるアナログ情報をデジタル化するA/D変換部のみを有し、前記A/D変換部と画像処理部とを通信媒体を介して接続させることを特徴とする請求項1記載の放射線検出器。
  8. 放射線源から被検体に放射線を入射して、入射された放射線を蛍光体にて可視光に変換し、この可視光から前記被検体の画像情報を得る放射線検出器において、
    前記放射線源から出射される放射線のうち前記被検体を外れて蛍光体に入射される放射線を遮蔽するために、放射線吸収体を備えたことを特徴とする放射線検出器。
  9. 前記放射線吸収体は、半円筒部または板部の少なくとも一方を有し、前記放射線吸収体を前記被検体の形状または構造に適合できるように、形状を調節可能とする形状可変構造を有することを特徴とする請求項8記載の放射線検出器。
  10. 前記放射線吸収体は、半円筒部または簾部の少なくとも一方を有し、前記放射線吸収体を前記被検体の形状または構造に適合できるように、形状を調節可能とする形状可変構造を有することを特徴とする請求項8記載の放射線検出器。
JP2003097441A 2003-03-31 2003-03-31 放射線検出器 Pending JP2004301777A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097441A JP2004301777A (ja) 2003-03-31 2003-03-31 放射線検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097441A JP2004301777A (ja) 2003-03-31 2003-03-31 放射線検出器

Publications (1)

Publication Number Publication Date
JP2004301777A true JP2004301777A (ja) 2004-10-28

Family

ID=33409224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097441A Pending JP2004301777A (ja) 2003-03-31 2003-03-31 放射線検出器

Country Status (1)

Country Link
JP (1) JP2004301777A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085418A (ja) * 2009-10-13 2011-04-28 Aloka Co Ltd 放射線測定装置
JP2012107960A (ja) * 2010-11-16 2012-06-07 Canon Inc シンチレータ、放射線検出装置および放射線撮影装置
JP2016075598A (ja) * 2014-10-07 2016-05-12 キヤノン株式会社 放射線撮像装置及び撮像システム
US9529095B2 (en) 2015-03-18 2016-12-27 Kabushiki Kaisha Toshiba Measuring device
JP2019028034A (ja) * 2017-08-03 2019-02-21 トーレック株式会社 放射線検出装置及び線量計

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011085418A (ja) * 2009-10-13 2011-04-28 Aloka Co Ltd 放射線測定装置
JP2012107960A (ja) * 2010-11-16 2012-06-07 Canon Inc シンチレータ、放射線検出装置および放射線撮影装置
JP2016075598A (ja) * 2014-10-07 2016-05-12 キヤノン株式会社 放射線撮像装置及び撮像システム
US9529095B2 (en) 2015-03-18 2016-12-27 Kabushiki Kaisha Toshiba Measuring device
JP2019028034A (ja) * 2017-08-03 2019-02-21 トーレック株式会社 放射線検出装置及び線量計

Similar Documents

Publication Publication Date Title
US7214947B2 (en) Detector assembly and method of manufacture
US11063082B2 (en) Methods of making semiconductor X-ray detector
US5138642A (en) Detector imaging arrangement for an industrial CT device
US6167110A (en) High voltage x-ray and conventional radiography imaging apparatus and method
JP5062635B2 (ja) 符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス
JP3987676B2 (ja) X線計測装置
JP2009506316A (ja) 高解像度医療撮像検出器
JP4874961B2 (ja) 散乱放射線のための補正を有するx線検出器
US20180210097A1 (en) Semiconductor x-ray detector capable of dark current correction
JP2006519377A (ja) X線検出器
KR20160147270A (ko) 광자 계수형 검출기
JPH08211199A (ja) X線撮像装置
CN108140650A (zh) 具有高空间解析度的x射线检测器
JP2004301777A (ja) 放射線検出器
CN110477942B (zh) 一种pet探测器以及医学影像设备
CN209784229U (zh) 基于铅玻璃方形多毛细管透镜构成的ct成像系统
JP5289116B2 (ja) X線検出器
CN113009294B (zh) 非透镜的放电定位装置及方法
JP2006329905A (ja) ラインセンサ、ラインセンサユニット及び放射線非破壊検査システム
AU2018250678A1 (en) Improved temperature performance of a scintillator-based radiation detector system
JPH04287580A (ja) X線撮像方法とその装置並びに蛍光板および冷却型ccdカメラ
Hammar Novell design of high resolution imaging x-ray detectors
JPH10319122A (ja) 放射線撮像装置
KR102340521B1 (ko) 에너지 분리에 기반한 방사선 검출기기용 방사선(감마선) 반응 깊이 측정 방법 및 방사선(감마선) 반응 깊이 측정 장치
Bueno et al. Hybrid scintillators for x-ray imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080401

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080502