JP2004301364A - Heat pump hot water supply device - Google Patents

Heat pump hot water supply device Download PDF

Info

Publication number
JP2004301364A
JP2004301364A JP2003091803A JP2003091803A JP2004301364A JP 2004301364 A JP2004301364 A JP 2004301364A JP 2003091803 A JP2003091803 A JP 2003091803A JP 2003091803 A JP2003091803 A JP 2003091803A JP 2004301364 A JP2004301364 A JP 2004301364A
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water supply
heat
inlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003091803A
Other languages
Japanese (ja)
Inventor
Teruhiko Taira
輝彦 平
Takeshi Okinoya
剛 沖ノ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003091803A priority Critical patent/JP2004301364A/en
Publication of JP2004301364A publication Critical patent/JP2004301364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump hot water supply device for reducing the flowing sound of refrigerant even when the temperature of a water to be supplied is higher by arranging an evaporating heat exchanger having a structure in which a refrigerant passage high in rigidity and small in pressure loss. <P>SOLUTION: The evaporating heat exchanger 16 consists of an inlet pipe 16a into which the refrigerant depressurized by an expansion valve 15 flows, heat transfer pipes 16b, 16c to the outer periphery of which a plurality of fin materials for heat exchange with atmospheric air are joined and in which the refrigerant is distributed, and an output pipe 16d out of which heat absorbed refrigerant flows. The inlet pipe 16a is formed thicker than the heat transfer pipes 16b, 16c. Thus, the flowing sound of the refrigerant can be reduced even when the temperature of water to be supplied is higher. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、貯湯タンクと貯湯タンク内に貯える給湯用の湯を沸き上げるヒートポンプサイクルからなる給湯手段とを備えるヒートポンプ給湯装置に関するものであり、特に、大気熱と吸熱する蒸発用熱交換器の構造に関する。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯装置では、圧縮機、給湯用熱交換器、冷媒の流量を制御する減圧手段、蒸発器用熱交換器を順次接続した冷媒循環回路と、貯湯タンク、循環ポンプ、上記給湯用熱交換器を順次接続した給湯回路と、この給湯回路において給湯用熱交換器の水側出口水温である沸き上げ温度を一定にするために流量調整弁を制御する流量制御手段と、貯湯タンク全体が沸き上がる直前を検出する沸き上げ完了直前検出手段と、沸き上げ完了直前検出手段からの信号が所定の信号になった時に減圧手段の弁開度を変更する制御手段とを備えている。
【0003】
これにより、沸き上げ完了に近づき、圧縮機の吐出圧力が上昇する場合に、減圧手段の弁開度を変更するので、高温の給水であっても給湯加熱運転が可能となるため、有効に使用できる湯の領域を増加させたものである。因みに、図6(a)は、貯湯タンク内の温度分布を示したもので、湯温Tu以上の領域は有効な湯として使用できる領域であり、湯温T3a以下の領域は沸き上げ可能な領域であり、湯温T3aと湯温T3の間の領域が有効に利用できるものである(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−340440号公報
【0005】
【発明が解決しようとする課題】
しかしながら、この種のヒートポンプ給湯装置では、上記特許文献1のように高圧を低下させるように弁開度を制御して高温の給水を沸き上げると、沸き上げ終了直前において蒸発用熱交換器より冷媒流動音が大きくなる問題がある。これは、図6(b)に示すように、冷凍サイクルの作動状態が図中実線で示す湯温T2の時と、図中破線で示す湯温T3aの時とで、蒸発用熱交換器の冷媒入口において、ポイントA2(例えば、約0.3)とポイントA3a(例えば、約0.9)にて乾き度が大幅に異なるため、ポイントA3aはポイントA2に対してガス相が多いので比容積が高く、冷媒の流速が速くなる。従って、給水温度が高いと蒸発用熱交換器より冷媒流動音が大きくなると言える。
【0006】
そこで、本発明の目的は、上記点に鑑みたものであり、冷媒通路の高剛性や圧力損失の小さい構造の蒸発用熱交換器を配設させることで、給水温度が高くなっても冷媒流動音の低減を可能としたヒートポンプ給湯装置を提供することにある。
【0007】
【課題を解決するための手段】
上記、目的を達成するために、請求項1ないし請求項7に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、給水源から水が給水側に供給され、貯湯側に給湯用の湯を貯える貯湯タンク(1)と、冷媒を圧縮する圧縮機(13)、この圧縮機(13)より吐出された高圧冷媒と貯湯タンク(1)の給水側から取水する水とを熱交換する給湯用熱交換器(14)、減圧手段(15)、および大気熱を吸熱する蒸発用熱交換器(16)を順に環状に冷媒配管で接続された給湯手段(2)とを備えるヒートポンプ給湯装置において、
蒸発用熱交換器(16)は、減圧手段(15)より減圧された冷媒が流入される入口管(16a)、大気と熱交換する複数のフィン材が外周に接合されて内部に冷媒を流通する伝熱管(16b、16c)、および吸熱された冷媒が流出される出口管(16d)から構成され、入口管(16a)は、この入口管(16a)の肉厚が伝熱管(16b、16c)よりも厚肉に形成されていることを特徴としている。
【0008】
請求項1に記載の発明によれば、この種の給湯装置において、沸き上げ完了の直前には高温の給水を沸き上げることになるため、蒸発用熱交換器(16)の入口管(16a)には乾き度の高い冷媒が流入されることになる。そこで、本発明では、入口管(16a)の肉厚を伝熱管(16b、16c)よりも厚肉に形成することにより、入口管(16a)の剛性を高めることで遮音効果が得られ、蒸発用熱交換器(16)内部に冷媒流動音が発生しても外部に伝播せず冷媒流動音の低減が図れる。
【0009】
請求項2および請求項3に記載の発明では、入口管(16a)は、この入口管(16a)の肉厚が、好ましくは管径に対して12%以上、もしくはより好ましくは管径に対して20%以上で形成されていることを特徴としている。
【0010】
請求項2および請求項3に記載の発明によれば、発明者らは、冷媒流動音と入口管(5a)の肉厚との関係を研究した結果、入口管(16a)の管径に対して肉厚を厚肉とすることで冷媒流動音の低減が図れることが分かった。つまり、入口管(16a)の肉厚を好ましくは管径の12%以上、より好ましくは20%以上とすることで入口管(16a)内で発生する冷媒流動音の低減が図れる。
【0011】
請求項4に記載の発明では、給水源から水が給水側に供給され、貯湯側に給湯用の湯を貯える貯湯タンク(1)と、冷媒を圧縮する圧縮機(13)、この圧縮機(13)より吐出された高圧冷媒と貯湯タンク(1)の給水側から取水する水とを熱交換する給湯用熱交換器(14)、減圧手段(15)、および大気熱を吸熱する蒸発用熱交換器(16)を順に環状に冷媒配管で接続された給湯手段(2)とを備えるヒートポンプ給湯装置において、
蒸発用熱交換器(16)は、減圧手段(15)より減圧された冷媒が流入される入口管(16a)、大気と熱交換する複数のフィン材が外周に接合されて内部に冷媒を流通する伝熱管(16b、16c)、および吸熱された冷媒が流出される出口管(16d)から構成され、伝熱管(16b、16c)は、伝熱管(16b、16c)のうちで他の部位より入口近傍部側のほうが伝熱管(16b、16c)の肉厚を厚肉に形成されていることを特徴としている。
【0012】
請求項4に記載の発明によれば、請求項1で述べた入口管(16a)の他に、伝熱管(16b、16c)においても、肉厚が同等の伝熱管(16b、16c)よりも、他の部位より冷媒入口近傍部のほうを厚肉に形成することにより、遮音効果が得られることで冷媒流通音の低減が図れる。
【0013】
請求項5に記載の発明では、蒸発用熱交換器(16)は、冷媒の流れを分流するために複数の冷媒通路が入口管(16a)、伝熱管(16b、16c)、および出口管(16d)により形成され、かつ入口管(16a)より順次冷媒流れ下流にかけて冷媒通路の通路数が減少するように形成されていることを特徴としている。
【0014】
請求項5に記載の発明によれば、冷媒入口側の冷媒通路数を多くするように形成することにより、特に、入口側の圧力損失が低下することで冷媒流動音の発生減の低減が図れる。
【0015】
請求項6に記載の発明では、蒸発用熱交換器(16)は、冷媒の流れを分流するために複数の冷媒通路が入口管(16a)、伝熱管(16b、16c)、および出口管(16d)により形成され、かつ入口管(16a)より順次冷媒流れ下流にかけて冷媒通路の通路数を減少させ、再度増加させるように形成されていることを特徴としている。
【0016】
請求項6に記載の発明によれば、上述した請求項5よりも蒸発用熱交換器(16)の圧力損失が低下することで冷媒流動音の低減が図れるとともに熱効率の向上が図れる。
【0017】
請求項7に記載の発明では、給湯手段(2)は、冷媒が二酸化炭素であることを特徴としている。
【0018】
請求項7に記載の発明によれば、冷媒に二酸化炭素を用いることで、超臨界ヒートポンプサイクルを形成できる。これによれば、フロン系の冷媒を用いる一般的なヒートポンプサイクルよりも高温(例えば、80〜90℃程度)の給湯水を沸き上げることができるとともに、高温の給水であっても沸き上げ運転が可能となる。
【0019】
なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。
【0020】
【発明の実施の形態】
(第1実施形態)
以下、本発明を適用した第1実施形態のヒートポンプ給湯装置を図1ないし図3に基づいて説明する。図1はヒートポンプ給湯装置の全体構成を示す模式図である。まず、図1に示すように、ヒートポンプ給湯装置は、給湯用の湯を貯える貯湯タンク1、貯湯タンク1内から取水した水を沸き上げる給湯手段であるヒートポンプユニット2、貯湯タンク1とヒートポンプユニット2とを接続する給湯循環回路3、ヒートポンプユニット2を制御する制御装置4などから構成されている。
【0021】
貯湯タンク1は、耐食性に優れた金属製(例えば、ステンレス製)からなり、縦長形状に形成され、外周部に図示しない断熱材が配置されており高温の給湯用の湯を長時間に渡って保温することができるようになっている。また、その底面には導入口5が設けられ、この導入口5には貯湯タンク1内に水道水を導入する給水経路である導入管6が接続されている。
【0022】
導入管12の上流には図示しない減圧逆止弁を介して上水に接続されて、所定圧の水道水を導入するようになっている。一方、貯湯タンク1の最上部には導出口7が設けられ、導出口7には貯湯タンク1内の湯を導出するための給湯配管8が接続されている。なお、給湯配管8の経路途中には、図示しない逃がし弁を配設した排出配管が接続されており、貯湯タンク1内の圧力が所定圧以上に上昇した場合には、貯湯タンク1内の湯を外部に排出して、貯湯タンク1等にダメージを与えないようになっている。
【0023】
さらに、給湯配管8の経路途中には、図示しない湯水混合手段が接続されており、貯湯タンク1内の高温の湯と水道水とを混合させて所定温度の給湯水が得られるように構成されている。また、貯湯タンク1の下部には、貯湯タンク1内の水を吸入するための吸入口1aが設けられ、貯湯タンク1の上部には、貯湯タンク1内に湯を吐出する吐出口1bが設けられている。
【0024】
次に、循環回路3は、上流側を吸入口1aに接続し、下流側を吐出口1bに接続して、ヒートポンプユニット2に構成される後述する給湯用熱交換器14に吸入口1aから吸入した貯湯タンク1内の水と高温冷媒とを熱交換させて吐出口1bから貯湯タンク1内に戻すことにより貯湯タンク1内の水を沸き上げるようにしている。9は、沸き上げのときに循環回路3内に貯湯タンク1内の水を循環させる送水ポンプであり、10は、循環回路3内を循環する流量を調節する流量調節手段である流量調節弁である。
【0025】
11は、後述する給湯用熱交換器14から流出された沸き上げ温度を検出する水温センサであり、12は給湯用熱交換器14に流入する給水の温度を検出する給水温度センサである。これらの水温センサ11および給水温度センサ12は検出した温度情報を制御装置4に出力するようにしている。なお、流量調節弁10は、水温センサ11により検出された沸き上げ温度情報に基づいて流量が制御されるようになっている。本実施形態では、沸き上げ温度が一定となる流量に制御されている。
【0026】
次に、ヒートポンプユニット2は、圧縮機13、給湯用熱交換器14、減圧手段15、蒸発用熱交換器16およびアキュームレータ17を順に環状に冷媒配管18により接続して構成され、冷媒として臨界温度の低い二酸化炭素COを使用している。
【0027】
圧縮機13は、内蔵する電動モータ(図示せず)によって駆動され、アキュームレータ17より吸引した冷媒を一般的使用条件において臨界圧力以上まで圧縮して吐出する。そして、給湯用熱交換器14は、圧縮機13より吐出された高圧のガス冷媒と貯湯タンク1内から取水した水とを熱交換するもので、冷媒が流れる冷媒通路(図示せず)と、水が流れる給湯用水通路(図示せず)とを有し、冷媒の流れ方向と水の流れ方向とが対向するように構成されている。なお、冷媒通路(図示せず)に流入する冷媒は圧縮機13で臨界圧力以上に加圧されているので、給湯用熱交換器14で放熱しても凝縮することはない。
【0028】
減圧手段である膨張弁15は、給湯用熱交換器14から流出する冷媒を弁開度に応じて減圧する減圧装置で制御装置4によって弁開度が電気的に制御される。蒸発用熱交換器16は、膨張弁15で減圧された冷媒を図示しない送風機によって送風される大気との熱交換器によって蒸発させる。アキュームレータ17は、蒸発用熱交換器16で蒸発した冷媒を気液分離して液冷媒を貯留し、気相冷媒のみ圧縮機13に吸引させ、サイクル中の余剰冷媒を蓄えておくものである。
【0029】
ところで、以上の構成によるヒートポンプユニット2は、超臨界ヒートポンプであって、この超臨界ヒートポンプとは、高圧側の冷媒圧力が冷媒の臨界圧力以上となるヒートポンプサイクルを言い、冷媒として、上述の二酸化炭素COの他にエチレン、エタン、酸化窒素などを使用しても良い。因みに、この超臨界ヒートポンプによれば、一般的なヒートポンプサイクルよりも高温(例えば、85℃〜90℃程度)の給湯水を沸き上げることができる。
【0030】
なお、制御装置4は、図示しない操作盤からの操作信号および水温センサ11および給水温度センサ12による温度情報に基づいて、圧縮機13、膨張弁15、送水ポンプ9および流量調整弁10を制御してヒートポンプユニット2の沸き上げ運転を行なって貯湯タンク1に給湯用の湯を貯えるものである。また、沸き上げ運転は、貯湯タンク1の外壁面に設けられた図示しない複数の水位サーミスタの温度情報により貯湯量を検出し、所定の貯湯量以下となったときに沸き上げ運転を行なうように構成されている。
【0031】
ここで、本発明の要部である蒸発用熱交換器16の構成を図2に基づいて説明する。図2(a)は蒸発用熱交換器16の全体構成を示す構成図、図2(b)は蒸発用熱交換器16の冷媒通路数を示す説明図である。
【0032】
本実施形態の蒸発用熱交換器16は、図2(a)に示すように、チューブ状に形成された複数の伝熱管16b、16cと、その伝熱管16b、16cの外周に接合され大気熱と熱交換する複数のフィン材16eとからなるフィンアンドチューブ方式の熱交換器であり、伝熱管16b、16cの上流側に入口管16aと下流側に出口管16dとから構成している。
【0033】
そして、これらのチューブ16a〜16dは、冷媒の流れを分流するために、入口管16aから冷媒流れ下流側にかけて冷媒通路数を2パスで流入した後に、蒸発用熱交換器16の中途で4パスに分配し出口管16dで合流するように形成している。具体的には、図2(a)および図2(b)に示すように、入口管16aにおいては、上流端が膨張弁15に接合するように形成され、その接合部より冷媒流れ下流側から伝熱管16bに接合する下流端までは2パスの冷媒通路を形成している。そして、2パスの伝熱管16bは途中で4パスの冷媒通路からなる伝熱管16cに接合されて出口管16dにて合流するように構成している。
【0034】
さらに、本実施形態では、これらのチューブ16a〜16dの肉厚を異なるように形成してある。すなわち、2パスで形成した入口管16a、2パスで形成した伝熱管16bおよび4パスで形成した伝熱管16cは、ぞれぞれの管径(例えば、φ6.0mm)が同等の銅製のチューブで形成し、冷媒の入口側の肉厚を厚肉になるように形成している。因みに、2パスの入口管16aが肉厚1.5mmであり、2パスの伝熱管16bが肉厚0.6mm、4パスの伝熱管16cが肉厚0.4mmと冷媒が流入する入口側が下流側に比べて厚肉となるように形成している。これは、入口側近傍においてチューブの剛性を高めたものである。
【0035】
次に、以上の構成からなる蒸発用熱交換器16を備えるヒートポンプユニット2の作動について図6(b)および図3に基づいて説明する。まず、ヒートポンプユニット2が沸き上げ運転を行なうときは、給湯用熱交換器14に流入される貯湯タンク1内の水の給水温度が低いときの冷凍サイクルにおいて、例えば、冷凍サイクルの作動状態が、図6(b)に示すように、図中実線で示す湯温T2の作動状態において、蒸発用熱交換器16の出口側(ポイントA2a)にて乾き度が高いため、この部位においてガス相が多いので比容積が高く冷媒の流速が速くなる。本発明では、伝熱管16c以降が4パスの冷媒通路数に増加させて圧力損失を下げるように構成しているので圧力損失が高まることはない。
【0036】
ところが、沸き上げ完了の直前になってくると、給湯用熱交換器14に流入される給水温度が高くなる。このときには、冷凍サイクルの作動状態が図中の破線で示すT3aの作動状態において、蒸発用熱交換器16の入口側(ポイントA3a)にて乾き度が高いため、概して、この部位において、膨張弁15により減圧された冷媒の流速が速まるのでこの時に冷媒流動音が発生しやすくなる。そこで、本発明では、この部位の肉厚を厚肉に形成することで、剛性を高めて冷媒流動音の外部への伝播を遮音させたものである。
【0037】
この冷媒が流入する入口管16aの肉厚については、発明者らの研究によって見出したものであり、具体的には、図3に示す冷媒流動音と肉厚との関係を示す特性図から求めたものである。すなわち、図3に示すように、耐圧制限を遵守する肉厚の時(例えば、管径×5%程度)では、6dBの騒音値であったのが本実施形態のように、肉厚を1.5mm(管径の25%)にすることによりΔ5dBの遮音効果を有するものである。これは、冷媒流動音が発生しても厚肉により剛性を高めることで外部への伝播を遮断させたものである。
【0038】
なお、本実施形態では、肉厚を1.5mm(管径の25%)と厚肉としたが、これに限らず、図3に示すように、入口管16aの肉厚を好ましくは管径の12%以上、より好ましくは管径の20%以上とすることで冷媒流動音を2〜5dB程度低減できる。また、伝熱管16b、16cにおいても冷媒流入側を厚肉に形成することで入口管16aと同じように遮音効果が得られる。
【0039】
以上の構成による第1実施形態のヒートポンプ式給湯装置によれば、この種の給湯装置において、沸き上げ完了の直前には高温の給水を沸き上げることになるため、蒸発用熱交換器16の入口管16aには乾き度の高い冷媒が流入されることになる。そこで、本発明では、入口管16aの肉厚を伝熱管16b、16cよりも厚肉に形成することにより、入口管16aの剛性を高めることで遮音効果が得られ、蒸発用熱交換器16内部に冷媒流動音が発生しても外部に伝播せず冷媒流動音の低減が図れる。
【0040】
また、発明者らは、冷媒流動音と入口管5aの肉厚との関係を研究した結果、入口管16aの管径に対して肉厚を厚肉とすることで冷媒流動音の低減が図れることが分かった。つまり、入口管16aの肉厚を好ましくは管径の12%以上、より好ましくは20%以上とすることで入口管(16a)内で発生する冷媒流動音の低減が図れる。
【0041】
さらに、入口管16aと同様に、伝熱管16b、16cにおいても、肉厚が同等の伝熱管16b、16cよりも、他の部位より冷媒入口近傍部のほうを厚肉に形成することにより、遮音効果が得られることで冷媒流通音の低減が図れる。
【0042】
また、冷媒に二酸化炭素を用いることで、超臨界ヒートポンプサイクルを形成できる。これによれば、フロン系の冷媒を用いる一般的なヒートポンプサイクルよりも高温(例えば、80〜90℃程度)の給湯水を沸き上げることができるとともに、高温の給水であっても沸き上げ運転が可能となる。
【0043】
(第2実施形態)
以上の第1実施形態では、入口管16aから冷媒流れ下流側にかけて冷媒通路数を2パスで流入した後に、蒸発用熱交換器16の中途で4パスに分配し出口管16dで合流するように形成したが、これに限らず、入口管16aから冷媒流れ下流側にかけて冷媒通路数を4パスで流入した後に、蒸発用熱交換器16の中途で2パスに分配し出口管16dで合流するように形成しても良い。
【0044】
具体的には、図4(a)および図4(b)に示すように、入口管16aにおいては、上流端が膨張弁15に接合するように形成され、その接合部より冷媒流れ下流側から伝熱管16bに接合する下流端までは4パスの冷媒通路を形成している。そして、4パスの伝熱管16bは途中で2パスの冷媒通路からなる伝熱管16cに接合されて出口管16dにて合流するように構成している。
【0045】
これにより、冷媒流入側の入口管16a伝熱管16bにて冷媒通路数が2パスから4パスに増加することで冷媒の流速を大幅に低下できるため、第1実施形態よりも冷媒流動音の発生源を低減できる。
【0046】
(第3実施形態)
以上の第2実施形態では、入口管16aから冷媒流れ下流側にかけて冷媒通路数を4パスで流入した後に、蒸発用熱交換器16の中途で2パスに分配し出口管16dで合流するように形成したが、これに限らず、入口管16aから冷媒流れ下流側にかけて冷媒通路数を4パスで流入した後に、蒸発用熱交換器16の中途で2パスに分配し、その後4パスに分配し出口管16dで合流するように形成しても良い。
【0047】
具体的には、図5(a)および図5(b)に示すように、入口管16aにおいては、上流端が膨張弁15に接合するように形成され、その接合部より冷媒流れ下流側から伝熱管16bに接合する下流端までは4パスの冷媒通路を形成している。そして、4パスの伝熱管16bは途中で2パスに分配し、その後4パスに分配した冷媒通路からなる伝熱管16cに接合されて出口管16dにて合流するように構成している。これにより、第2実施形態よりも、冷媒流れ下流側においても圧力損失が低下するため給水温度が低いとき(例えば、T2のとき)に、熱効率の向上が図れる。
【0048】
(他の実施形態)
以上の実施形態では、本発明を圧縮機13、給湯用熱交換器14、減圧手段15、蒸発用熱交換器16およびアキュームレータ17のヒートポンプサイクルを構成する冷媒機能部品からなる超臨界ヒートポンプからなるヒートポンプユニット2に適用したが、これに限らず、一般のヒートポンプサイクルを構成する給湯手段に適用しても良い。
【0049】
なお、本実施形態に示した具体的な数値などはあくまでも一例であり、本発明はこれらに限定されるものではない。
【図面の簡単な説明】
【図1】本発明の第1実施形態におけるヒートポンプ給湯装置の全体構成を示す模式図である。
【図2】本発明の第1実施形態における(a)は蒸発用熱交換器16の全体構成を示す側面図、(b)は冷媒の流れを分流する冷媒通路数を説明する説明図である。
【図3】本発明の第1実施形態における冷媒流動音の騒音値と管肉厚との関係を示す特性図である。
【図4】本発明の第2実施形態における(a)は蒸発用熱交換器16の全体構成を示す側面図、(b)は冷媒の流れを分流する冷媒通路数を説明する説明図である。
【図5】本発明の第3実施形態における(a)は蒸発用熱交換器16の全体構成を示す側面図、(b)は冷媒の流れを分流する冷媒通路数を説明する説明図である。
【図6】(a)は貯湯タンクの高さ方向における温度分布を示す説明図、(b)は冷媒が二酸化炭素の冷媒を用いたときの冷凍サイクルの作動状態を示す特性図である。
【符号の説明】
1…貯湯タンク
2…ヒートポンプユニット(給湯手段)
13…圧縮機
14…給湯用熱交換器
15…膨張弁(減圧手段)
16…蒸発用熱交換器
16a…入口管
16b、16c…伝熱管
16d…出口管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump water heater including a hot water storage tank and a hot water supply means including a heat pump cycle for boiling hot water for hot water stored in the hot water storage tank, and particularly relates to a structure of an evaporation heat exchanger that absorbs atmospheric heat and heat. About.
[0002]
[Prior art]
Conventionally, in this type of heat pump hot water supply apparatus, a refrigerant circulation circuit in which a compressor, a heat exchanger for hot water supply, a pressure reducing means for controlling the flow rate of a refrigerant, and a heat exchanger for an evaporator are sequentially connected, a hot water storage tank, a circulation pump, Hot water supply circuit in which hot water exchangers are sequentially connected, flow control means for controlling a flow control valve to keep the boiling temperature, which is the water-side outlet water temperature of the hot water heat exchanger in the hot water supply circuit, and a hot water storage tank There is provided a means for detecting immediately before the completion of boiling, and a control means for changing a valve opening of the pressure reducing means when a signal from the means for detecting immediately before boiling becomes a predetermined signal.
[0003]
As a result, the valve opening degree of the pressure reducing means is changed when the discharge pressure of the compressor approaches to the completion of the boiling and the discharge pressure of the compressor increases. The area of hot water that can be produced is increased. FIG. 6 (a) shows the temperature distribution in the hot water storage tank. The area above the hot water temperature Tu is an area that can be used as effective hot water, and the area below the hot water temperature T3a is the area that can be heated. Thus, the area between the hot water temperature T3a and the hot water temperature T3 can be used effectively (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP, 2002-340440, A
[Problems to be solved by the invention]
However, in this type of heat pump water heater, when the high-temperature feedwater is boiled by controlling the valve opening so as to reduce the high pressure as in Patent Document 1, the refrigerant is transferred from the evaporating heat exchanger immediately before the end of the boiling. There is a problem that the flowing noise increases. This is because, as shown in FIG. 6 (b), when the operation state of the refrigeration cycle is the hot water temperature T2 shown by the solid line in the figure and the hot water temperature T3a shown by the broken line in the figure, the operation of the evaporating heat exchanger is started. At the refrigerant inlet, since the dryness differs greatly at point A2 (for example, about 0.3) and point A3a (for example, about 0.9), point A3a has a larger gas phase than point A2, and therefore has a specific volume. And the flow rate of the refrigerant increases. Therefore, it can be said that when the feedwater temperature is high, the refrigerant flow noise is greater than that of the evaporating heat exchanger.
[0006]
In view of the above, an object of the present invention is to provide an evaporating heat exchanger having a structure in which the refrigerant passage has high rigidity and a small pressure loss. An object of the present invention is to provide a heat pump hot water supply device capable of reducing sound.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the technical means described in claims 1 to 7 is adopted. That is, according to the first aspect of the present invention, water is supplied from the water supply source to the water supply side, and a hot water storage tank (1) for storing hot water for hot water supply on the hot water storage side, and a compressor (13) for compressing a refrigerant, the compressor (13) includes: A hot water supply heat exchanger (14) for exchanging heat between the high-pressure refrigerant discharged from the machine (13) and water taken from the water supply side of the hot water storage tank (1), a pressure reducing means (15), and evaporation for absorbing atmospheric heat. Pump hot water supply apparatus comprising: a hot water supply means (2) in which a heat exchanger (16) for use is sequentially connected by a refrigerant pipe in a ring shape;
The evaporating heat exchanger (16) has an inlet pipe (16a) into which the refrigerant decompressed by the decompression means (15) flows, and a plurality of fin materials that exchange heat with the atmosphere are joined to the outer periphery to distribute the refrigerant inside. The heat transfer pipes (16b, 16c) and the outlet pipe (16d) through which the heat-absorbed refrigerant flows out. The inlet pipe (16a) has the thickness of the heat transfer pipe (16b, 16c). ) Is characterized in that it is formed thicker.
[0008]
According to the first aspect of the present invention, in this type of hot water supply apparatus, the hot water is heated immediately before the completion of the heating, so that the inlet pipe (16a) of the evaporating heat exchanger (16). A refrigerant having a high degree of dryness is introduced into the cooling medium. Therefore, in the present invention, the wall thickness of the inlet pipe (16a) is made thicker than that of the heat transfer pipes (16b, 16c), so that the rigidity of the inlet pipe (16a) is increased, so that a sound insulation effect is obtained. Even if the refrigerant flow noise is generated inside the heat exchanger (16), the refrigerant flow noise is not transmitted to the outside, and the refrigerant flow noise can be reduced.
[0009]
According to the second and third aspects of the present invention, the thickness of the inlet pipe (16a) is preferably 12% or more with respect to the pipe diameter, or more preferably, with respect to the pipe diameter. At least 20%.
[0010]
According to the second and third aspects of the present invention, the inventors have studied the relationship between the refrigerant flow noise and the thickness of the inlet pipe (5a). Thus, it was found that the refrigerant flow noise could be reduced by increasing the wall thickness. That is, the flow noise of the refrigerant generated in the inlet pipe (16a) can be reduced by setting the thickness of the inlet pipe (16a) to preferably 12% or more, more preferably 20% or more of the pipe diameter.
[0011]
In the invention described in claim 4, water is supplied from the water supply source to the water supply side, and a hot water storage tank (1) for storing hot water for hot water supply on the hot water storage side, a compressor (13) for compressing a refrigerant, and the compressor ( 13) A hot water supply heat exchanger (14) for exchanging heat between the high pressure refrigerant discharged from the hot water storage tank (1) and water taken from the water supply side of the hot water storage tank (1), a decompression means (15), and evaporation heat for absorbing atmospheric heat. In a heat pump water heater including a water heater (2) in which exchangers (16) are connected in order by refrigerant pipes in a ring shape,
The evaporating heat exchanger (16) has an inlet pipe (16a) into which the refrigerant decompressed by the decompression means (15) flows, and a plurality of fin materials that exchange heat with the atmosphere are joined to the outer periphery to distribute the refrigerant inside. Heat transfer tubes (16b, 16c), and an outlet tube (16d) through which the heat absorbed refrigerant flows out, and the heat transfer tubes (16b, 16c) are located closer to other portions of the heat transfer tubes (16b, 16c). The thickness of the heat transfer tubes (16b, 16c) near the inlet is thicker.
[0012]
According to the fourth aspect of the present invention, in addition to the inlet pipe (16a) described in the first aspect, the heat transfer tubes (16b, 16c) also have a greater wall thickness than the heat transfer tubes (16b, 16c) having the same thickness. By forming the portion near the refrigerant inlet to be thicker than the other portions, a sound insulation effect can be obtained, so that the refrigerant flow noise can be reduced.
[0013]
According to the fifth aspect of the present invention, in the evaporating heat exchanger (16), the plurality of refrigerant passages for dividing the flow of the refrigerant include an inlet pipe (16a), a heat transfer pipe (16b, 16c), and an outlet pipe ( 16d), and is formed so that the number of refrigerant passages decreases sequentially from the inlet pipe (16a) to the downstream of the refrigerant flow.
[0014]
According to the fifth aspect of the invention, since the number of refrigerant passages on the refrigerant inlet side is increased, the pressure loss on the inlet side is reduced, thereby reducing the generation of refrigerant flow noise. .
[0015]
According to the sixth aspect of the present invention, in the evaporating heat exchanger (16), the plurality of refrigerant passages for dividing the flow of the refrigerant include an inlet pipe (16a), a heat transfer pipe (16b, 16c), and an outlet pipe ( 16d), and is formed so that the number of refrigerant passages is sequentially reduced from the inlet pipe (16a) to the downstream of the refrigerant flow, and is increased again.
[0016]
According to the sixth aspect of the invention, the pressure loss of the evaporating heat exchanger (16) is lower than that of the fifth aspect, so that the refrigerant flow noise can be reduced and the thermal efficiency can be improved.
[0017]
In the invention according to claim 7, the hot water supply means (2) is characterized in that the refrigerant is carbon dioxide.
[0018]
According to the seventh aspect of the invention, a supercritical heat pump cycle can be formed by using carbon dioxide as the refrigerant. According to this, hot water can be heated at a higher temperature (for example, about 80 to 90 ° C.) than a general heat pump cycle using a chlorofluorocarbon-based refrigerant, and the boiling operation can be performed even with high-temperature water. It becomes possible.
[0019]
Note that the reference numerals in parentheses of the above means indicate the correspondence with specific means of the embodiment described later.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a heat pump water heater according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the overall configuration of the heat pump water heater. First, as shown in FIG. 1, a heat pump hot water supply apparatus includes a hot water storage tank 1 for storing hot water for hot water supply, a heat pump unit 2 serving as hot water supply means for boiling water taken from the hot water storage tank 1, a hot water storage tank 1 and a heat pump unit 2 And a control device 4 for controlling the heat pump unit 2.
[0021]
The hot water storage tank 1 is made of a metal (for example, stainless steel) having excellent corrosion resistance, is formed in a vertically long shape, and a heat insulating material (not shown) is arranged on an outer peripheral portion. It can be kept warm. An inlet 5 is provided on the bottom surface, and an inlet pipe 6 which is a water supply path for introducing tap water into the hot water storage tank 1 is connected to the inlet 5.
[0022]
Upstream of the introduction pipe 12 is connected to tap water via a pressure-reducing check valve (not shown) so that tap water of a predetermined pressure is introduced. On the other hand, an outlet 7 is provided at the top of the hot water storage tank 1, and a hot water supply pipe 8 for discharging hot water in the hot water storage tank 1 is connected to the outlet 7. A discharge pipe provided with a relief valve (not shown) is connected in the middle of the hot water supply pipe 8, and when the pressure in the hot water storage tank 1 rises to a predetermined pressure or more, the hot water in the hot water storage tank 1 is discharged. Is discharged to the outside so as not to damage the hot water storage tank 1 and the like.
[0023]
Further, hot water mixing means (not shown) is connected in the middle of the hot water supply pipe 8 so that hot water in the hot water storage tank 1 and tap water are mixed to obtain hot water at a predetermined temperature. ing. Further, a suction port 1a for sucking water in the hot water storage tank 1 is provided at a lower portion of the hot water storage tank 1, and a discharge port 1b for discharging hot water into the hot water storage tank 1 is provided at an upper portion of the hot water storage tank 1. Have been.
[0024]
Next, the circulation circuit 3 connects the upstream side to the suction port 1 a, connects the downstream side to the discharge port 1 b, and sucks the heat from the suction port 1 a into the hot water supply heat exchanger 14, which will be described later, included in the heat pump unit 2. The water in the hot water storage tank 1 is boiled by exchanging heat between the water in the hot water storage tank 1 and the high-temperature refrigerant and returning the same to the hot water storage tank 1 from the discharge port 1b. 9 is a water supply pump for circulating water in the hot water storage tank 1 in the circulation circuit 3 at the time of boiling, and 10 is a flow control valve as flow control means for controlling a flow rate circulating in the circulation circuit 3. is there.
[0025]
Reference numeral 11 denotes a water temperature sensor for detecting a boiling temperature discharged from a hot water supply heat exchanger 14 described later, and reference numeral 12 denotes a water supply temperature sensor for detecting a temperature of water supplied to the hot water supply heat exchanger 14. The water temperature sensor 11 and the supply water temperature sensor 12 output detected temperature information to the control device 4. The flow rate of the flow control valve 10 is controlled based on the boiling temperature information detected by the water temperature sensor 11. In the present embodiment, the flow rate is controlled so that the boiling temperature becomes constant.
[0026]
Next, the heat pump unit 2 is configured by connecting a compressor 13, a hot water supply heat exchanger 14, a pressure reducing means 15, an evaporating heat exchanger 16 and an accumulator 17 in order in an annular manner through a refrigerant pipe 18, and has a critical temperature as a refrigerant. Low carbon dioxide CO 2 is used.
[0027]
The compressor 13 is driven by a built-in electric motor (not shown), and compresses and discharges the refrigerant sucked from the accumulator 17 to a critical pressure or higher under general use conditions. The hot water supply heat exchanger 14 exchanges heat between the high-pressure gas refrigerant discharged from the compressor 13 and water taken from the hot water storage tank 1, and includes a refrigerant passage (not shown) through which the refrigerant flows. It has a hot water supply water passage (not shown) through which water flows, and is configured such that the flow direction of the refrigerant and the flow direction of the water are opposed to each other. Since the refrigerant flowing into the refrigerant passage (not shown) is pressurized by the compressor 13 to a pressure higher than the critical pressure, the refrigerant does not condense even if heat is radiated by the hot water supply heat exchanger 14.
[0028]
The expansion valve 15, which is a pressure reducing means, is a pressure reducing device that reduces the pressure of the refrigerant flowing out of the hot water supply heat exchanger 14 in accordance with the valve opening degree, and the valve opening degree is electrically controlled by the control device 4. The evaporating heat exchanger 16 evaporates the refrigerant decompressed by the expansion valve 15 by a heat exchanger with the air blown by a blower (not shown). The accumulator 17 separates the refrigerant evaporated in the evaporating heat exchanger 16 into gas and liquid, stores the liquid refrigerant, causes only the gas-phase refrigerant to be sucked into the compressor 13, and stores the surplus refrigerant during the cycle.
[0029]
Incidentally, the heat pump unit 2 having the above configuration is a supercritical heat pump. This supercritical heat pump refers to a heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. Ethylene, ethane, nitric oxide or the like may be used in addition to CO 2 . Incidentally, according to this supercritical heat pump, hot water can be heated at a higher temperature (for example, about 85 ° C. to 90 ° C.) than a general heat pump cycle.
[0030]
The control device 4 controls the compressor 13, the expansion valve 15, the water supply pump 9, and the flow rate adjustment valve 10 based on an operation signal from an operation panel (not shown) and temperature information from the water temperature sensor 11 and the feedwater temperature sensor 12. The heat pump unit 2 performs a boiling operation to store hot water for hot water supply in the hot water storage tank 1. Further, the boiling operation is performed by detecting the amount of hot water storage from temperature information of a plurality of water level thermistors (not shown) provided on the outer wall surface of the hot water storage tank 1 and performing the boiling operation when the temperature becomes equal to or less than a predetermined hot water storage amount. It is configured.
[0031]
Here, the configuration of the evaporating heat exchanger 16 which is a main part of the present invention will be described based on FIG. FIG. 2A is a configuration diagram showing the overall configuration of the evaporating heat exchanger 16, and FIG. 2B is an explanatory diagram showing the number of refrigerant passages in the evaporating heat exchanger 16.
[0032]
As shown in FIG. 2A, the evaporating heat exchanger 16 of the present embodiment has a plurality of heat transfer tubes 16b and 16c formed in a tube shape, and is connected to the outer periphery of the heat transfer tubes 16b and 16c and is connected to an atmospheric heat exchanger. This is a fin-and-tube heat exchanger composed of a plurality of fin members 16e that exchange heat with the heat transfer tubes 16b and 16c, and includes an inlet tube 16a on the upstream side of the heat transfer tubes 16b and 16c and an outlet tube 16d on the downstream side.
[0033]
In order to divide the flow of the refrigerant, the tubes 16a to 16d flow in two passes from the inlet pipe 16a to the downstream side of the refrigerant flow, and then pass four passes in the middle of the evaporating heat exchanger 16. And are formed so as to be joined at the outlet pipe 16d. Specifically, as shown in FIG. 2A and FIG. 2B, the inlet pipe 16a is formed so that the upstream end is joined to the expansion valve 15, and from the joined portion, from the downstream side of the refrigerant flow. A two-pass refrigerant passage is formed up to the downstream end joined to the heat transfer tube 16b. The two-pass heat transfer tube 16b is joined midway to a four-pass heat transfer tube 16c comprising a refrigerant passage, and is configured to join at the outlet tube 16d.
[0034]
Further, in the present embodiment, the tubes 16a to 16d are formed to have different thicknesses. That is, the inlet tube 16a formed in two passes, the heat transfer tube 16b formed in two passes, and the heat transfer tube 16c formed in four passes are made of copper tubes having the same diameter (for example, φ6.0 mm). And the thickness of the refrigerant on the inlet side is made thicker. Incidentally, the two-pass inlet tube 16a has a thickness of 1.5 mm, the two-pass heat transfer tube 16b has a wall thickness of 0.6 mm, and the four-pass heat transfer tube 16c has a wall thickness of 0.4 mm. It is formed to be thicker than the side. This is to increase the rigidity of the tube near the inlet side.
[0035]
Next, an operation of the heat pump unit 2 including the evaporating heat exchanger 16 having the above-described configuration will be described with reference to FIGS. First, when the heat pump unit 2 performs the boiling operation, in the refrigeration cycle when the temperature of the water supply in the hot water storage tank 1 flowing into the hot water supply heat exchanger 14 is low, for example, the operation state of the refrigeration cycle is as follows. As shown in FIG. 6B, in the operating state of the hot water temperature T2 indicated by the solid line in the figure, since the degree of dryness is high at the outlet side (point A2a) of the evaporating heat exchanger 16, the gas phase is changed at this position. Since the amount is large, the specific volume is high and the flow velocity of the refrigerant is high. In the present invention, the pressure loss is not increased since the pressure loss is reduced by increasing the number of refrigerant passages of the heat transfer tubes 16c and thereafter to four paths.
[0036]
However, immediately before the completion of boiling, the temperature of the feedwater flowing into the hot water supply heat exchanger 14 increases. At this time, when the operation state of the refrigeration cycle is the operation state of T3a indicated by a broken line in the figure, the degree of dryness is high at the inlet side (point A3a) of the evaporating heat exchanger 16, so that the expansion valve is generally provided at this position. Since the flow velocity of the depressurized refrigerant is increased by 15, the refrigerant flow noise is easily generated at this time. Therefore, in the present invention, the thickness of this portion is formed to be thick, so that the rigidity is increased and the propagation of the refrigerant flow noise to the outside is prevented.
[0037]
The thickness of the inlet pipe 16a into which the refrigerant flows is found by the study of the inventors, and specifically, is determined from a characteristic diagram showing the relationship between the flow noise of the refrigerant and the thickness shown in FIG. It is a thing. That is, as shown in FIG. 3, when the wall thickness complies with the pressure resistance limit (for example, the pipe diameter × about 5%), the noise value is 6 dB. By setting it to 0.5 mm (25% of the tube diameter), a sound insulation effect of Δ5 dB is obtained. This is to prevent the propagation to the outside by increasing the rigidity due to the thick wall even when the refrigerant flow noise is generated.
[0038]
In the present embodiment, the wall thickness is set to 1.5 mm (25% of the pipe diameter). However, the present invention is not limited to this. As shown in FIG. The flow noise of the refrigerant can be reduced by about 2 to 5 dB by setting it to 12% or more, more preferably 20% or more of the pipe diameter. Also, by forming the refrigerant inflow side of the heat transfer tubes 16b and 16c to be thick, a sound insulation effect can be obtained as in the case of the inlet tube 16a.
[0039]
According to the heat pump type hot water supply apparatus of the first embodiment having the above-described configuration, in this type of hot water supply apparatus, the hot water is heated immediately before the completion of the heating. The refrigerant having a high degree of dryness flows into the pipe 16a. Therefore, in the present invention, the thickness of the inlet pipe 16a is made thicker than that of the heat transfer pipes 16b and 16c, so that the rigidity of the inlet pipe 16a is increased and a sound insulation effect is obtained. Even if the refrigerant flow noise is generated, the refrigerant flow noise is not transmitted to the outside, and the refrigerant flow noise can be reduced.
[0040]
Further, the inventors have studied the relationship between the refrigerant flow noise and the wall thickness of the inlet pipe 5a, and as a result, it is possible to reduce the refrigerant flow noise by increasing the wall thickness with respect to the diameter of the inlet pipe 16a. I found out. That is, the flow noise of the refrigerant generated in the inlet pipe (16a) can be reduced by setting the thickness of the inlet pipe 16a to preferably 12% or more, more preferably 20% or more of the pipe diameter.
[0041]
Further, as with the inlet pipe 16a, the heat transfer pipes 16b and 16c are also sound-insulated by forming the wall near the coolant inlet to be thicker than the other portions than the heat transfer pipes 16b and 16c having the same thickness. By obtaining the effect, the refrigerant flow noise can be reduced.
[0042]
Further, by using carbon dioxide as the refrigerant, a supercritical heat pump cycle can be formed. According to this, hot water can be heated at a higher temperature (for example, about 80 to 90 ° C.) than a general heat pump cycle using a chlorofluorocarbon-based refrigerant, and the boiling operation can be performed even with high-temperature water. It becomes possible.
[0043]
(2nd Embodiment)
In the first embodiment described above, after the number of refrigerant passages flows in two passes from the inlet pipe 16a to the downstream side of the refrigerant flow, the refrigerant is distributed to four passes in the middle of the evaporating heat exchanger 16 and merged at the outlet pipe 16d. However, the present invention is not limited to this. After the number of refrigerant passages flows in four passes from the inlet pipe 16a to the downstream side of the refrigerant flow, the refrigerant is distributed to two passes in the middle of the evaporating heat exchanger 16 and merges at the outlet pipe 16d. May be formed.
[0044]
Specifically, as shown in FIG. 4A and FIG. 4B, the inlet pipe 16a is formed so that the upstream end is joined to the expansion valve 15, and from the joined portion from the downstream side of the refrigerant flow. A four-pass refrigerant passage is formed up to the downstream end joined to the heat transfer tube 16b. The four-pass heat transfer tube 16b is joined to the two-pass heat transfer tube 16c, which is composed of two-pass refrigerant passages, and joins the outlet tube 16d.
[0045]
As a result, the number of refrigerant passages in the inlet pipe 16a on the refrigerant inflow side and the heat transfer pipe 16b is increased from two to four, so that the flow velocity of the refrigerant can be greatly reduced. The source can be reduced.
[0046]
(Third embodiment)
In the above-described second embodiment, after the number of refrigerant passages flows in four passes from the inlet pipe 16a to the downstream side of the refrigerant flow, the refrigerant is distributed to two passes in the middle of the evaporating heat exchanger 16 and joined at the outlet pipe 16d. However, the present invention is not limited to this. After the number of refrigerant passages flows from the inlet pipe 16a to the downstream side of the refrigerant flow in four passes, the refrigerant is distributed to two passes in the middle of the evaporating heat exchanger 16, and then distributed to four passes. You may form so that it may join by the outlet pipe 16d.
[0047]
More specifically, as shown in FIGS. 5A and 5B, the inlet pipe 16a is formed such that the upstream end is joined to the expansion valve 15, and from the joined portion from the downstream side of the refrigerant flow. A four-pass refrigerant passage is formed up to the downstream end joined to the heat transfer tube 16b. The four-pass heat transfer tube 16b is divided into two passes on the way, and then joined to the heat transfer tube 16c composed of the refrigerant passages divided into four passes, and joined at the outlet pipe 16d. Thereby, the heat efficiency can be improved when the feedwater temperature is low (for example, at the time of T2) because the pressure loss also decreases on the downstream side of the refrigerant flow as compared with the second embodiment.
[0048]
(Other embodiments)
In the above embodiment, the present invention relates to a heat pump comprising a supercritical heat pump comprising a refrigerant functional component constituting a heat pump cycle of a compressor 13, a hot water supply heat exchanger 14, a pressure reducing means 15, an evaporation heat exchanger 16 and an accumulator 17. Although applied to the unit 2, the invention is not limited to this, and may be applied to hot water supply means constituting a general heat pump cycle.
[0049]
Note that the specific numerical values and the like shown in the present embodiment are merely examples, and the present invention is not limited to these.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a heat pump water heater according to a first embodiment of the present invention.
FIG. 2A is a side view showing the entire configuration of the evaporating heat exchanger 16 in the first embodiment of the present invention, and FIG. 2B is an explanatory diagram illustrating the number of refrigerant passages that divide the flow of the refrigerant. .
FIG. 3 is a characteristic diagram showing a relationship between a noise value of a refrigerant flow noise and a pipe wall thickness in the first embodiment of the present invention.
FIG. 4A is a side view showing the entire configuration of the evaporating heat exchanger 16 in the second embodiment of the present invention, and FIG. 4B is an explanatory diagram illustrating the number of refrigerant passages that divide the flow of the refrigerant. .
FIG. 5A is a side view showing the entire configuration of the evaporating heat exchanger 16 according to the third embodiment of the present invention, and FIG. 5B is an explanatory diagram illustrating the number of refrigerant passages for dividing the flow of the refrigerant. .
6A is an explanatory diagram showing a temperature distribution in a height direction of a hot water storage tank, and FIG. 6B is a characteristic diagram showing an operation state of a refrigeration cycle when a refrigerant of carbon dioxide is used as a refrigerant.
[Explanation of symbols]
1. Hot water storage tank 2. Heat pump unit (hot water supply means)
13 Compressor 14 Hot water supply heat exchanger 15 Expansion valve (pressure reducing means)
16 heat exchanger for evaporation 16a inlet pipes 16b, 16c heat transfer pipe 16d outlet pipe

Claims (7)

給水源から水が給水側に供給され、貯湯側に給湯用の湯を貯える貯湯タンク(1)と、
冷媒を圧縮する圧縮機(13)、前記圧縮機(13)より吐出された高圧冷媒と前記貯湯タンク(1)の給水側から取水する水とを熱交換する給湯用熱交換器(14)、減圧手段(15)、および大気熱を吸熱する蒸発用熱交換器(16)を順に環状に冷媒配管で接続された給湯手段(2)とを備えるヒートポンプ給湯装置において、
前記蒸発用熱交換器(16)は、前記減圧手段(15)より減圧された冷媒が流入される入口管(16a)、大気と熱交換する複数のフィン材が外周に接合されて内部に冷媒を流通する伝熱管(16b、16c)、および吸熱された冷媒が流出される出口管(16d)から構成され、前記入口管(16a)は、前記入口管(16a)の肉厚が前記伝熱管(16b、16c)よりも厚肉に形成されていることを特徴とするヒートポンプ給湯装置。
A hot water storage tank (1) in which water is supplied from a water supply source to a water supply side and hot water for hot water supply is stored in the hot water storage side;
A compressor (13) for compressing the refrigerant, a hot water supply heat exchanger (14) for exchanging heat between high-pressure refrigerant discharged from the compressor (13) and water taken from the water supply side of the hot water storage tank (1); In a heat pump hot water supply device comprising: a pressure reducing means (15); and a hot water supply means (2) in which an evaporation heat exchanger (16) for absorbing atmospheric heat is connected in order by a refrigerant pipe.
The evaporating heat exchanger (16) has an inlet pipe (16a) into which the refrigerant decompressed by the decompression means (15) flows, and a plurality of fins that exchange heat with the atmosphere are joined to the outer periphery, and the refrigerant is contained inside. , And an outlet pipe (16d) through which the heat-absorbed refrigerant flows out. The inlet pipe (16a) has a thickness of the inlet pipe (16a) of the heat transfer pipe. A heat pump hot water supply device characterized by being formed thicker than (16b, 16c).
前記入口管(16a)は、前記入口管(16a)の肉厚が、好ましくは管径に対して12%以上で形成されていることを特徴とする請求項1に記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 1, wherein the inlet pipe (16a) is formed such that a thickness of the inlet pipe (16a) is preferably 12% or more with respect to a pipe diameter. 前記入口管(16a)は、前記入口管(16a)の肉厚が、より好ましくは管径に対して20%以上で形成されていることを特徴とする請求項1に記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 1, wherein the inlet pipe (16a) is formed so that a wall thickness of the inlet pipe (16a) is more preferably 20% or more with respect to a pipe diameter. 給水源から水が給水側に供給され、貯湯側に給湯用の湯を貯える貯湯タンク(1)と、
冷媒を圧縮する圧縮機(13)、前記圧縮機(13)より吐出された高圧冷媒と前記貯湯タンク(1)の給水側から取水する水とを熱交換する給湯用熱交換器(14)、減圧手段(15)、および大気熱を吸熱する蒸発用熱交換器(16)を順に環状に冷媒配管で接続された給湯手段(2)とを備えるヒートポンプ給湯装置において、
前記蒸発用熱交換器(16)は、前記減圧手段(15)より減圧された冷媒が流入される入口管(16a)、大気と熱交換する複数のフィン材が外周に接合されて内部に冷媒を流通する伝熱管(16b、16c)、および吸熱された冷媒が流出される出口管(16d)から構成され、前記伝熱管(16b、16c)は、前記伝熱管(16b、16c)のうちで他の部位より入口近傍部のほうが前記伝熱管(16b、16c)の肉厚を厚肉に形成されていることを特徴とするヒートポンプ給湯装置。
A hot water storage tank (1) in which water is supplied from a water supply source to a water supply side and hot water for hot water supply is stored in the hot water storage side;
A compressor (13) for compressing the refrigerant, a hot water supply heat exchanger (14) for exchanging heat between high-pressure refrigerant discharged from the compressor (13) and water taken from the water supply side of the hot water storage tank (1); In a heat pump hot water supply device comprising: a pressure reducing means (15); and a hot water supply means (2) in which an evaporation heat exchanger (16) for absorbing atmospheric heat is connected in order by a refrigerant pipe.
The evaporating heat exchanger (16) has an inlet pipe (16a) into which the refrigerant decompressed by the decompression means (15) flows, and a plurality of fins that exchange heat with the atmosphere are joined to the outer periphery, and the refrigerant is contained inside. , And an outlet pipe (16d) through which the heat-absorbed refrigerant flows out. The heat transfer pipes (16b, 16c) are among the heat transfer pipes (16b, 16c). A heat pump hot water supply apparatus characterized in that the thickness of the heat transfer tubes (16b, 16c) is thicker in the vicinity of the inlet than in other portions.
前記蒸発用熱交換器(16)は、冷媒の流れを分流するために複数の冷媒通路が前記入口管(16a)、前記伝熱管(16b、16c)、および前記出口管(16d)により形成され、かつ前記入口管(16a)より順次冷媒流れ下流にかけて前記冷媒通路の通路数が減少するように形成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の記載のヒートポンプ給湯装置。In the evaporating heat exchanger (16), a plurality of refrigerant passages are formed by the inlet pipe (16a), the heat transfer pipes (16b, 16c), and the outlet pipe (16d) to divide the flow of the refrigerant. 5. The refrigerant passage according to claim 1, wherein the number of the refrigerant passages decreases from the inlet pipe to a downstream side of the refrigerant flow. 6. Heat pump water heater. 前記蒸発用熱交換器(16)は、冷媒の流れを分流するために複数の冷媒通路が前記入口管(16a)、前記伝熱管(16b、16c)、および前記出口管(16d)により形成され、かつ前記入口管(16a)より順次冷媒流れ下流にかけて前記冷媒通路の通路数を減少させ、再度増加させるように形成されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の記載のヒートポンプ給湯装置。In the evaporating heat exchanger (16), a plurality of refrigerant passages are formed by the inlet pipe (16a), the heat transfer pipes (16b, 16c), and the outlet pipe (16d) to divide the flow of the refrigerant. The number of the refrigerant passages is sequentially reduced from the inlet pipe (16a) downstream of the inlet pipe (16a), and the number of the refrigerant passages is increased again. The heat pump hot water supply apparatus according to any one of the above. 前記給湯手段(2)は、冷媒が二酸化炭素であることを特徴とする請求項1ないし請求項6のいずれか一項に記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to any one of claims 1 to 6, wherein the hot water supply means (2) uses carbon dioxide as a refrigerant.
JP2003091803A 2003-03-28 2003-03-28 Heat pump hot water supply device Pending JP2004301364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091803A JP2004301364A (en) 2003-03-28 2003-03-28 Heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091803A JP2004301364A (en) 2003-03-28 2003-03-28 Heat pump hot water supply device

Publications (1)

Publication Number Publication Date
JP2004301364A true JP2004301364A (en) 2004-10-28

Family

ID=33405081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091803A Pending JP2004301364A (en) 2003-03-28 2003-03-28 Heat pump hot water supply device

Country Status (1)

Country Link
JP (1) JP2004301364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103365A (en) * 2007-10-23 2009-05-14 Toshiba Carrier Corp Heat pump hot water supply system
JP2014224637A (en) * 2013-05-16 2014-12-04 日立アプライアンス株式会社 CO2 heat pump water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103365A (en) * 2007-10-23 2009-05-14 Toshiba Carrier Corp Heat pump hot water supply system
JP2014224637A (en) * 2013-05-16 2014-12-04 日立アプライアンス株式会社 CO2 heat pump water heater

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
US8978744B2 (en) Hot-water storage type hot-water supply device and hot-water storage type heating and hot-water supply device
JP2010060267A (en) Heat exchanger and heat pump apparatus using the same
EP2770278B1 (en) Water heater
JP2005134070A (en) Heat pump water heater
EP2770277A1 (en) Water heater
JP2009092258A (en) Refrigerating cycle device
JP5659560B2 (en) Refrigeration cycle equipment
JP2007139275A (en) Heat pump type water heater
JP4650171B2 (en) Geothermal heat pump water heater
JP2004239506A (en) Heat pump unit
JP2008082601A (en) Heat pump hot water supply device
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP2004301364A (en) Heat pump hot water supply device
JP5115283B2 (en) Heat pump type water heater
JP2004177020A (en) Water heater
JP2011027358A (en) Heater
JP2004361046A (en) Heat pump hot water supply apparatus
JP2004340419A (en) Heat pump type water-heater
JP4715852B2 (en) Heat pump water heater
JP2007113896A (en) Heat pump type water heater
JP2005164087A (en) Heat pump water heater
JP6680234B2 (en) Heat pump equipment
JP2009216335A (en) Heat pump water heater
JP6190577B2 (en) Heat pump frost determination method and heat pump using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006