JP2004301076A - 半密閉型多段圧縮機 - Google Patents

半密閉型多段圧縮機 Download PDF

Info

Publication number
JP2004301076A
JP2004301076A JP2003096891A JP2003096891A JP2004301076A JP 2004301076 A JP2004301076 A JP 2004301076A JP 2003096891 A JP2003096891 A JP 2003096891A JP 2003096891 A JP2003096891 A JP 2003096891A JP 2004301076 A JP2004301076 A JP 2004301076A
Authority
JP
Japan
Prior art keywords
refrigerant
stage
chamber
motor
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096891A
Other languages
English (en)
Inventor
Fumihiko Kurita
文彦 栗田
Hiroshi Nishikawa
弘 西川
Hideyuki Inoue
英之 井上
Shinya Itabashi
真也 板橋
Takashi Inoue
貴至 井上
Takehiro Nishikawa
剛弘 西川
Setsu Hasegawa
説 長谷川
Tetsuya Kato
哲也 加藤
Kosuke Ogasawara
弘丞 小笠原
Daiki Shioaji
大輝 塩味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003096891A priority Critical patent/JP2004301076A/ja
Publication of JP2004301076A publication Critical patent/JP2004301076A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】二酸化炭素を圧縮する際に、モータ2の負荷軽減を図ると共に、コネクティングロッド26等に大きな荷重が加わらないようにする。
【解決手段】圧縮手段4を前段圧縮部11aと後段圧縮部11bとで形成し二酸化炭素を圧縮する。そして、前段圧縮部11aで圧縮された冷媒が吐出される前段吐出室52と、クランク25が収納されるクランク室19とを連通する連通部73を設ける。これにより、クランク室19の圧力を前段吐出室52の圧力とほぼ同じ圧力にしてモータ2の負荷を軽減すると共にコネクティングロッド26等に大きな荷重が加わらないようにする。
【選択図】 図12

Description

【0001】
【発明の属する技術分野】
本発明は、複数のケーシング部材を密閉状態に組立て、その中にモータ、動力変換手段及び圧縮手段を収納して、二酸化炭素を冷媒として多段圧縮する半密閉型多段圧縮機に関する。
【0002】
【従来の技術】
冷凍回路では、冷媒を圧縮する圧縮機が用いられ、当該圧縮機としてロータリ式圧縮機、スクロール式圧縮機、レシプロ式圧縮機等の種々の構成が提案されている。
【0003】
各圧縮機は、回転動力を発生するモータ等のモータ、回転動力を偏心回転動力や往復動力に変換する動力変換手段、該動力変換手段からの動力により運動して冷媒を圧縮する圧縮手段、これらモータ、動力変換手段及び圧縮手段を収納するケーシングとを備えている。
【0004】
主に、ロータリ式圧縮機、スクロール式圧縮機、レシプロ式圧縮機におけるケーシングは、複数のケーシング部材から構成されて、この中にモータ、動力変換手段及び圧縮手段が収納されて溶接等により密閉状態となっている。
【0005】
そして、レシプロ式圧縮機の中には、複数のケーシング部材をボルト締めして組立てられて、この中にモータ、動力変換手段及び圧縮手段等が収納されているものがある。
【0006】
本発明では、このように複数のケーシング部材をボルト締めして組立てられたケーシングを有する圧縮機を半密閉型圧縮機と記載する。
【0007】
このように半密閉型圧縮機では、ケーシングに溶接等の手段が不要になるためコストダウンが図れる利点がある共に、レシプロ式圧縮機はロータリ式圧縮機やスクロール式圧縮機に比べ圧縮能力の大きいものが比較的容易に製造できる利点がある。
【0008】
ところで、冷媒を圧縮すると当該冷媒は高温高圧になり、その熱によりモータの絶縁特性が劣化したりモータ負荷が増大したりすると共に、圧縮効率が低下する問題がある。
【0009】
このような観点から、圧縮効率を向上させるために圧縮手段を複数の圧縮部により構成し、各圧縮部で冷媒を順次圧縮する多段圧縮方式が採用されている(特許文献1〜3参照)。
【0010】
図22はこのような半密閉型多段圧縮機の概略構成を示す図で、当該半密閉型多段圧縮機100は、回転動力を発生するモータ101、モータ軸102に設けられて当該モータ軸102に対して偏心回転するクランク103(103a,103b)及び該クランク103と連結されたコネクティングロッド104(104a,104b)等を備えて回転動力を往復動力に変換する動力変換手段105、コネクティングロッド104に連結されたピストン106(106a,106b)、該ピストン106が往復運動するシリンダ107(107a,107b)、該シリンダ107とピストン106とで囲まれる空間(圧縮室)108(108a,108b)等を備えて冷媒を圧縮する圧縮部111(111a,111b)を複数具備した圧縮手段109とを有して、これらがケーシング110内に収納されている。
【0011】
なお、クランク103が配設されているケーシング110内の部屋をクランク室115という。
【0012】
また、図22では2つの圧縮部111a,111bが設けられている場合を図示しており、一方の圧縮部111aが先に冷媒を圧縮し、この圧縮された冷媒を他方の圧縮部11bがさらに圧縮する構成となっている。
【0013】
以下、最初に冷媒を圧縮する圧縮部111aを前段圧縮部、該前段圧縮部111aで圧縮された冷媒を圧縮する圧縮部111bを後段圧縮部と記載すると共に、この各圧縮部111を構成するピストン106や圧縮室108等も、前段ピストン106a、後段ピストン106b、前段圧縮室108a、後段圧縮室108b等と記載し、これら前段圧縮部111aと後段圧縮部111bを識別する必要がない場合には単に圧縮部、ピストン106、圧縮室108等のように記載する。
【0014】
そして、モータ101が回転すると、クランク103がモータ軸102に対して偏心回転し、これによりコネクティングロッド104が往復運動して、当該コネクティングロッド104に接続されているピストン106が往復運動する。
【0015】
ピストン106が下降すると圧縮室108の空間容積が拡張して、冷媒が当該圧縮室108に吸入され、ピストン106が上昇すると当該圧縮室108の空間容積が縮小して冷媒が圧縮される。
【0016】
このようにして機外からの冷媒は前段圧縮部111aで圧縮されて後段圧縮部111bに送られ、当該後段圧縮部111bでさらに圧縮されて機外に吐出される。なお、図22における前段圧縮部111aに向う矢印は機外から吸入される冷媒を示し、後段圧縮部111bからの矢印は機外に吐出される冷媒を示している。
【0017】
【特許文献1】
特開平7−167057号公報
【特許文献2】
特開平7−127573号公報
【特許文献3】
特開平7−332773号公報
【0018】
【発明が解決しようとする課題】
しかしながら、近年の環境問題等の観点から冷媒として二酸化炭素を用いる圧縮機が研究開発され、この場合二酸化炭素が従来用いられていたHFC冷媒やHCFC冷媒に比べ冷媒圧や冷媒温度が著しく高くなるため、以下のような問題があった。
【0019】
即ち、二酸化炭素の冷媒を多段圧縮する際には、クランク室115と後段圧縮室108bとの差圧が、当該クランク室115と前段圧縮室108aとの差圧より大きくなるため、後段ピストン106bを駆動する際のトルクが前段ピストン106aを駆動する際のトルクより大きくなり、大きなトルク変動に耐えうる大型のモータ101が要求されるようになる問題がある。
【0020】
また、冷媒が二酸化炭素の場合、後段圧縮部111bから吐出される冷媒の吐出圧が約12MPaにも達し、かかる圧力によりコネクティングロッド104とクランク103やピストン106との連結部に大きな荷重が加わり、当該連結部の摩耗等が激しくなってしまう問題がある。
【0021】
さらに、圧縮室108の冷媒の一部がピストン106とシリンダ107との隙間を介してクランク室115に漏れ出ることがあり、この漏れた冷媒が大気中に放出されないように当該クランク室115は密閉空間となっているが、クランク室115の雰囲気はピストン106の往復運動を阻止するように圧力変動し、この圧力変動がモータ101の負荷増大となって現れる問題があり、また圧縮室108の冷媒の一部がクランク室115に漏れ出ると、圧縮能力を低下させる問題もある。
【0022】
そこで、本発明は、大型のモータを用いることなく、かつ、コネクティングロッド等に大きな荷重が加わることなく二酸化炭素を圧縮することができる半密閉型多段圧縮機を提供することを目的とする。
【0023】
【課題を解決するための手段】
上記課題を解決するため、請求項1にかかる発明は、回転動力を発生するモータと、回転動力を往復動力に変換する動力変換手段と、該動力変換手段からの往復動力により往復運動して冷媒を圧縮する圧縮部を複数具備する圧縮手段と、複数のケーシング部材が密閉状態に組立てられて、モータ、動力変換手段及び圧縮手段を収納するケーシングとを備えて、前段側の圧縮部で圧縮された冷媒を後段側の圧縮部でさらに圧縮して吐出する半密閉型多段圧縮機において、冷媒が二酸化炭素であって、かつ、前段側の圧縮部で圧縮された冷媒が吐出される部屋と、動力変換手段が密閉状態で配設されているケーシング内の部屋とを連通する連通部を設けて、大型のモータを用いることなく、かつ、コネクティングロッド等に大きな荷重が加わることなく二酸化炭素を圧縮することができるようにしたことを特徴とする。
【0024】
請求項2にかかる発明は、連通部が、ケーシングに穿孔して形成された管であることを特徴とする。
【0025】
請求項3にかかる発明は、連通部が、途中で直径が小さくなっていることを特徴とする。
【0026】
請求項4にかかる発明は、連通部が、前段側の圧縮部における圧縮された冷媒が吐出される部屋と、動力変換手段の配設されている部屋とを連通させる配管であることを特徴とする。
【0027】
【発明の実施の形態】
本発明の第1の実施の形態を図を参照して説明する。図1は本実施の形態に係る半密閉型多段圧縮機1の断面図であり、図2は図1の矢視AA断面図である。以下、半密閉型多段圧縮機1を適宜圧縮機1と略記する。
【0028】
当該圧縮機1は、回転動力を発生するモータ2、該モータ2で発生した回転動力を往復動力に変換する動力変換手段3、該動力変換手段3により変換された往復動力により駆動されて冷媒を圧縮する圧縮手段4、これらを収納するケーシング5等を主要構成として、二酸化炭素の冷媒を圧縮する。
【0029】
なお、本実施の形態では、多段圧縮機1として圧縮手段4が前段圧縮部11aと後段圧縮部11bからなる2段圧縮機を例に説明するが、本発明はこれに限定されるものではなく、2以上の圧縮部で二酸化炭素の冷媒を圧縮する圧縮機1に適用することができることを予め付言する。
【0030】
ケーシング5は、球状黒鉛鋳鉄等を材料としてなるケーシング本体5a、モータ側蓋5b、区画板5c、底蓋5d、クランク側蓋5e、軸蓋5f、ヘッドプレート5g、シリンダヘッド5h等を有して、これらモータ側蓋5b等がシール材13を介してケーシング本体5aに複数のボルト14によりボルト締めされて密閉状態に組立てられている。
【0031】
そして、ケーシング本体5aの底部には、当該圧縮機1における各摺動部を潤滑するための潤滑油15が貯留されて、サイトガラス(透視窓)16により油量が確認できるようになっている。
【0032】
区画板5cには複数の貫通孔17(17a,17b)が設けられて、当該区画板5cによりケーシング本体5aの内部空間がモータ室18とクランク室19とに区画され、貫通孔17を介してモータ室18とクランク室19との雰囲気が行き来できるようになっていると共に、潤滑油15が行き来できるようになっている。
【0033】
また、ケーシング本体5aの外側面(特に、モータ室18に対応する外側面)には、多数のケーシングフィン20が形成されて、ケーシング5の熱を効率的に放熱できるようになっている。
【0034】
モータ側蓋5bには潤滑油ポケット21が、区画板5cには主ジャーナル22が、クランク側蓋5eには副ジャーナル23が形成されている。
【0035】
動力変換手段3は、該モータ2のモータ軸24と一体に設けられて、当該モータ軸24の軸心に対して偏心回転することにより回転動力を往復動力に変換するクランク25(25a,25b)、このクランク25に連結されたコネクティングロッド26(26a,26b)等を備えている。
【0036】
なお、クランク25及びコネクティングロッド26は、前段圧縮部11a及び後段圧縮部11bに対応して前段クランク25a,後段クランク25b及び前段コネクティングロッド26a,後段コネクティングロッド26bがある。
【0037】
モータ2は、モータ室18に嵌合して装着されたキャンドモータで、そのモータ軸24の軸心には所定径の孔が穿孔して形成され主潤滑油路28をなし、またコネクティングロッド26の大端部や小端部への潤滑油15の潤滑路をなすと共に、主ジャーナル22や副ジャーナル23への潤滑油15の潤滑路をなす副潤滑油路29が形成されている。
【0038】
そして、このモータ軸24の一端は、潤滑油ポケット21の側面から当該潤滑油ポケット21内に挿通され、他端は主ジャーナル22を挿通してクランク側蓋5eに設けられた副ジャーナル23に係合して、主ジャーナル22と副ジャーナル23とで回動自在に支持されている。
【0039】
さらに、モータ2の回転子には、潤滑油掻上翼30が取付けられて、当該モータ軸24と共に回転するようになっている。
【0040】
これにより、モータ2の回転に伴い潤滑油掻上翼30が回転すると、ケーシング5の底部に貯留されている潤滑油15が潤滑油掻上翼30に付着して掻上げられ、そのとき滴下した潤滑油15は潤滑油ポケット21に溜るようになる。
【0041】
この潤滑油ポケット21にはモータ軸24が挿通し、かつ、このモータ軸24には主潤滑油路28が形成されているので、潤滑油ポケット21に溜った潤滑油15は当該主潤滑油路28に流入し、クランク側蓋5eに向って流動する。
【0042】
主潤滑油路28に流入した潤滑油15は、モータ軸24の回転により遠心力を受けて副潤滑油路29に分流し、主ジャーナル22、副ジャーナル23、コネクティングロッド26の大端部や小端部等の摺動面に供給される。
【0043】
なお、後述するように圧縮手段4におけるピストンとシリンダとの間にも、この潤滑油15が供給されて、圧縮室の機密性を高めている。
【0044】
各摺動部の潤滑に利用されなかった潤滑油15は(余った潤滑油)、クランク側蓋5eに形成された潤滑油戻路31から吐出されて、ケーシング5の底部に戻るようになる。
【0045】
モータ2の上方位置におけるケーシング本体5aには、当該モータ2に電力供給するための接続端子32が収納された接続端子箱33が設けられている。
【0046】
図3は、シール材13として、ヘッドプレート5gとシリンダヘッド5hとの間に装着されるシール材13を例示した図である。なお、図3は当該シール材13の上面図、図4は図3に示すBB矢視断面図、図5は図3に示すCC矢視断面図である。
【0047】
このシール材13は、メタルガスケット35と弾性シートガスケット36とから構成されて、メタルガスケット35は、ステンレス鋼板(好ましくはSUS316)等の引張り強度が高い材料により形成され、シール面に対応した部分にはビード37(37a,37b)が形成されている。
【0048】
ビード37は、図4に示すようなフルビード37aを原則とするが、ボルト孔27が存在するためフルビード37aをたてるスペースが確保しにくい場所では図5に示すようにハーフビード37bがたてられている。図3における点線は、ビード37の山又は谷の部分を示している。
【0049】
本発明にかかる圧縮機1では、冷媒として二酸化炭素を用いるが、このとき後段圧縮部11bの吐出圧は約12MPaと非常に高圧になり、例えば従来用いられてきた冷間圧延鋼を材料とするメタルガスケット35では、この圧力により押広げられて延びたりして、ケーシング5内を長期間気密状態に保つことが困難になる。
【0050】
そこで、引張り強度の高いステンレス鋼等を材料にして形成されたメタルガスケット35を用いて、かかる冷媒の圧力によりメタルガスケット35が延びたりしないようにしている。
【0051】
なお、このようなシール材13は、モータ側蓋5b、クランク側蓋5e、底蓋5d等をケーシング本体5aに取付ける際に用いられるが、モータ室18やクランク室19の空間圧力が後段圧縮部11bの吐出圧より低い場合には(例えば、大気圧や前段圧縮部11aの吐出圧等)、メタルガスケット35の材料として冷間圧延鋼を用いてもよい。
【0052】
即ち、シリンダヘッド5h等の高圧になる部分のシールにはステンレス鋼を材料とするメタルガスケット35を用い、それより低い圧力の部分では冷間圧延鋼を材料とするメタルガスケット35を用いてもよい。
【0053】
弾性シートガスケット36は、ニトリルゴム等のように高温高圧に耐性を持つと共に耐油性を持つ弾性部材を材料として形成されて、メタルガスケット35を挟むように上下に配設されている。
【0054】
なお、メタルガスケット35にビード37が形成されていない場合は、メタルガスケット35の面圧が低くなってしまい気密性を保持することが困難となる。
【0055】
しかし、ビード37が形成されていると、このビード37の山谷の部分が起点となり弾力性を持つことにより面圧が大きくなって気密性を高め、かつ、維持することが可能になる。
【0056】
圧縮手段4は、上述したように前段圧縮部11aと後段圧縮部11bとを有し、各圧縮部11はケーシング本体5aを兼ねるシリンダ40(40a,40b)、該シリンダ40内を往復運動するピストン41(41a,41b)、シリンダ40とピストン41とで形成される空間(圧縮室)42(42a,42b)等により構成されている。
【0057】
なお、前段ピストン41aと後段ピストン41bとは、往復運動の位相が180度ずれて、前段ピストン41aが下降した際(冷媒の吸入)には、後段ピストン41bが上昇して冷媒を圧縮するように設定されて、モータ2に加わる負荷の一様化が図られている。
【0058】
また、前段ピストン41aと後段ピストン41bとの直径は、前段ピストン41aの方が大きな寸法に設定されると共に、これら前段ピストン41aと後段ピストン41bとが往復運動する際の距離(ピストン41のストローク)は同じ長さに設定されている。
【0059】
これにより、前段圧縮部11aにおける排除容積は、後段圧縮部11bにおける排除容積より大きくなって多段圧縮が可能になっている。
【0060】
無論、多段圧縮を行う際に必要な要件は、前段圧縮部11aの排除容積が後段圧縮部11bの排除容積より大きいことであるので、例えば前段ピストン41aと後段ピストン41bとの直径を同じ寸法にして、前段圧縮部11aの往復運動距離を後段圧縮部11bの往復運動距離より長くすることで要件を満たすようにしてもよい。
【0061】
ピストン41は、コネクティングロッド26の小端部とピン45によりピン結合されて揺動自在に動くようになっており、その表面側にはリング溝が形成されて、このリング溝48にピストンリング46が挿嵌されるようになっている。
【0062】
そして、圧縮室42のクランク室19に対するシールは、ピストンリング46がシリンダ40に当接して摺動することにより確保されるが、ピストン41の往復運動に対する摺動抵抗を増大させることなくシール特性を高めるため、ピストン41の表面とシリンダ40の表面との距離は非常に小さい寸法(クリアランス)に設定されて、ピストンリング46とピストン41の表面とがラビリンスシール的作用をなすようにしている。
【0063】
また、先に述べたように、コネクティングロッド26の副潤滑油路29を介して、当該コネクティングロッド26とピストン41との連結部に供給された潤滑油15は、ピン45を伝ってピストンリング46を潤滑して、ピストン41とシリンダ40との気密性を高めている。
【0064】
ところで、後段圧縮部11bでは前段圧縮部11aで圧縮された冷媒を圧縮するため、後段圧縮室42とクランク室19との差圧が、前段圧縮室42aとクランク室19との差圧より大きくなり、前段圧縮室42aからクランク室19に漏れる冷媒量に対して後段圧縮室42bからクランク室19に冷媒が漏れる冷媒量が多くなってしまう。
【0065】
このような場合、後段ピストン41bに装着されているピストンリング46が後段シリンダ40bに当接する当接力を大きくして漏れ量を抑制することも可能であるが、かかる構成の場合には後段ピストン41bを駆動するために大きなトルクが必要になってしまう問題がある。さらに、大きな当接力により摩耗量が増大してしまう問題がある。
【0066】
そこで、本発明では、図6に示すように、差圧が大きい後段ピストン41bに装着されるピストンリング46の数を、前段ピストン41aに装着されるピストンリング46の数より多くするようにして、モータ2の負荷増大を抑制しながら圧縮室42からクランク室19に漏れる冷媒量の低減を図っている。
【0067】
またピストン41は、コネクティングロッド26の小端部でピン45により揺動自在に連結され、当該コネクティングロッド26からの往復動力により往復運動する。
【0068】
このとき往復動力の作用線は、図7に示すように、コネクティングロッド26の小端部における中心位置p1と大端部の中心位置p2とを結ぶ線上にあり、当該線分はシリンダ40の面に対して完全に並行ではない(図7では、このずれ量をθで示している)。
【0069】
なお、図7(a)は、コネクティングロッド26がシリンダ40の面に対して右側に偏った場合を示し、図7(b)は、コネクティングロッド26がシリンダ40の面に対して左側に偏った場合を示している。また、図7(c)は、コネクティングロッド26がシリンダ40の面に対して右側に偏った場合のピストン41の傾きを示し(点線)、左側に偏った場合のピストン41の傾きを示し(実線)を示している。
【0070】
このようにピストン41は、往路復路で最大2θの傾を持って往復運動するようになり、ピストン41がシリンダ40と直接接触する場合が発生して(図7(c)において丸印の領域)、当該ピストン41に傷が付いたり摩耗したりする場合があり、シリンダ40に摩耗分が付着したりすることがある。
【0071】
特に、従来、ピストン41は軽量化を目的としてアルミニュームを材料に形成されており、アルミニュームは柔らかく粘性のある金属であるため、かかるピストン41の傷や摩耗、またシリンダ40への摩耗分の付着が容易に発生する問題がある。
【0072】
このようにピストン41やシリンダ40が傷付、摩耗すると、圧縮室42からクランク室19への冷媒漏れが大きくなったり、ピストン41を往復運動させるために大きなトルク(モータ負荷の増大)が必要になったりする。
【0073】
そこで、本発明では、図8に示すように、ピストン41をアルミニュームを母材として形成することにより軽量化を図りながら、かつ、その表面に表面硬化部47を設けて、シール特性の劣化やモータ負荷の増大を抑制するようにしている。
【0074】
このような表面硬化部47は、アルミニュームからなるピストン41の表面を陽極酸化(例えば、アルマイト処理、二次電解によるモリブデン処理)して形成されたアルミナの酸化皮膜である。
【0075】
なお、アルマイト処理や二次電解によるモリブデン処理は、アルミニウム素地上に多孔質で透明の酸化皮膜(アルミナ被膜)を電解法によって生成させる表面処理方法で、硬質アルマイト処理は通常の陽極酸化より高い電流を流して表面処理する方法であり、アルミニウムの皮膜硬度を高めるとともに耐食性、耐摩耗性が高められる特徴を持っている。
【0076】
無論、ピストン41の表面硬度を高める方法として、例えばピストン41をアルミニュームと珪素との合金で形成する方法も可能である。このアルミニュームと珪素との合金はアルミニューム単体に比べ硬度が高いので、ピストン41の強度が増大されながら表面硬化部47も同時に形成できる利点がある。
【0077】
二酸化炭素を圧縮すると高圧になると共に高温になることは先にも述べたが、かかる圧力によりピストン41には大きな荷重が加わり、当該荷重はコネクティングロッド26を介してクランク25に伝達される。
【0078】
ところが、従来、このコネクティングロッド26をアルミニュームにより形成し、その連結部には軸受が用いられていたため、コストアップの要因になると共に軸受の重量が加わり装置が重くなる問題がある。
【0079】
加えて、この軸受が大きな荷重により摩耗すると冷媒により温度上昇したピストン41の熱がコネクティングロッド26やクランク25に熱伝達し難くなり(ピストン41の熱はけが悪くなる)、圧縮室42に吸入された冷媒がこのピストン41の熱により加熱されてしまって、冷媒の吸入量の減少に伴う圧縮効率の低下が起る。
【0080】
そこで、本発明では、連結部に軸受を設けずに、図9に示すように、当該連結部の耐摩耗性を高める耐摩耗部49を設けている。
【0081】
耐摩耗部49としては、コネクティングロッド26を珪素含有量の多いアルミニューム合金とすることにより、コネクティングロッド26の軽量化を図りながら強度や硬度を高め、かつ、耐摩耗部49も同時に形成できる利点がある。
【0082】
このときのコネクティングロッド26の組成比としては、アルミニューム合金と珪素との組成比を10wt%〜12wt%とすることが好ましい。
【0083】
無論、コネクティングロッド26における連結部での摩耗が問題であるので、例えば当該コネクティングロッド26をアルミニュームで形成し、その連結部に対してアルマイト処理等の表面処理を施す方法や、当該連結部にシリコン膜を成膜して熱処理を施すことにより表面層のみをアルミニューム−珪素合金とする方法も可能である。
【0084】
シリンダヘッド5hは皿状の部材で、図2に示すように、その内部空間が仕切板50により仕切られて前段吸入室51、前段吐出室52、後段吸入室53、後段吐出室54が形成されている。
【0085】
前段吸入室51は、機外からの冷媒が供給される部屋で、当該部屋の冷媒が前段圧縮室42aに供給される。前段吐出室52は、前段圧縮部11aで圧縮された冷媒が吐出される部屋である。後段吸入室53は、前段吐出室52からの冷媒が供給されて、当該冷媒を後段圧縮部11bに供給する部屋である。後段吐出室54は、後段圧縮部11bで圧縮された冷媒が吐出される部屋で、当該冷媒が機外に供給される。
【0086】
このとき、前段吸入室51、前段吐出室52、後段吸入室53、後段吐出室54に対応するヘッドプレート5gには、それぞれ前段吸入孔55、前段吐出孔56、後段吸入孔57、後段吐出孔58が設けられ、さらに前段吸入室51には前段吸入口59、前段吐出室52には前段吐出口60、後段吸入室53には後段吸入口61、後段吐出室54には後段吐出口62が形成されている。
【0087】
また、前段吸入孔55には前段吸入弁63が、前段吐出孔56には前段吐出弁64が、後段吸入孔57には後段吸入弁65が、後段吐出孔58には後段吐出弁66がそれぞれの孔を塞ぐように設けられている。
【0088】
これら各弁は、板バネ状の弁で、前段吸入弁63及び後段吸入弁65は圧縮室42側のヘッドプレート5g面に取付けられ、前段吐出弁64及び後段吐出弁66は前段吐出室52及び後段吐出室54側のヘッドプレート5g面に取付けられて、冷媒の流れが1方向になるように逆止弁の作用をなしている。
【0089】
前段吐出室52と後段吸入室53とは、図2に示すように、インタークーラ70により接続されて、前段吐出室52から後段吸入室53に供給される冷媒が当該インタークーラ70で放熱するようになっている。
【0090】
このインタークーラ70は、図10に示すように、管71に多数のフィン72が所定間隔で圧入嵌合されて形成された管で、管内を流動する冷媒が大気と熱交換して放熱できるようになっている。
【0091】
二酸化炭素の冷媒は、前段圧縮部11aから吐出された段階でも高温になるため、そのまま後段圧縮部11bに供給すると、当該後段圧縮部11bに吸入される冷媒量が少なくなり、圧縮効率を向上させることができない。
【0092】
このため前段圧縮部11aからの冷媒をインタークーラ70を介して後段圧縮部11bに供給させるようにして、当該インタークーラ70で放熱させることにより冷媒の温度を下げて圧縮効率の向上を図っている。
【0093】
このような構成で、モータ2が回転することによりモータ軸24に対してクランク25が偏心回転運動して、該クランク25に連結されたコネクティングロッド26が往復運動する。
【0094】
コネクティングロッド26にはピストン41が連結されており、前段ピストン41aと後段ピストン41bとは位相があり往復運動するようになる。
【0095】
そして、前段ピストン41aが下降すると前段圧縮室42aの空間容積が拡張して吸入圧が発生し、この吸入圧により前段吸入弁63が開き機外の冷媒が吸入口から前段吸入室51に入り、そこから前段吸入孔55を介して前段室に流入する。
【0096】
次に、前段ピストン41aが上昇すると、前段室の空間容積が縮小して当該前段室内の冷媒が圧縮される。冷媒の圧力が所定圧に達すると、前段吐出弁64が開いて、前段室の冷媒は前段吐出室52に吐出される。
【0097】
同様に、後段ピストン41bが下降すると後段圧縮室42bの空間容積が拡張し吸入圧が発生して、当該吸入圧により後段吸入弁65が開き前段吐出室52の冷媒が後段吸入室53に入り、そこから後段吸入孔57を介して後段圧縮室42bに流入する。
【0098】
次に、後段ピストン41bが上昇すると、後段圧縮室42bの空間容積が縮小して当該後段圧縮室42b内の冷媒が圧縮される。冷媒の圧力が所定圧に達すると、後段吐出弁66が開いて、後段圧縮室42bの冷媒は後段吐出室54に吐出され、その冷媒が吐出口から機外に吐出される。
【0099】
以上説明したように、コネクティングロッド26に耐摩耗部を設けたので、二酸化炭素を圧縮しても当該コネクティングロッド26の連結部等における摩耗が抑制できるようになり、寿命が延びて信頼性が向上する。
【0100】
また、シール材13におけるメタルガスケット35を引張り強度の高い材料で形成等したので、シール性が向上し信頼性が向上する。
【0101】
また、ピストン41に表面硬化部47を設けたので、圧縮機1の軽量化を図りながら当該ピストン41に傷が付いたりシリンダ40に摩耗分が付着したりする不都合が抑制でき、信頼性が向上する。
【0102】
さらに、後段ピストン41bに装着したピストンリング46の数を前段ピストン41aに装着するピストンリング46の数より多くする等により、後段圧縮室42bからのクランク室19等に漏れる冷媒量が抑制でき圧縮効率が向上する。
【0103】
ところで、このような圧縮機1は冷凍回路において用いられるが、当該冷凍回路では温熱を利用する場合や冷熱を利用する場合があり、特に高温の温熱が大量に要求されるような場合には、インタークーラ70による放熱を行わない方が要求熱量を容易に満せる利点がある。
【0104】
このことを図11に示す冷凍回路を用いて説明する。当該冷凍回路は、本発明にかかる圧縮機1、第1熱交換器80、減圧装置81、第2熱交換器82を主要構成として、温熱を利用する場合と冷熱を利用する場合とで冷媒の循環方向を切換える4方弁83を備えている。以下の説明では、第1熱交換器80から温熱又は冷熱が提供されるものとする。
【0105】
なお、図11は、図1に示す圧縮機1を冷凍回路に用いた際の当該圧縮機1の構成を概略的に示した図で、図11中における実線矢印は第1熱交換器80で冷熱を提供される場合、点線矢印は第1熱交換器80で温熱を提供される場合の冷媒の循環方向を示している。
【0106】
温熱を利用するものとしては暖房機や給湯器が例示でき、冷熱を利用するものとしては冷房機やショーケース等が例示できる。
【0107】
温熱利用の場合は、圧縮されて高温になった冷媒の熱を利用するものであり、空気調和による暖房の場合には30〜40℃、床暖房機器による暖房の場合には20〜35℃、給湯器の場合には50〜90℃の温度が要求され、また冷熱利用の場合は、冷媒の蒸発潜熱を利用するものであり、圧縮機1から吐出される冷媒の温度は低い方が好ましい。
【0108】
このように、暖房機等の熱利用機器の種類により圧縮機1から吐出される冷媒の温度が高い方が好ましい場合と低い方が好ましい場合とがある。
【0109】
特に、連続して多量のお湯が利用されるような給湯器(例えば、レストラン等の大規模厨房で利用される給湯器や風呂のお湯張りに利用される給湯器等)では、冷媒温度が可能な限り高いことが望まれる。
【0110】
そこで、インタークーラ70と並列にバイパス管77が設けられると共に、電磁弁等の冷媒供給路切換器78が設けられて、前段圧縮部11aから後段圧縮部11bに冷媒を供給する際に、インタークーラ70を介して供給するか、バイパス管77を介して供給するかを冷媒供給路切換器78により制御するようになっている。
【0111】
これにより高温の冷媒が必要な場合には、前段圧縮部11aからの冷媒をバイパス管77を介して後段圧縮部11bに供給し、高温の冷媒が必要でない場合には、前段圧縮部11aからの冷媒をインタークーラ70を介して後段圧縮部11bに供給する。
【0112】
冷媒をバイパス管77を介して後段圧縮部11bに供給する場合は、インタークーラ70を介して後段圧縮部11bに供給する場合に比べ、例えば、20℃の温度上昇が見込まれる。
【0113】
そして、冷熱を利用する場合には、前段圧縮部11aで圧縮された冷媒はインタークーラ70で放熱して後段圧縮部11bの供給されて圧縮される。
【0114】
後段圧縮部11bで圧縮された冷媒は、4方弁83を介して第2熱交換器82に供給され、この第2熱交換器82で外気等と熱交換して減圧装置81で減圧され、第1熱交換器80で蒸発した後、4方弁83を介して圧縮機1に戻る。
【0115】
冷媒が第1熱交換器80で熱交換する相手は、冷熱利用機器が空気調和機の場合には室内空気であり、ショーケースのような場合には庫内空気であり、その際の蒸発潜熱はこれら室内空気等が与え、これにより室内空気等の温度が下がり冷房等が行われる。
【0116】
一方、空気調和機による暖房、床暖房機器による暖房、短時間だけ使用され、また少量だけ使用される給湯器の場合には、前段圧縮部11aで圧縮された冷媒は、インタークーラ70を介して後段圧縮部11bに供給され、当該後段圧縮部11bで圧縮された冷媒が、4方弁83を介して第1熱交換器80に供給される。
【0117】
冷媒は、第1熱交換器80で室内空気等と熱交換して、この室内空気等を加熱し、減圧装置81に供給されて減圧される。その後、冷媒は第2熱交換器82で外気と熱交換して蒸発し、4方弁83を介して圧縮機1に戻る。
【0118】
また、大量にお湯が使われるような場合には、前段圧縮部11aで圧縮された冷媒は、直接後段圧縮部11bに供給され、当該後段圧縮部11bで圧縮された冷媒が、4方弁83を介して第1熱交換器80に供給される。
【0119】
冷媒は、第1熱交換器80で市水等と熱交換して、この市水等を加熱し、減圧装置81に供給されて減圧される。その後、冷媒は第2熱交換器82で外気と熱交換して蒸発し、4方弁83を介して圧縮機1に戻る。
【0120】
以上説明したように、熱利用機器の種類等に応じて圧縮機1からの冷媒の温度を調整できるようになるため、温熱や冷熱を効率的に供給できるようになる。
【0121】
次に、本発明の第2の実施の形態を図を参照して説明する。なお、第1の実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0122】
先に述べたように、二酸化炭素を圧縮すると高温高圧になるため、主ジャーナル22、副ジャーナル23、コネクティングロッド26には大きな荷重が加わり、これらの摺動部の摩耗が激しくなる。
【0123】
また、モータ2はこのような大きな荷重に打勝ちピストン41を駆動するため発熱量が大きくなるとともに、当該モータ2が配設されているクランク室19やモータ室18は密閉空間なので、効率的な冷却ができない。
【0124】
また、前段圧縮部11aと後段圧縮部とでは圧力が異なるため、これらを駆動する際の駆動トルクも異なり、大きなトルクアンバランスが生じる。このため、かかる大きなトルクアンバランスに耐えるモータ2が要求されたり、後段圧縮部を駆動するコネクティングロッド26等の連結部が前段圧縮部11aを駆動するコネクティングロッド26等の連結部より摩耗が激しくなり、前段圧縮部11aと後段圧縮部とで寿命のアンバランスが発生してしまう。
【0125】
さらに、冷媒を圧縮した際に発生する熱は、ピストン41やシリンダ40の温度上昇を招き、シリンダ40の熱は直接ケーシング5を介して外気に放熱にされるが、ピストン41の熱はコネクティングロッド26、クランク25、モータ軸24、主ジャーナル22、副ジャーナル23等を介してケーシング5に熱伝導して、当該ケーシング5から外気に放熱される。従って、コネクティングロッド26とピストン41との連結部等の摩耗が進むと、ピストン41の熱はスムースにケーシング5に熱伝達しなくなってしまう。
【0126】
このような問題に対応すべく、第1の実施の形態では、コネクティングロッド26の連結部等に耐摩耗部49を設けた。
【0127】
しかし、この耐摩耗部49はコネクティングロッド26に加わる荷重を軽減するものでないので、トルクアンバランス等に対応することができない。
【0128】
そこで、本実施の形態では、クランク室19やモータ室18の圧力を前段吐出圧と略同じ圧力にすることで、圧縮室42の圧力とクランク室19やモータ室18の圧力との差圧を軽減するようにしたものである。
【0129】
このため、図12に示すように前段吐出室52とクランク室19等とを連通するように微少径(例えば、約0.5mmの直径)の連通部73をケーシング本体5aに穿孔等して形成している。
【0130】
なお、図12は、連通部73の構成を説明するために、図1に示す圧縮機1の詳細構成を簡略化した図である。
【0131】
この連通部73により、クランク室19等の圧力は前段吐出室52の圧力に近い圧力になり、当該クランク室19等の圧力と圧縮室42の圧力との差圧が小さくなって、種々の上述した不都合が防止できるようになる。
【0132】
なお、この連通部73を微少径としたのは、前段吐出室52とクランク室19等との間を冷媒が容易に行き来できる径の大きさにすると、前段圧縮部11aで圧縮した冷媒が後段圧縮部11bに供給され難くなって圧縮効率が低下するのを防止するためである。
【0133】
即ち、前段圧縮部11aの排除容積は、後段圧縮部11bの排除容積より大きくなっているため、クランク室19等の圧力変動は、前段ピストン41aの動きが支配して、当該前段ピストン41aが上昇するとクランク室19等の圧力が下がり、前段ピストン41aが下降するとクランク室19等の圧力が上がるようになる。
【0134】
従って、冷媒が前段吐出室52とクランク室19等との間を容易に行き来できると、前段ピストン41aの動きに応じて、冷媒は前段吐出室とクランク室19等とを行き来するようになり、後段圧縮部に供給され難くなってしまう。
【0135】
加えて、クランク室19等の空間容積は、圧縮室42の空間容積より十分大きいため、前段圧縮部11aで圧縮された冷媒がクランク室19等に流入すると、ここで膨張してしまい圧縮効率が低下する。
【0136】
このような理由から、本発明では連通部73を微少な径にしている。この微少な径の定義としては、上述した説明から明らかであるが、表現を変えると以下の容易に述べることができる。
【0137】
即ち、圧縮機1が運転停止しているときにクランク室19等の圧力が前段吐出室52と同圧になるように、冷媒が流動できる径で、かつ、運転中は前段吐出室52の圧力変動に対してクランク室19等の圧力が非常に遅く応答するような径である。
【0138】
なお、このような微少径の連通部73をケーシング5に形成するためには、少なくとも、ピストン41の長さ以上の距離を穿孔する必要があり、このような微少径の孔を長距離にわたり形成する作業は非常に困難であり専用工具が必要になったり、高度な技術が必要になったりしてコストアップの要因となる。
【0139】
このような場合は、例えば図13に示すように、連通部73の径を途中まで大きくし、その先を微少径にすることで、微少径部分の距離が短くなり上述したコストアップ等の問題に対応することが可能になる。
【0140】
さらに、連通部73はケーシング5に穿孔して形成するばかりでなく、図14に示すように、前段吐出室52とクランク室19等とを微少径の細管で接続して構成しても良い。
【0141】
なお、上記説明では、クランク室19等と前段吐出室52とを連通部73で接続する場合について説明したが、前段吐出室と後段吸入室とは、圧力変動の位相が略180度違うだけで、圧力的には略同じと考えることができるので、図15に示すように、クランク室19等と後段吸入室53とを連通部73で接続しても、同様の効果を得ることができることは言うまでもない。
【0142】
次に、本発明の第3の実施の形態を図を参照して説明する。なお、これまで説明した実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0143】
第2の実施の形態では、圧縮室42の圧力とクランク室19やモータ室18の圧力との差圧を軽減して、コネクティングロッド26に加わる荷重等の低減を図るべく、前段吐出室52とクランク室19等とを連通するように微少径の連通部73により連通した。
【0144】
これに対し、本実施の形態は、前段吐出室52からの冷媒をモータ室18に導き、モータ室18からクランク室19を介して流動させることにより、当該クランク室19の圧力を高めて、その後冷媒を後段吸入室に供給するようにしたものである。
【0145】
このような構成にすることにより、第2の実施の形態に述べた効果に加え、モータ2の冷却が行えるという新たな効果が教授できるようになる。
【0146】
このため、本実施の形態では、図16に示すように、前段吐出室52とモータ室18とを冷媒導入管74で連結すると共に、クランク室19と後段吸入室53とを冷媒戻管75(管でなく通路でもよい)連結し、冷媒導入管74にインタークーラ70が接続されている。
【0147】
なお、図16は、冷媒導入管74及び冷媒戻管75の構成を説明するために、図1に示す圧縮機1の詳細構成を簡略化した図である。
【0148】
モータ室18側の冷媒導入管74端部は、モータ2のコイルエンド(固定子や回転子の端部)の近傍に設けられて、前段吐出室52からの冷媒が当該コイルエンドに吹当るようになっている。
【0149】
また、クランク室19側の冷媒戻管75端部は、潤滑油戻路31から吐出された潤滑油15が付着し難い位置で、かつ、ピストン41に近い位置に設けられている。
【0150】
これにより、冷媒はモータ室18やクランク室19で図16に示す点線矢印のように流動する。即ち、前段吐出室52からの冷媒はモータ2のコイルエンドに吹き当り、当該コイルエンドを冷却しながらモータ2を冷却してクランク室19に流入する。
【0151】
モータ2の固定子は、ケーシング本体5aに圧入されているため、冷媒は主に当該固定子と回転子との間の隙間を流動する。このため、モータ2の冷却が効率的に行える。
【0152】
また、モータ室18とクランク室19とは、区画板5cにより区画されており、この区画板5cに複数の貫通孔17(17a,17b)が形成されているので、この貫通孔17を介してモータ室18へと流入する。
【0153】
ところが、複数の貫通孔17のうち、底部側の貫通孔17bの大部分は潤滑油15により塞がれているので、冷媒は主にピストン41側の貫通孔17aを介してクランク室19に流入する。
【0154】
従って、冷媒は、クランク室19において底部側より温度が高いピストン41側に沿って流動し、かつ、前段圧縮部11aより温度の高い後段圧縮部11b側を最初に冷却しながら流動する。
【0155】
これにより、モータ2の冷却が効率的に行えて絶縁特性劣化が効果的に抑制できるようになると共に、前段ピストン41a側より温度の高い後段ピストン41b側が最初に冷却されるため、温度による圧縮効率の低下が大きい後段圧縮部11bでの圧縮効率が向上する。
【0156】
また、クランク室19等の圧力は前段吐出室52の圧力に近い圧力になるので、当該クランク室19等の圧力と圧縮室42の圧力との差圧が小さくなって、モータ負荷の軽減、駆動トルクのアンバランス抑制が可能になる。
【0157】
なお、図16においては、インタークーラ70を冷媒導入管74に設けていた。これは前段吐出室52からの冷媒の温度が高いと、モータ2等の冷却が効率的に行えない場合が生じることを勘案して設けたものであり、当該インタークーラ70を設けなくてもモータ2の冷却が十分に行えるような場合には、図17に示すように、このインタークーラ70を設けない構成にしても良いことは明らかである。
【0158】
また、モータ2等を冷却した冷媒の温度が高いと、後段圧縮部11bでの圧縮効率が低下する恐れがあるので、このような場合には、図18や図19に示すように、冷媒戻管75に第2のインタークーラ76を設けても良い。
【0159】
なお、図18は冷媒導入管74に第1のインタークーラ70を設け、冷媒戻管75に第2のインター倉を設けた場合を示している。また、図19は、冷媒戻管75にのみ第2のインタークーラ76を設けた場合を示している。
【0160】
以上の構成により、コネクティングロッド26の負荷軽減を図りながら、モータ2冷却の冷却が同時に行え、コネクティングロッド26等の寿命向上と共に、モータ2の特性劣化等が改善できて信頼性が向上する。
【0161】
次に、本発明の第4の実施の形態を図を参照して説明する。なお、これまで説明した実施の形態と同一構成に関しては同一符号を用い説明を適宜省略する。
【0162】
先の実施の形態においては、前段吐出室52の冷媒をモータ室18に導き、当該冷媒でモータ2を冷却するようにした。
【0163】
しかし、本発明は、このような構成に限定されるものではなく、例えば図11に示すような冷凍回路中で液化又は液状化した冷媒を当該モータ室18に導いて冷却するようにしてもよい。
【0164】
図20は、かかる構成を示した図である。なお、図20においては、図11に示したバイパス管77や冷媒供給路切換器78は設けられていないが、本発明においてもこのような構成としても良いことを予め付言する。
【0165】
図20において、第1熱交換器80と減圧装置81との間の冷媒配管と、モータ室18とを連通させる液冷媒導入管85、液冷媒導入管85端部に接続されて冷媒を噴霧するノズル86、クランク室19と接続されて当該クランク室19の冷媒を前段吸入室51に戻す冷媒戻管75とが設けられている。
【0166】
なお、図20においては、第1熱交換器80から温熱を取出して利用することにより、該第1熱交換器80で液状化した冷媒を抽出して圧縮機1に注入する構成を示しているが、当該第1熱交換器80で冷熱を利用する場合もあり、かかる場合には冷媒は第2熱交換器82で放熱して液状化する。
【0167】
従って、第1熱交換器80で冷熱を利用する場合には、第2熱交換機82と減圧装置81との間だの冷媒配管から冷媒を抽出して圧縮機1に注入するようにする。
【0168】
また、ノズル86は、モータ2のコイルエンド(固定子や回転子の端部)の近傍に設けられて冷媒が当該コイルエンドに吹当るようになっている。
【0169】
さらに、クランク室19側における冷媒戻管75の端部は、潤滑油戻路31から吐出された潤滑油15が付着しにくい位置で、かつ、ピストン41に近い位置に設けられている。
【0170】
図20では、冷媒戻管75はクランク室19の冷媒を前段吸入室51に戻す用に設けられているが、モータ2等を冷却して温度の高くなった冷媒が前段吸入室51に供給されると、当該前段吸入室51の冷媒温度が上昇して膨張し、前段圧縮部11aで圧縮される冷媒量が少なくなるため、圧縮効率が低下することが危惧される。
【0171】
このような場合には、モータ2等を冷却した冷媒を、後段吸入室53に戻すようにする方法が可能である。例えば、冷媒戻管75を設けずに、連通部73が前段吐出室52、後段吸入室53及びクランク室を連通するようにする構成が考えられる。
【0172】
そして、冷凍回路で温熱を利用する場合(熱利用機器が暖房機や給湯器のような場合)には、圧縮機1からの冷媒は、4方弁83を介して第1熱交換器80で当該熱利用機器側と熱交換する。
【0173】
この熱交換で冷媒は放熱して液化又は液状化し、その後減圧装置81に供給されて減圧され、第2熱交換器82で外気等と熱交換して蒸発する。そして、4方弁83を介して圧縮機1に戻る。
【0174】
なお、冷媒として二酸化炭素を用いているので、第1熱交換器80で熱交換した際の冷媒は、従来のHFC冷媒等のように凝縮した状態ではなく、液体、気体の区別が付かない超臨界状態にある。しかし、第1熱交換器80で熱交換した際の冷媒は、気体に比べ液体に近い状態、又はその一部が凝縮した状態であるため、本明細書では液状化した冷媒と記載する。
【0175】
一方、冷凍回路で冷熱を利用する場合(熱利用機器が冷房機やショーケースのような場合)には、圧縮機1からの冷媒は、4方弁83を介して第1熱交換器80で外気等と熱交換する。
【0176】
この熱交換で冷媒は放熱して液化又は液状化し、その後減圧装置81に供給されて減圧され、第1熱交換器80で当該熱利用機器側と熱交換して蒸発する。そして、4方弁83を介して圧縮機1に戻る。
【0177】
以上の構成により、クランク室19等の圧力は連通部73により前段吐出室52の圧力に近い圧力になり、当該クランク室19等の圧力と圧縮室42の圧力との差圧が小さくなって、主ジャーナル22、副ジャーナル23、コネクティングロッド26の摺動部に大きな荷重が加わる不都合が防止できると共に、モータ負荷の増大や駆動トルクのアンバランスが抑制できるようになる。
【0178】
また、液冷媒導入管85により冷凍回路から抽出された冷媒は、ノズル86によりコイルエンドに向けて噴霧されて、当該コイルエンドを冷却し、その後固定子と回転子との間の隙間を流動してこれら固定子及び回転子を冷却する。
【0179】
なお、冷凍回路から抽出された冷媒がノズル86から噴霧されることにより、当該冷媒は略完全に凝縮することが好ましいが、当該ノズル86に供給される冷媒の温度が高いときには、ノズル86から噴霧されても完全に凝縮しないことが想定される。
【0180】
このような場合には、図21に示すように、液冷媒導入管85にキャピラリーチューブ87を設けて放熱・減圧してノズル86から噴霧した際に略完全に凝縮するようにしても良い。
【0181】
以上により、これまで各実施の形態において説明した効果に加え、モータ2やピストン41等の冷却がより効率的に行えるようなって信頼性が向上する。
【0182】
【発明の効果】
以上説明したように、本発明によれば、冷媒が二酸化炭素であって、かつ、前段側の圧縮部で圧縮された冷媒が吐出される部屋と、動力変換手段が密閉状態で配設されているケーシング内の部屋とを連通する連通部を設けたので、大型のモータを用いることなく、かつ、コネクティングロッド等に大きな荷重が加わることなく二酸化炭素を圧縮することができるようになる。
【図面の簡単な説明】
【図1】本発明の各実施の形態の説明に適用される半密閉型多段圧縮機の詳細断面図である。
【図2】図1におけるAA矢視断面図である。
【図3】シール材の上面図である。
【図4】フルビードが形成されたシール材の部分断面図である。
【図5】ハーフビードが形成されたシール材の部分断面図である。
【図6】前段圧縮部と後段圧縮部とでのピストンリングの装着数の相違を説明する図である。
【図7】ピストンの揺動を説明する図である。
【図8】表面硬化部を設けたピストンの模式断面図である。
【図9】耐摩耗部をコネクティングロッドに設けた際の模式断面図である。
【図10】インタークーラの構成を示す図である。
【図11】熱利用機器側の種類に応じて前段圧縮部から後段圧縮部に供給する冷媒の供給路を変える場合の冷凍回路図である。
【図12】ケーシングに連通部を形成してクランク室等と前段吐出室とを連通した場合の圧縮機の概略構成図である。
【図13】連結部の径を途中で変えた場合の図12に代る図である。
【図14】クランク室等と前段吐出室とを管接続して連通部を構成した場合の連通した場合の図12に代る図である。
【図15】ケーシングに連通部を形成してクランク室等と後段吸入室とを連通した場合の図12に代る図である。
【図16】前段圧縮部からの冷媒をインタークーラを介してモータ室に導いた場合の圧縮機の概略構成図である。
【図17】前段圧縮部からの冷媒を直接モータ室に導いた場合の図16に代る圧縮機の概略構成図である。
【図18】前段圧縮部からの冷媒を第1のインタークーラを介してモータ室に導き、クランク室の冷媒を第2のインタークーラを介して後段圧縮部に戻す場合の圧縮機の概略構成図である。
【図19】前段圧縮部からの冷媒を直接モータ室に導き、クランク室の冷媒を第2のインタークーラを介して後段圧縮部に戻す場合の圧縮機の概略構成図である。
【図20】冷凍回路から抽出した液冷媒又は液状冷媒をモータ室に導く場合の圧縮機の概略構成図である。
【図21】冷凍回路から抽出した液冷媒又は液状冷媒をキャピラリーチューブを介してモータ室に導く場合の圧縮機の概略構成図である。
【図22】従来の技術の説明に適用される半密閉型多段圧縮機の概略構成を示す図である。
【符号の説明】
1 半密閉型多段圧縮機
2 モータ
3 動力変換手段
4 圧縮手段
5 ケーシング
5h シリンダヘッド
11(11a,11b) 圧縮部
13 シール材
18 モータ室
19 クランク室
25(25a,25b) クランク
26(26a,26b) コネクティングロッド
35 メタルガスケット
36 弾性シートガスケット
37(37a,37b) ビード
40(40a,40b) シリンダ
41(41a,41b) ピストン
42(42a,42b) 圧縮室
46 ピストンリング
47 表面硬化部
49 耐摩耗部
51 前段吸入室
52 前段吐出室
53 後段吸入室
54 後段吐出室
70 インタークーラ
73 連通部
74 冷媒導入管
75 冷媒戻管
76 第2のインタークーラ
77 バイパス管
78 冷媒供給路切換器
80 第1熱交換器
81 減圧装置
82 第2熱交換器
83 4方弁
85 液冷媒導入管
86 ノズル
87 キャピラリーチューブ

Claims (4)

  1. 回転動力を発生するモータと、前記回転動力を往復動力に変換する動力変換手段と、該動力変換手段からの往復動力により往復運動して冷媒を圧縮する圧縮部を複数具備する圧縮手段と、複数のケーシング部材が密閉状態に組立てられて、前記モータ、動力変換手段及び圧縮手段を収納するケーシングとを備えて、前段側の前記圧縮部で圧縮された冷媒を後段側の前記圧縮部でさらに圧縮して吐出する半密閉型多段圧縮機において、
    前記冷媒が二酸化炭素であって、かつ、
    前段側の前記圧縮部で圧縮された冷媒が吐出される部屋と、前記動力変換手段が密閉状態で配設されている前記ケーシング内の部屋とを連通する連通部を設けたことを特徴とする半密閉型多段圧縮機。
  2. 前記連通部が、前記ケーシングに穿孔して形成された管であることを特徴とする請求項1記載の半密閉型多段圧縮機。
  3. 前記連通部が、途中で直径が小さくなっていることを特徴とする請求項1記載の半密閉型多段圧縮機。
  4. 前記連通部が、前段側の前記圧縮部における圧縮された冷媒が吐出される部屋と、前記動力変換手段の配設されている部屋とを連通させる配管であることを特徴とする半密閉型多段圧縮機。
JP2003096891A 2003-03-31 2003-03-31 半密閉型多段圧縮機 Pending JP2004301076A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096891A JP2004301076A (ja) 2003-03-31 2003-03-31 半密閉型多段圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096891A JP2004301076A (ja) 2003-03-31 2003-03-31 半密閉型多段圧縮機

Publications (1)

Publication Number Publication Date
JP2004301076A true JP2004301076A (ja) 2004-10-28

Family

ID=33408816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096891A Pending JP2004301076A (ja) 2003-03-31 2003-03-31 半密閉型多段圧縮機

Country Status (1)

Country Link
JP (1) JP2004301076A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515873A (ja) * 2009-01-24 2012-07-12 ゲア ボック ゲーエムベーハー コンプレッサ、特に冷媒として二酸化炭素を使用するラジアルピストン型コンプレッサ
JP2013015113A (ja) * 2011-07-06 2013-01-24 Calsonic Kansei Corp 電動コンプレッサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515873A (ja) * 2009-01-24 2012-07-12 ゲア ボック ゲーエムベーハー コンプレッサ、特に冷媒として二酸化炭素を使用するラジアルピストン型コンプレッサ
JP2013015113A (ja) * 2011-07-06 2013-01-24 Calsonic Kansei Corp 電動コンプレッサ

Similar Documents

Publication Publication Date Title
KR20020084265A (ko) 다단 압축기
EP1215450A1 (en) Multi-stage compression refrigerating device
US6877340B2 (en) Expander
JP2010185342A (ja) 回転式電動圧縮機
JP2004301453A (ja) 半密閉型多段圧縮機
JPH06323251A (ja) 密閉形電動圧縮機
JP2012082785A (ja) 圧縮機
JP2004301074A (ja) 半密閉型多段圧縮機
JP2004301071A (ja) 半密閉型多段圧縮機
JP5543973B2 (ja) 冷媒圧縮機、及び、冷凍サイクル装置
WO2010131061A1 (en) Hermetically closed compressor and related methods
JP2004301076A (ja) 半密閉型多段圧縮機
JP2004301075A (ja) 半密閉型多段圧縮機
JP2004301069A (ja) 半密閉型多段圧縮機
EP4325058A1 (en) Low-pressure chamber rotary compressor and air conditioner
JP2004301072A (ja) 半密閉型多段圧縮機
JP2004301073A (ja) 半密閉型多段圧縮機
JP2004301070A (ja) 半密閉型多段圧縮機
JP2004301068A (ja) 半密閉型多段圧縮機
CN111894830A (zh) 一种用于混合制冷剂单级往复式活塞压缩机
JPH06264881A (ja) ロータリ圧縮機
JP3291469B2 (ja) 回転式圧縮機
Hu et al. Study on the Performance of CO2 Two-stage Rotary Compressor in Freezing and Cold Storage Conditions
Dreiman et al. Concept of hermetic rotary compressor with carbon dioxide as working fluid
JP2000104690A (ja) 回転式圧縮機