JP2004300543A - Electrode for electrolysis and ion-exchange membrane electrolytic cell using it - Google Patents

Electrode for electrolysis and ion-exchange membrane electrolytic cell using it Download PDF

Info

Publication number
JP2004300543A
JP2004300543A JP2003096401A JP2003096401A JP2004300543A JP 2004300543 A JP2004300543 A JP 2004300543A JP 2003096401 A JP2003096401 A JP 2003096401A JP 2003096401 A JP2003096401 A JP 2003096401A JP 2004300543 A JP2004300543 A JP 2004300543A
Authority
JP
Japan
Prior art keywords
electrode
electrolytic cell
cathode
exchange membrane
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096401A
Other languages
Japanese (ja)
Other versions
JP4246530B2 (en
Inventor
Shinji Katayama
眞二 片山
Kiyoto Asaumi
清人 浅海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2003096401A priority Critical patent/JP4246530B2/en
Priority to US10/811,947 priority patent/US7303661B2/en
Priority to EP04007671.3A priority patent/EP1464728B1/en
Priority to CN2004100319210A priority patent/CN1537973B/en
Publication of JP2004300543A publication Critical patent/JP2004300543A/en
Application granted granted Critical
Publication of JP4246530B2 publication Critical patent/JP4246530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode which can be deformed freely, further has adequate conductivity, and can be surely electrically connected with an electrode current collector, instead of a conventional electrode of a rigid body for electrolysis, and to provide an electrolytic cell. <P>SOLUTION: This electrode for electrolysis used as an anode or a cathode comprises a metallic coil body 5 carrying an electrode catalyst thereon, or an elastic cushioning material 4 carrying the electrode catalyst composed of a corrosion resistant frame 3 having the metallic coil body wound around it. The metallic coil body can be freely deformed and further has adequate conductivity, so that the electrode can be surely electrically connected with the electrode current collector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ金属塩化物水溶液等の電解に使用できる電解用電極及びこれを使用するイオン交換膜電解槽に関する。
【0002】
【従来の技術】
クロルアルカリ電解を代表とする電解工業は、素材産業として重要な役割を果たしている。このような重要な役割を持つものの、クロルアルカリ電解に要する消費エネルギーが大きく、日本のようにエネルギーコストが高い国ではその省エネルギー化の達成が強く要望されている。
例えば、クロルアルカリ電解は、環境問題の解決と共に省エネルギー化を達成するために、水銀法から隔膜法を経てイオン交換膜法へと転換され、約25年で約40%の省エネルギー化を達成してきた。しかし、この省エネルギー化でも不十分で、エネルギーである電力コストが全製造費の約半分を占めているが、現行の方法を使用する限りこれ以上の電力節約は不可能なところまで来ている。
【0003】
食塩電解に使用する水素発生陰極装着電解槽では、陽極、イオン交換膜及び水素発生陰極の三者を密着状態で配置して電解電圧の低下を図っているが、電解面積が数平方メートルにも達する大型の電解槽では、陽極及び陰極を剛性部材で電極室にすると、両電極をイオン交換膜に密着させて電極間隔を所定値に保持することは困難であった。
電極間距離あるいは電極と電極集電体間の距離を小さくするためあるいはほぼ一定値に維持するための手段として、弾性材料を使用する電解槽が知られている。
この弾性材料には金属の細線の織布、不織布、網などが非剛性材料と、板バネ等の剛性材料が知られている。
【0004】
非剛性材料は、電解槽への装着後に、対極から過度に押圧された場合に部分的に変形して電極間距離が不均一になったり、非剛性材料の細線がイオン交換膜に突き刺さるといった不都合がある。又板バネ等の剛性材料では、イオン交換膜を傷つけたり、塑性変形が生じて再使用が不可能になるといった欠点がある。
又食塩電解槽のようなイオン交換膜電解槽では、陽極や陰極をイオン交換膜に密着させて低電圧で運転を継続できることが望ましく、電極をイオン交換膜方向に押圧するための種々の方法が提案されている。
【0005】
【特許文献1】
特公昭63−53272号公報(第1図〜第8図)
【0006】
【発明が解決しようとする課題】
前述したようにイオン交換膜を陽−陰極間で狭持する電解槽の構造上の特徴は、電極をイオン交換膜に均一に密着させてイオン交換膜の破損をさけるため及び陽−陰両電極間距離を最小に保つため、少なくとも一方の電極の極間距離方向への移動が自由な構造とし、電極を弾力性部材で押し狭持圧を調節できる点にある。
弾力性部材としては、金属ワイヤーからなる編物や織物又はこれを積層したもの、或いは三次元的に編んであるか、三次元的に編んだ後これにうねり加工等を施した形状、並びに金属繊維からなる不織物、コイルバネ(スプリング)、板バネなどがあり、いずれも何らかのバネ弾性を有するものである。
【0007】
一方食塩電解槽などの工業用の電解槽では、電極集電体から電極への電力供給を円滑に行うために、板バネや金属網状体等が使用されることがある。
しかし前述の通り、板バネや金属網状体は剛体であるため、イオン交換膜を傷付けたり、変形率が小さく、十分な電気的接続が得られないことがある。
このような欠点を解消するために、金属網状体に替えて金属製コイル体を陰極と陰極端板の間に装着して前記陰極を隔膜方向に均一に押圧して各部材を密着させた電解槽が開示されている(特許文献1)。
【0008】
この金属製コイル体はコイルの線径が非常に小さく、変形率が高いため、各部材を十分に密着させ、安定した電解槽の操業が可能になる。
しかし特許文献1に記載の電解槽では、陽極又は陰極に加えて金属製コイル体を電解槽内に設置しているため、部品点数が多くなり、陰極が剛体であると十分な密着性が得られないことがあるという欠点がある。
本発明は、従来の金属製コイル体を電極をイオン交換膜方向に押し付ける態様で使用するのではなく、電極そのものとして使用する電解用電極及びこれを使用する電解槽を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の電解用電極は、電極触媒を担持した金属製コイル体又は耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極である。金属製コイル体や弾性クッション材は金属製綿状体と置換しても良い。又本発明のイオン交換膜電解槽は、イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽において、前記陽極及び陰極の少なくとも一方が電極触媒を担持した弾性電極を含んで成ることを特徴とするイオン交換膜電解槽である。
【0010】
以下、本発明を詳細に説明する。
本発明の対象とするイオン交換膜電解槽では、陽極及び陰極の少なくとも一方として、金属製コイル体、弾性クッション材或いは金属製綿状体等の弾性電極を使用する。
これにより電極自身が弾性を有するため、従来のように電極以外に弾性を有する部材を電解槽内に設置する必要がなくなり、電極のみで電極としての機能の他に電極をイオン交換膜等に弾性的に押圧し、これにより例えば電極とイオン交換膜が均一密着するといった効果が生じる。金属製コイル体、弾性クッション材或いは金属製綿状体等は、例えば局所的に指で押えると凹み、指を離すと復元するもので、他部材の凹凸に対して極めて密着性が高い。
本発明のイオン交換膜電解槽での電解反応はクロルアルカリ(食塩)電解による水酸化アルカリ(苛性ソーダ)の生成反応であることが望ましいが、電極として前述の弾性電極が使用可能な反応であれば特に限定されない。
【0011】
本発明のイオン交換膜電解槽の陽極や陰極として使用できる弾性電極は、金属製コイル体、弾性クッション材或いは金属製綿状体等から選択される。
金属製コイル体は、良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、或いは銅等の固有抵抗の小さい金属に良好な耐食性を示すニッケル等をめっき等で被覆して製造した線材をロール加工により螺旋コイルに加工することにより得られる。線材の断面形状は、円、楕円、角部が丸い矩形等が好ましい。イオン交換膜の損傷を防止するために、三角形又は矩形のような鋭利な角部を有する断面形状は望ましくない。例えば直径0.17mmのニッケル線(NW2201)をロール加工すると、断面形状が約0.05mm×0.5mmの角部が丸い矩形に成り、巻き径が約6mmであるコイル線となり、得られたコイル線は好ましく使用できる。
金属製コイル体はこのまま電解槽内の陽極や陰極として使用しても良いが、本発明では耐食性フレームに金属製コイル体を巻回して構成した弾性クッション材として使用することが望ましい。
【0012】
つまり前記金属製コイル体は変形率が高いため、取扱い難く、作業員の意図通りに電解槽の所定箇所に設置することが困難になることが多い。更に容易に変形する(強度が不十分である)ため、一旦電解槽の所定箇所に設置しても電解槽内の電解液や生成ガスにより位置が偏って各部材の均一密着が困難になることがある。
前記弾性クッション材は、例えば長方形状の耐食性フレームの4本の枠杆のうち対向する2本の間に、ほぼ均一密度になるように1本の又は複数本の金属製コイル体を巻回すことにより得られる。この弾性クッション材では、耐食性フレームの左右に通常2層の金属製コイル体が積層されるが、金属製コイル体自体が変形し易いため、隣接するコイル同士が櫛歯状に噛み合わさせて、見掛け上、1層になっている。このようにして得られた弾性クッション材は、食器洗浄用の金属タワシのような外観を有している。
【0013】
前記金属製コイル体を使用する弾性クッション材の組立は、電解槽外の作業であるため、容易に行うことができ、得られた弾性クッション材は、電解槽組立時に、電解槽内の対象電極となるよう装着するようにすれば良く、この装着時にも弾性クッション材自体は耐食性フレームの強度により組立に支障が出る程には変形しないため、容易に所定箇所に設置できる。
【0014】
この金属製コイル体の径(コイルの見掛け上の直径)は電解槽内に装着されることにより通常10〜70%まで縮んで弾性が生じ、この弾性により電極自身で例えばイオン交換膜と集電体間に保持できるようになり、集電体から電極への給電が容易になる。線径の小さい金属製コイル体を使用すれば必然的に電極や集電体と弾性クッション材との接触点の数が多くなり、均一接触が可能になる。電解槽に装着された後の弾性クッション材は、その耐食性フレームにより形状が保持されるため、塑性変形を受けることが殆どなく、電解槽の解体−再組立時にも殆どの場合再使用できる。
【0015】
本発明の弾性クッション材(又は金属製コイル体)を電極としてイオン交換膜電解槽を組み立てる際には、イオン交換膜と電極集電体間等に弾性クッション材等を位置させ、その後は通常通りに組立てれば電極の位置に弾性クッション材等が保持された電解槽が得られる。
【0016】
前述のような構成から成るイオン交換膜電解槽を使用して食塩電解を行うには、陽極室に食塩水溶液等の電解液を、陰極室に希釈苛性ソーダ水溶液を供給しながら、両極間に通電する。弾性クッション材等が電極として機能する電解槽では、弾性クッション材等の高強度及び強靭性によりこの状態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。
【0017】
【発明の実施の形態】
本発明による電解槽で使用可能な弾性クッション材の例を図1〜図4に基づいて説明する。図1は耐食性フレームの斜視図、図2は弾性クッション材を例示する斜視図、図3は図2のA−A線縦断面図、図4は図2のB−B線縦断面図である。
【0018】
図1に示すように、耐食性フレーム3はニッケル等の金属丸棒で長方形の枠1と、その長手方向の1対の丸棒間に掛け渡された補強杆2から成っている。
図3及び図4に示す金属製コイル体4は、細径の金属線をコイル状にロール加工して得られ、例えば洗浄用の金属タワシのように剛性のない自由に変形できる材料になっている。この金属製コイル体4は図2に示すように、例えば直径約2mmのニッケル製耐食性フレーム3の長手方向の1対の丸棒間のほぼ全長に渡って巻回されて弾性クッション材5が製造される。
このようにして製造された弾性クッション材5は、金属製コイル体4が耐食性フレーム3に巻回されているため、耐食性フレーム3の形状のまま保持され、金属製コイル体4が耐食性フレーム3から離脱することは殆どなく、金属製コイル体4を耐食性フレーム3と一体化したものとして取り扱える。
【0019】
図5は、弾性クッション材を単極式食塩電解槽の陰極として使用した例を示す概略平面図である。
図では、電解槽40内に、上下方向を向く1対の導電棒41が立設され、この導電棒41の周囲に陰極液循環通電部材42が設置され、この通電部材42の面に沿って陰極集電体43が電気的に接続されている。
次いで前記陰極集電体43には陰極として機能する弾性クッション材5が電気的に接続されている。
【0020】
図6は、弾性クッション材を複極式食塩電解槽の陰極として使用した例を示す概略平面図である。
図では、電解槽50内には、接合された陽極隔壁51と陰極隔壁52の陽極側には上下方向を向く4個の一体化された陽極保持部材53が帯状接合部54を陽極隔壁51に接合することにより固定され、各陽極保持部材53の中には陽極液循環通路55が確保されている。
【0021】
又前記接合隔壁の陰極側には前記陽極保持部材53に対応する陰極保持部材56が帯状接合部57を陰極隔壁52に接合することにより固定され、各陰極保持部材56の中には陰極液循環通路58が確保されている。
前記陽極保持部材53の中央外側には凸状部59が形成され、この凸状部59を通してエキスパンデッドメタル状の陽極60への給電が行われる。
前記4個の陰極保持部材56の平坦面には、陰極として機能する弾性クッション材5(又は金属製コイル体4)が電気的に接触し、前記陰極保持部材56から弾性クッション材5へ給電が行われる。
【0022】
弾性クッション材5を陰極として使用すると、金属製コイル体4が耐食性フレーム3に巻回されているため、取り扱いが容易で形が崩れたりすることが殆ど無い。
この状態で、陽極室に食塩水を、陰極室に希釈苛性ソーダ水溶液をそれぞれ供給しながら両極間に通電すると、陰極室で濃縮苛性ソーダ水溶液が得られる。
【0023】
次に本発明に係る水素発生陰極を使用するイオン交換膜電解槽に関する実施例及び比較例を記載するが、これらは本発明を限定するものではない。
【0024】
[実施例1]
次のようにして単位イオン交換膜電解槽を組み立てた。
陽極はペルメレック電極株式会社製のチタンのエキスパンデッドメタルに白金族金属酸化物を有する電極触媒被覆を形成した、有効面積が1540cm(幅11cm×高さ140cm)である寸法安定性電極を使用した。この陽極を電解槽の陽極室隔壁に陽極リブを使用して取り付けた。
平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、ニッケル製エキスパンデッドメタル型陰極集電体を取り付けた。
【0025】
金属製コイル体は、線径が0.17mmで、引張強度620〜680N/mのニッケル線(NW2201)をロール加工により約0.5mm幅のコイル線にし、コイルの巻き径が約6mmにしたものを用いた。
この金属製コイル体を、直径2mmのニッケル丸棒製枠(耐食性フレーム)に巻回して直方体状に形状を整え、概略サイズが厚さ10mm×幅110mm×長さ350mmの弾性クッション材とした。この弾性クッション材のコイル線密度は約7g/dmであった。
【0026】
次いでこの弾性クッション材に次のようにして白金めっきを行って弾性陰極とした。
つまり当該弾性クッション材を陰極とし、ヘキサクロロ白金酸水溶液(20g/リットル)を含浸したチタン棒が入ったプラスチックブラシを陽極とした筆めっき法(電流0.5A、1dm当たりのめっき時間5分)により弾性クッション材を構成する各金属製コイル体のイオン交換膜側表面に白金めっきを行った。
この白金担持弾性クッション材を前記陰極集電体上に4枚並べて配置した。
陽極と陰極の間に陽イオン交換膜(旭硝子株式会社製Flemion−F8934)を配置してイオン交換膜電解槽を組立てた。
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm、温度85℃の条件で電解を行った。電解槽電圧は2.89Vであった。
【0027】
[実施例2]
次のようにしてイオン交換膜電解槽を組み立てた。
陽極はペルメレック電極株式会社製のチタンのエキスパンデッドメタルに、白金族金属酸化物を有する電極触媒被覆を形成した、有効面積が1540cm(幅11cm×高さ140cm)である寸法安定性電極を使用した。この陽極を電解槽の陽極室隔壁に陽極リブを使用して取り付けた。
平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、ニッケル製エキスパンデッドメタル型陰極集電体を取り付けた。
【0028】
厚さ5mm×幅11cm×長さ20cmのニッケル繊維を開繊機にかけて均一な綿状にした織物を、ヘキサクロロ白金酸水溶液(20g/リットル)と塩酸(10g/リットル)の混合液に室温で1時間浸漬して白金を析出させて陰極とした。
この陰極(白金担持織物)7枚を陰極集電体上に並べ、陽極と陰極の間には陽イオン交換膜(旭硝子株式会社製フレミオンF8934)を配置してイオン交換膜電解槽を組立てた。
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm、温度85℃の条件で電解を行った。電解槽電圧は2.87Vであった。
【0029】
[比較例1]
陽極は実施例2と同様に作製し、陰極集電体も実施例2と同様にして取り付けた。
ニッケル製の線径が0.08mmのワイヤー8本をまとめてメリヤス編みした金網を2枚重ねクリンプしたマット状体(ニッケル製弾性通電体)を、前記陰極集電体上に配置した。
【0030】
次いで線径0.15mm、開孔率68%、各孔の面積0.49mmのニッケル製金網に次の操作を行って活性物質を被覆した。つまりニッケル製金網をスチーム脱脂し、次いで15%硝酸中で1分間エッチングした後、ヘキサクロロ白金酸6水塩水溶液(20g/リットル)、硝酸セシウム6水塩水溶液(30g/リットル)及び硝酸(50g/リットル)の組成のペイントを塗布し、塗布後、50℃で5分間乾燥し、次いで500℃の加熱器中で10分間加熱し、室温に冷却した。このサイクル(ペイント塗布−乾燥−分解)を白金濃度が5g/mになるまで繰り返した。
このようにして得られたニッケル製マットに接してニッケル金網を陰極として配置し、陽極と陰極の間には陽イオン交換膜(旭硝子株式会社製フレミオンF8934)を配置してイオン交換膜電解槽を組立てた。
【0031】
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm、温度85℃の条件で電解を行った。電解槽電圧は2.90Vであった。
【0032】
実施例1及び2と比較例1を比較すると、陰極としてニッケル製の弾性クッション材を使用した実施例1及び2の方が、陰極としてニッケルマット及びニッケル金網を使用した比較例1より電解槽電圧が低く、効果的な電解を行えることが分かった。
【0033】
【発明の効果】
本発明は、電極触媒を担持した金属製コイル体又は耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極であり、金属製コイル体や弾性クッション材の替わりに金属製綿状体を使用しても良い。
この電解用電極は、その高強度及び強靭性によりその形態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。
更に弾性電極を収容した電解槽では、弾性電極が自由に変形でき、更に十分な導電性を有するため、電極と電極集電体間を確実に電気的に接続でき、確実な給電が可能になる。
【図面の簡単な説明】
【図1】本発明で使用可能な弾性クッション材中の耐食性フレームの斜視図。
【図2】本発明で使用可能な弾性クッション材を例示する斜視図。
【図3】図2のA−A線縦断面図。
【図4】図2のB−B線縦断面図。
【図5】弾性クッション材を陰極として使用した単極式食塩電解槽の例を示す概略平面図。
【図6】弾性クッション材を陰極として使用した複極式食塩電解槽の例を示す概略平面図。
【符号の説明】
1 長方形枠
2 補強杆
3 耐食性フレーム
4 金属製コイル体
5 弾性クッション材
40 単極式電解槽
41 導電棒
42 陰極液循環通電部材
43 陰極集電体
50 複極式電解槽
51 陽極隔壁
52 陰極隔壁
53 陽極保持部材
54 帯状接合部
55 陽極液循環通路
56 陰極保持部材
57 帯状接合部
58 陰極液循環通路
59 凸状部
60 陽極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode for electrolysis that can be used for electrolysis of an aqueous alkali metal chloride solution and an ion exchange membrane electrolytic cell using the same.
[0002]
[Prior art]
The electrolysis industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and in countries with high energy costs such as Japan, there is a strong demand for achieving energy savings.
For example, chloroalkali electrolysis has been converted from a mercury method to an ion exchange membrane method via a diaphragm method in order to solve environmental problems and achieve energy saving, and has achieved about 40% energy saving in about 25 years. . However, even this energy saving is not enough, and the power cost, which is energy, accounts for about half of the total manufacturing cost. However, no further power saving is possible as long as the current method is used.
[0003]
In the electrolytic cell equipped with a hydrogen generating cathode used for salt electrolysis, the anode, ion exchange membrane and hydrogen generating cathode are arranged in close contact with each other to reduce the electrolytic voltage, but the electrolytic area reaches several square meters. In a large-sized electrolytic cell, when the anode and the cathode are made of an electrode chamber with rigid members, it is difficult to keep both electrodes in close contact with the ion exchange membrane to maintain a predetermined distance between the electrodes.
As a means for reducing the distance between the electrodes or the distance between the electrodes and the electrode current collector, or for maintaining the distance between the electrodes at a substantially constant value, an electrolytic cell using an elastic material is known.
As the elastic material, a non-rigid material such as a woven fabric, a nonwoven fabric, and a net of a thin metal wire, and a rigid material such as a leaf spring are known.
[0004]
The non-rigid material is disadvantageous in that when it is excessively pressed from the counter electrode after being attached to the electrolytic cell, it is partially deformed and the distance between the electrodes becomes non-uniform, and a thin line of the non-rigid material pierces the ion exchange membrane. There is. In addition, rigid materials such as leaf springs have the drawback that the ion exchange membrane is damaged or plastic deformation occurs, making reuse impossible.
In addition, in an ion exchange membrane electrolytic cell such as a salt electrolytic cell, it is desirable that the anode and the cathode can be brought into close contact with the ion exchange membrane so that the operation can be continued at a low voltage, and various methods for pressing the electrode toward the ion exchange membrane are available. Proposed.
[0005]
[Patent Document 1]
JP-B-63-53272 (FIGS. 1 to 8)
[0006]
[Problems to be solved by the invention]
As described above, the structural characteristics of the electrolytic cell in which the ion-exchange membrane is sandwiched between the positive and negative electrodes are that the electrode is uniformly adhered to the ion-exchange membrane to prevent damage to the ion-exchange membrane, and that the positive and negative electrodes are both used. In order to keep the distance between the electrodes at a minimum, at least one of the electrodes has a structure that can freely move in the direction of the distance between the poles, and the electrode can be pushed by an elastic member to adjust the holding pressure.
Examples of the elastic member include a knitted or woven fabric made of a metal wire or a laminate thereof, or a three-dimensionally knitted shape, a three-dimensionally knitted shape, and a swelled shape, and a metal fiber. , A coil spring (spring), a leaf spring, etc., each of which has some spring elasticity.
[0007]
On the other hand, in an industrial electrolytic cell such as a salt electrolytic cell, a leaf spring, a metal mesh, or the like may be used in order to smoothly supply power from the electrode current collector to the electrode.
However, as described above, since the leaf spring and the metal mesh are rigid, the ion exchange membrane may be damaged, the deformation rate may be small, and sufficient electrical connection may not be obtained.
In order to solve such a drawback, an electrolytic cell in which a metal coil body is mounted between the cathode and the cathode end plate instead of the metal mesh to uniformly press the cathode in the direction of the diaphragm to bring the respective members into close contact with each other. It is disclosed (Patent Document 1).
[0008]
This metal coil body has a very small coil wire diameter and a high deformation rate, so that the members can be brought into close contact with each other and stable operation of the electrolytic cell can be performed.
However, in the electrolytic cell described in Patent Document 1, since a metal coil body is installed in the electrolytic cell in addition to the anode or the cathode, the number of parts is increased, and sufficient adhesion is obtained when the cathode is a rigid body. There is a disadvantage that it may not be possible.
An object of the present invention is to provide an electrode for electrolysis used as an electrode itself and an electrolytic cell using the electrode, instead of using a conventional metal coil body in a mode in which the electrode is pressed in the direction of the ion exchange membrane. .
[0009]
[Means for Solving the Problems]
The electrolysis electrode according to the present invention is characterized in that the electrolysis electrode comprises a metal coil body carrying an electrode catalyst or an elastic cushion material carrying an electrode catalyst formed by winding a metal coil body around a corrosion-resistant frame. Electrode. The metal coil and the elastic cushioning material may be replaced with a metal floc. Further, the ion exchange membrane electrolytic cell of the present invention is an ion exchange membrane electrolytic cell partitioned into an anode chamber containing an anode and a cathode chamber containing a cathode by an ion exchange membrane, wherein at least one of the anode and the cathode serves as an electrode catalyst. An ion exchange membrane electrolytic cell comprising a supported elastic electrode.
[0010]
Hereinafter, the present invention will be described in detail.
In the ion exchange membrane electrolytic cell to which the present invention is applied, an elastic electrode such as a metal coil, an elastic cushion material, or a metal floc is used as at least one of the anode and the cathode.
As a result, the electrode itself has elasticity, so that it is not necessary to install a member having elasticity in addition to the electrode in the electrolytic cell as in the related art. Pressure, thereby producing an effect that, for example, the electrode and the ion exchange membrane are uniformly adhered. For example, a metal coil body, an elastic cushion material, or a metal cotton body is dented when locally pressed with a finger, and is restored when the finger is released, and has extremely high adhesion to unevenness of other members.
The electrolytic reaction in the ion exchange membrane electrolytic cell of the present invention is desirably a reaction for producing alkali hydroxide (caustic soda) by chloralkali (salt) electrolysis, but any reaction in which the above-mentioned elastic electrode can be used as an electrode. There is no particular limitation.
[0011]
The elastic electrode that can be used as the anode or the cathode of the ion exchange membrane electrolytic cell of the present invention is selected from a metal coil, an elastic cushion material, a metal floc, and the like.
The metal coil body is made by rolling a wire made by coating a metal with small specific resistance such as nickel, nickel alloy, stainless steel, or copper with good corrosion resistance by plating etc. with nickel etc. showing good corrosion resistance. It is obtained by processing into a spiral coil. The cross-sectional shape of the wire is preferably a circle, an ellipse, a rectangle with rounded corners, or the like. Cross-sectional shapes with sharp corners, such as triangles or rectangles, are undesirable in order to prevent damage to the ion exchange membrane. For example, when a nickel wire (NW2201) having a diameter of 0.17 mm is roll-processed, a coil wire having a cross-sectional shape of about 0.05 mm × 0.5 mm having a rounded corner and a winding diameter of about 6 mm was obtained. A coil wire can be preferably used.
The metal coil body may be used as it is as an anode or a cathode in the electrolytic cell. However, in the present invention, it is desirable to use the metal coil body as an elastic cushion material formed by winding a metal coil body around a corrosion-resistant frame.
[0012]
That is, since the metal coil body has a high deformation rate, it is difficult to handle it and it is often difficult to install the metal coil body at a predetermined location in the electrolytic cell as intended by the operator. In addition, because it is easily deformed (insufficient strength), even if it is once installed at a predetermined location in the electrolytic cell, the position is biased due to the electrolytic solution or generated gas in the electrolytic cell, making it difficult to uniformly adhere each member. There is.
For example, one or a plurality of metal coil bodies are wound around the elastic cushion material so as to have a substantially uniform density between two opposing rods of four rectangular corrosion-resistant frames. Is obtained by In this elastic cushioning material, usually two layers of metal coil bodies are laminated on the left and right sides of the corrosion-resistant frame. However, since the metal coil bodies themselves are easily deformed, the adjacent coils are meshed with each other in a comb-tooth shape, so that the apparent appearance is obtained. Above, it is one layer. The elastic cushion material thus obtained has an appearance like a metal scourer for washing dishes.
[0013]
Since the assembly of the elastic cushion material using the metal coil body is an operation outside the electrolytic cell, it can be easily performed, and the obtained elastic cushion material can be used as a target electrode in the electrolytic cell at the time of assembling the electrolytic cell. At this time, the elastic cushioning material itself does not deform so much as to hinder assembly due to the strength of the corrosion-resistant frame, so that it can be easily installed at a predetermined location.
[0014]
The diameter of the metal coil body (apparent diameter of the coil) is usually reduced to 10 to 70% by being mounted in the electrolytic cell, and elasticity is generated. It becomes possible to hold between the bodies, and the power supply from the current collector to the electrodes becomes easy. If a metal coil having a small wire diameter is used, the number of contact points between the electrode and the current collector and the elastic cushioning material inevitably increases, and uniform contact can be achieved. Since the elastic cushion material after being mounted on the electrolytic cell is maintained in shape by the corrosion-resistant frame, it is hardly subjected to plastic deformation, and can be reused in most cases even when disassembling and reassembling the electrolytic cell.
[0015]
When assembling an ion exchange membrane electrolytic cell using the elastic cushion material (or metal coil body) of the present invention as an electrode, the elastic cushion material or the like is positioned between the ion exchange membrane and the electrode current collector, and thereafter, as usual. When assembled, an electrolytic cell in which an elastic cushion material or the like is held at the position of the electrode is obtained.
[0016]
In order to perform salt electrolysis using the ion exchange membrane electrolysis cell having the above-described configuration, an electric current such as a salt solution is supplied to the anode chamber, and a diluted caustic soda solution is supplied to the cathode chamber, and electricity is supplied between both electrodes. . In an electrolytic cell in which an elastic cushioning material or the like functions as an electrode, this state is maintained for a long time due to the high strength and toughness of the elastic cushioning material or the like, so that the ion exchange membrane and the like are not mechanically damaged, and Caustic soda and the like can be manufactured with high efficiency without excessive deformation and insufficient power supply.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An example of an elastic cushion material usable in the electrolytic cell according to the present invention will be described with reference to FIGS. 1 is a perspective view of a corrosion-resistant frame, FIG. 2 is a perspective view illustrating an example of an elastic cushion material, FIG. 3 is a vertical sectional view taken along line AA of FIG. 2, and FIG. 4 is a vertical sectional view taken along line BB of FIG. .
[0018]
As shown in FIG. 1, the corrosion-resistant frame 3 includes a rectangular frame 1 made of a metal round bar such as nickel and a reinforcing bar 2 laid between a pair of round bars in the longitudinal direction.
The metal coil body 4 shown in FIGS. 3 and 4 is obtained by rolling a small-diameter metal wire into a coil shape, and is made of a material having no rigidity and being freely deformable, such as a metal scrubber for cleaning. I have. As shown in FIG. 2, the metal coil body 4 is wound over substantially the entire length between a pair of round bars in the longitudinal direction of a nickel corrosion-resistant frame 3 having a diameter of, for example, about 2 mm to produce an elastic cushion material 5. Is done.
Since the metal coil body 4 is wound around the corrosion-resistant frame 3, the elastic cushion material 5 manufactured in this manner is maintained in the shape of the corrosion-resistant frame 3, and the metal coil body 4 is separated from the corrosion-resistant frame 3. There is almost no detachment, and the metal coil body 4 can be handled as being integrated with the corrosion-resistant frame 3.
[0019]
FIG. 5 is a schematic plan view showing an example in which an elastic cushion material is used as a cathode of a monopolar salt electrolytic cell.
In the figure, a pair of conductive rods 41 extending in the vertical direction are erected in an electrolytic cell 40, and a catholyte circulation current-carrying member 42 is installed around the conductive rod 41, and along the surface of the current-carrying member 42. The cathode current collector 43 is electrically connected.
Next, an elastic cushion material 5 functioning as a cathode is electrically connected to the cathode current collector 43.
[0020]
FIG. 6 is a schematic plan view showing an example in which an elastic cushion material is used as a cathode of a bipolar salt electrolytic cell.
In the figure, in the electrolytic cell 50, four integrated anode holding members 53, which face in the vertical direction on the anode side of the joined anode partition wall 51 and cathode partition wall 52, connect the strip-shaped joint portion 54 to the anode partition wall 51. The anolyte circulation passage 55 is secured in each anode holding member 53 by being joined.
[0021]
A cathode holding member 56 corresponding to the anode holding member 53 is fixed to the cathode side of the joining partition by joining a strip-shaped joining portion 57 to the cathode partition 52. Catholyte circulation is performed in each cathode holding member 56. A passage 58 is provided.
A convex portion 59 is formed outside the center of the anode holding member 53, and power is supplied to the expanded metal anode 60 through the convex portion 59.
The elastic cushion member 5 (or the metal coil body 4) functioning as a cathode is in electrical contact with the flat surfaces of the four cathode holding members 56, and power is supplied from the cathode holding member 56 to the elastic cushion member 5. Done.
[0022]
When the elastic cushioning material 5 is used as the cathode, the metal coil body 4 is wound around the corrosion-resistant frame 3, so that it is easy to handle and the shape is hardly deformed.
In this state, when a salt solution is supplied to the anode chamber and a diluted caustic soda aqueous solution is supplied to the cathode chamber, and a current is applied between both electrodes, a concentrated aqueous caustic soda solution is obtained in the cathode chamber.
[0023]
Next, Examples and Comparative Examples relating to the ion exchange membrane electrolytic cell using the hydrogen generating cathode according to the present invention will be described, but these do not limit the present invention.
[0024]
[Example 1]
The unit ion exchange membrane electrolytic cell was assembled as follows.
The anode uses a dimensionally stable electrode with an effective area of 1540 cm 2 (width 11 cm × height 140 cm), formed by forming an electrode catalyst coating having a platinum group metal oxide on titanium expanded metal manufactured by Permelec Electrode Co., Ltd. did. This anode was attached to the partition wall of the anode chamber of the electrolytic cell using an anode rib.
A nickel expanded metal cathode current collector was attached to the cathode chamber partition wall using a cathode rib made of flat nickel.
[0025]
The metal coil body has a wire diameter of 0.17 mm, and a nickel wire (NW2201) having a tensile strength of 620 to 680 N / m 2 is formed into a coil wire having a width of about 0.5 mm by rolling, and the winding diameter of the coil is reduced to about 6 mm. What was used was used.
This metal coil body was wound around a nickel round bar frame (corrosion-resistant frame) having a diameter of 2 mm to be shaped into a rectangular parallelepiped, thereby obtaining an elastic cushion material having a general size of 10 mm thick × 110 mm wide × 350 mm long. The coil linear density of this elastic cushion material was about 7 g / dm 2 .
[0026]
Next, platinum plating was performed on the elastic cushion material as follows to obtain an elastic cathode.
In other words, brush plating using the elastic cushion material as a cathode and a plastic brush containing a titanium rod impregnated with an aqueous solution of hexachloroplatinic acid (20 g / liter) as an anode (current 0.5 A, plating time 5 minutes per dm 2 ) Then, platinum plating was performed on the surface of each metal coil constituting the elastic cushion material on the side of the ion exchange membrane.
Four such platinum-carrying elastic cushion members were arranged on the cathode current collector.
A cation exchange membrane (Flemion-F8934 manufactured by Asahi Glass Co., Ltd.) was arranged between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under the conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution having a concentration of 310 g / liter to the anode chamber and an aqueous solution of caustic soda to a concentration of 32 wt% in the cathode chamber. went. The electrolytic cell voltage was 2.89V.
[0027]
[Example 2]
The ion exchange membrane electrolytic cell was assembled as follows.
The anode is a dimensionally stable electrode having an effective area of 1540 cm 2 (width 11 cm × height 140 cm) in which an electrode catalyst coating having a platinum group metal oxide is formed on a titanium expanded metal manufactured by Permelec Electrode Co., Ltd. used. This anode was attached to the partition wall of the anode chamber of the electrolytic cell using an anode rib.
A nickel expanded metal cathode current collector was attached to the cathode chamber partition wall using a cathode rib made of flat nickel.
[0028]
A 5 mm thick × 11 cm wide × 20 cm long nickel fiber is woven into a uniform flocculent fiber by opening with a fiber opening machine, and mixed with a mixed solution of an aqueous solution of hexachloroplatinic acid (20 g / l) and hydrochloric acid (10 g / l) at room temperature for 1 hour. It was immersed to deposit platinum to form a cathode.
Seven cathodes (platinum-supported fabric) were arranged on a cathode current collector, and a cation exchange membrane (Flemion F8934 manufactured by Asahi Glass Co., Ltd.) was arranged between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under the conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution having a concentration of 310 g / liter to the anode chamber and an aqueous solution of caustic soda to a concentration of 32 wt% in the cathode chamber. went. The electrolytic cell voltage was 2.87V.
[0029]
[Comparative Example 1]
The anode was produced in the same manner as in Example 2, and the cathode current collector was attached in the same manner as in Example 2.
A mat-like body (nickel-made elastic current-carrying body) in which eight nickel-made wires each having a wire diameter of 0.08 mm were knitted together and knitted together and knitted together was placed on the cathode current collector.
[0030]
Next, a nickel wire net having a wire diameter of 0.15 mm, a porosity of 68% and an area of each hole of 0.49 mm 2 was coated with the active substance by performing the following operation. That is, the nickel wire gauze was steam degreased and then etched in 15% nitric acid for 1 minute, and then hexachloroplatinic acid hexahydrate aqueous solution (20 g / liter), cesium nitrate hexahydrate aqueous solution (30 g / liter) and nitric acid (50 g / liter). Liter) of the composition was applied, dried at 50 ° C. for 5 minutes after application, then heated in a heater at 500 ° C. for 10 minutes and cooled to room temperature. This cycle (paint coating - drying - decomposition) platinum concentration was repeated until 5 g / m 2.
A nickel wire mesh was arranged as a cathode in contact with the nickel mat thus obtained, and a cation exchange membrane (Flemion F8934 manufactured by Asahi Glass Co., Ltd.) was arranged between the anode and the cathode to form an ion exchange membrane electrolytic cell. Assembled.
[0031]
Electrolysis was performed under the conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution having a concentration of 310 g / liter to the anode chamber and an aqueous solution of caustic soda to a concentration of 32 wt% in the cathode chamber. went. The electrolytic cell voltage was 2.90V.
[0032]
When Examples 1 and 2 are compared with Comparative Example 1, the electrolytic cell voltage is higher in Examples 1 and 2 using a nickel elastic cushioning material as a cathode than in Comparative Example 1 using a nickel mat and a nickel wire mesh as a cathode. , And it was found that effective electrolysis can be performed.
[0033]
【The invention's effect】
The present invention is an electrode for electrolysis characterized by comprising an elastic cushion material carrying an electrode catalyst constituted by winding a metal coil around a metal coil body or a corrosion-resistant frame carrying an electrode catalyst. Alternatively, a metal floc may be used instead of the metal coil or the elastic cushion material.
Since the shape of the electrode for electrolysis is maintained for a long period of time due to its high strength and toughness, the ion exchange membrane and the like are not mechanically damaged, and are excessively deformed and the power supply becomes insufficient. And caustic soda can be produced with high efficiency.
Furthermore, in the electrolytic cell containing the elastic electrode, the elastic electrode can be freely deformed and has sufficient conductivity, so that the electrode and the electrode current collector can be reliably electrically connected, and reliable power supply is possible. .
[Brief description of the drawings]
FIG. 1 is a perspective view of a corrosion-resistant frame in an elastic cushion material usable in the present invention.
FIG. 2 is a perspective view illustrating an elastic cushion material usable in the present invention.
FIG. 3 is a vertical sectional view taken along line AA of FIG. 2;
FIG. 4 is a vertical sectional view taken along line BB of FIG. 2;
FIG. 5 is a schematic plan view showing an example of a monopolar salt electrolytic cell using an elastic cushion material as a cathode.
FIG. 6 is a schematic plan view showing an example of a bipolar salt electrolytic cell using an elastic cushion material as a cathode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectangular frame 2 Reinforcement rod 3 Corrosion-resistant frame 4 Metal coil body 5 Elastic cushion material 40 Monopolar electrolytic tank 41 Conductive rod 42 Catholyte circulation energizing member 43 Cathode current collector 50 Bipolar electrolytic tank 51 Anode partition 52 Cathode partition 53 Anode holding member 54 Band-shaped joint 55 Anolyte circulation path 56 Cathode holding member 57 Band-shaped joint 58 Catholyte circulation path 59 Convex part 60 Anode

Claims (5)

電極触媒を担持した金属製コイル体又は耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極。An electrode for electrolysis, comprising: a metal coil body carrying an electrode catalyst or an elastic cushion material carrying an electrode catalyst formed by winding a metal coil body around a corrosion-resistant frame. 電極触媒を担持した金属製綿状体を含んで成ることを特徴とする電解用電極。An electrode for electrolysis comprising a metal floc carrying an electrode catalyst. イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽において、前記陽極及び陰極の少なくとも一方が電極触媒を担持した弾性電極であることを特徴とするイオン交換膜電解槽。In an ion exchange membrane electrolytic cell partitioned into an anode chamber accommodating an anode by an ion exchange membrane and a cathode chamber accommodating a cathode, at least one of the anode and the cathode is an elastic electrode carrying an electrode catalyst. Ion exchange membrane electrolyzer. 弾性電極が、金属製コイル体、弾性クッション材及び/又は金属製綿状体である請求項3記載のイオン交換膜電解槽。The ion exchange membrane electrolytic cell according to claim 3, wherein the elastic electrode is a metal coil, an elastic cushion material, and / or a metal floc. 弾性電極が電極集電体に接触し、該電極集電体から給電される請求項3又は4に記載のイオン交換膜電解槽。The ion exchange membrane electrolytic cell according to claim 3, wherein the elastic electrode is in contact with the electrode current collector, and power is supplied from the electrode current collector.
JP2003096401A 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same Expired - Fee Related JP4246530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003096401A JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same
US10/811,947 US7303661B2 (en) 2003-03-31 2004-03-30 Electrode for electrolysis and ion exchange membrane electrolytic cell
EP04007671.3A EP1464728B1 (en) 2003-03-31 2004-03-30 Electrode for electrolysis and ion exchange membrane electrolytic cell
CN2004100319210A CN1537973B (en) 2003-03-31 2004-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096401A JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same

Publications (2)

Publication Number Publication Date
JP2004300543A true JP2004300543A (en) 2004-10-28
JP4246530B2 JP4246530B2 (en) 2009-04-02

Family

ID=33408480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096401A Expired - Fee Related JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same

Country Status (1)

Country Link
JP (1) JP4246530B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084907A (en) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
JP2008063613A (en) * 2006-09-06 2008-03-21 Chlorine Eng Corp Ltd Electrolytic method
US7927471B2 (en) 2005-09-26 2011-04-19 Chlorine Engineers Corp., Ltd. Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode
WO2012032793A1 (en) 2010-09-07 2012-03-15 クロリンエンジニアズ株式会社 Negative electrode structure for electrode and electrolysis tank using same
WO2012091055A1 (en) * 2010-12-28 2012-07-05 東ソー株式会社 Ion-exchange membrane method electrolytic cell
WO2013161836A1 (en) 2012-04-27 2013-10-31 クロリンエンジニアズ株式会社 Cell for ion exchange membrane electrolysis
WO2013187242A1 (en) 2012-06-13 2013-12-19 クロリンエンジニアズ株式会社 Elastic cushion material and ion exchange membrane electrolytic cell utilizing same
WO2014199440A1 (en) * 2013-06-11 2014-12-18 クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell
JP2022016520A (en) * 2018-07-13 2022-01-21 パナソニックIpマネジメント株式会社 Electrolyzed water generation device
US11613821B2 (en) 2018-07-13 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator
EP4053308A4 (en) * 2019-10-31 2024-10-16 Tokuyama Corp Elastic mat for alkaline water electrolysis cells

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084907A (en) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
US7927471B2 (en) 2005-09-26 2011-04-19 Chlorine Engineers Corp., Ltd. Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode
JP2008063613A (en) * 2006-09-06 2008-03-21 Chlorine Eng Corp Ltd Electrolytic method
WO2012032793A1 (en) 2010-09-07 2012-03-15 クロリンエンジニアズ株式会社 Negative electrode structure for electrode and electrolysis tank using same
WO2012091055A1 (en) * 2010-12-28 2012-07-05 東ソー株式会社 Ion-exchange membrane method electrolytic cell
JP2012140652A (en) * 2010-12-28 2012-07-26 Tosoh Corp Ion-exchange membrane method electrolytic cell
WO2013161836A1 (en) 2012-04-27 2013-10-31 クロリンエンジニアズ株式会社 Cell for ion exchange membrane electrolysis
US9828684B2 (en) 2012-04-27 2017-11-28 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Cell for ion exchange membrane electrolysis
WO2013187242A1 (en) 2012-06-13 2013-12-19 クロリンエンジニアズ株式会社 Elastic cushion material and ion exchange membrane electrolytic cell utilizing same
US10344386B2 (en) 2012-06-13 2019-07-09 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Elastic cushion material and ion exchange membrane electrolytic cell utilizing same
WO2014199440A1 (en) * 2013-06-11 2014-12-18 クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell
JP2022016520A (en) * 2018-07-13 2022-01-21 パナソニックIpマネジメント株式会社 Electrolyzed water generation device
US11613821B2 (en) 2018-07-13 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator
JP7382571B2 (en) 2018-07-13 2023-11-17 パナソニックIpマネジメント株式会社 Electrolyzed water generator
EP4053308A4 (en) * 2019-10-31 2024-10-16 Tokuyama Corp Elastic mat for alkaline water electrolysis cells

Also Published As

Publication number Publication date
JP4246530B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7303661B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell
KR101581730B1 (en) Elastic current collector for electrochemical cells
KR101643202B1 (en) Elementary cell and relevant modular electrolyser for electrolytic processes
JP4846869B1 (en) Cathode structure for electrolysis and electrolytic cell using the same
JP5860075B2 (en) Electrolytic cell
TW200409834A (en) Bipolar, zero-gap type electrolytic cell
JP5945154B2 (en) Ion exchange membrane electrolytic cell
JP4246530B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell using the same
JP5437651B2 (en) Ion exchange membrane electrolytic cell and method for producing the same
JP5632780B2 (en) Electrolytic cell manufacturing method
JP3860132B2 (en) Ion exchange membrane electrolyzer using hydrogen generating cathode
TW202124779A (en) Elastic mat for alkaline water electrolysis vessel
CA2036353C (en) Monopolar ion exchange membrane electrolytic cell assembly
KR101848339B1 (en) Elastic cushion material and ion exchange membrane electrolytic cell utilizing same
WO2014199440A1 (en) Ion exchange membrane electrolytic cell
JP2007084907A (en) Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
JP2013216922A (en) Ion exchange membrane electrolytic cell
JP3869383B2 (en) Ion-exchange membrane electrolytic cell using liquid-permeable gas diffusion cathode
JP6318678B2 (en) Ion exchange membrane electrolytic cell
JP2014221930A (en) Ion exchange membrane electrolytic cell
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
WO2012091055A1 (en) Ion-exchange membrane method electrolytic cell
CN1316063C (en) Press filter type multi-electrode ion film unit electrolytic tank
JP2014214350A (en) Ion exchange membrane electrolytic bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Ref document number: 4246530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees