JP2007084907A - Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell - Google Patents
Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell Download PDFInfo
- Publication number
- JP2007084907A JP2007084907A JP2005278198A JP2005278198A JP2007084907A JP 2007084907 A JP2007084907 A JP 2007084907A JP 2005278198 A JP2005278198 A JP 2005278198A JP 2005278198 A JP2005278198 A JP 2005278198A JP 2007084907 A JP2007084907 A JP 2007084907A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- exchange membrane
- ion exchange
- electrolytic cell
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
本発明は、弾性導電体を形成した電解用立体電極及び当該立体電極を使用するイオン交換膜電解槽に関する。 The present invention relates to a solid electrode for electrolysis formed with an elastic conductor and an ion exchange membrane electrolytic cell using the solid electrode.
クロルアルカリ電解を代表とする電解工業は、素材産業として重要な役割を果たしている。このような重要な役割を持つものの、クロルアルカリ電解に要する消費エネルギーが大きく、日本のようにエネルギーコストが高い国ではその省エネルギー化の達成が強く要望されている。
例えば、クロルアルカリ電解は、環境問題の解決と共に省エネルギー化を達成するために、水銀法から隔膜法を経てイオン交換膜法へと転換され、約25年で約40%の省エネルギー化を達成してきた。しかし、この省エネルギー化でも不十分で、エネルギーである電力コストが全製造費の約半分を占めているが、現行の方法を使用する限りこれ以上の電力節約は不可能なところまで来ている。
The electrolytic industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and in countries with high energy costs such as Japan, there is a strong demand for achieving energy saving.
For example, chloralkali electrolysis has been converted from the mercury method to the ion exchange membrane method through the diaphragm method in order to achieve environmental conservation as well as solving environmental problems, and has achieved energy saving of about 40% in about 25 years. . However, even this energy saving is not enough, and the power cost of energy accounts for about half of the total manufacturing cost, but no further power savings are possible using the current method.
食塩電解に使用する水素発生陰極装着電解槽では、陽極、イオン交換膜及び水素発生陰極の三者を密着状態で配置して電解電圧の低下を図っているが、電解面積が数平方メートルにも達する大型の電解槽では、陽極及び陰極を剛性部材で形成すると、両電極をイオン交換膜に密着させて電極間隔を所定値に保持することは困難であった。
電極間距離あるいは電極と電極集電体間の距離を小さくするためあるいはほぼ一定値に維持するための手段として、弾性材料を使用する電解槽が知られている。
この弾性材料には金属の細線の織布、不織布、網などが非剛性材料と、板バネ等の剛性材料が知られている。
In the electrolytic cell equipped with a hydrogen generating cathode used for salt electrolysis, the anode, ion exchange membrane and hydrogen generating cathode are arranged in close contact to reduce the electrolysis voltage, but the electrolysis area reaches several square meters. In a large electrolytic cell, when the anode and the cathode are formed of a rigid member, it is difficult to keep both electrodes in close contact with the ion exchange membrane and maintain the electrode spacing at a predetermined value.
An electrolytic cell using an elastic material is known as a means for reducing the distance between electrodes or the distance between an electrode and an electrode current collector or maintaining it at a substantially constant value.
As this elastic material, non-rigid materials such as metal woven fabrics, nonwoven fabrics, and nets, and rigid materials such as leaf springs are known.
非剛性材料は、電解槽への装着後に、対極から過度に押圧された場合に部分的に変形して電極間距離が不均一になったり、非剛性材料の細線がイオン交換膜に突き刺さるといった不都合がある。
又食塩電解槽のようなイオン交換膜電解槽では、陽極や陰極をイオン交換膜に密着させて低電圧で運転を継続できることが望ましく、電極をイオン交換膜方向に押圧するための種々の方法が提案されている。
The non-rigid material is partially deformed when it is excessively pressed from the counter electrode after being attached to the electrolytic cell, resulting in non-uniform distance between the electrodes, or the thin wire of the non-rigid material pierces the ion exchange membrane. There is.
Also, in an ion exchange membrane electrolytic cell such as a salt electrolytic cell, it is desirable that the anode and the cathode be in close contact with the ion exchange membrane so that the operation can be continued at a low voltage, and there are various methods for pressing the electrode in the direction of the ion exchange membrane. Proposed.
前述したようにイオン交換膜を陽−陰極間で挟持する電解槽の構造上の特徴は、電極をイオン交換膜に均一に密着させてイオン交換膜の破損をさけるため及び陽−陰両電極間距離を最小に保つため、少なくとも一方の電極の極間距離方向への移動が自由な構造とし、電極を弾力性部材で押し挟持圧を調節できる点にある。
弾力性部材としては、金属ワイヤーからなる編物や織物又はこれを積層したもの、或いは三次元的に編んであるか、三次元的に編んだ後これにうねり加工等を施した形状、並びに金属繊維からなる不織物、コイルバネ(スプリング)、板バネなどがあり、いずれも何らかのバネ弾性を有するものである。
As described above, the structural characteristics of the electrolytic cell in which the ion exchange membrane is sandwiched between the positive and negative electrodes are that the electrode is uniformly adhered to the ion exchange membrane to prevent damage to the ion exchange membrane and between the positive and negative electrodes. In order to keep the distance to a minimum, at least one of the electrodes can be moved freely in the inter-electrode distance direction, and the electrode can be pushed by an elastic member to adjust the clamping pressure.
Elastic members include knitted or woven fabrics made of metal wires or laminates of these, or shapes that are three-dimensionally knitted or three-dimensionally knitted and then swelled, etc., and metal fibers There are non-woven fabrics, coil springs (springs), leaf springs, etc., all of which have some spring elasticity.
一方食塩電解槽などの工業用の電解槽では、電極集電体から電極への電力供給を円滑に行うために、板バネや金属網状体等が使用されることがある。
しかし前述の通り、板バネや金属網状体は剛体であるため、イオン交換膜を傷付けたり、変形率が小さく、十分な電気的接続が得られないことがある。
このような欠点を解消するために、金属網状体に替えて金属性コイルを陰極と陰極端板の間に装着して前記陰極を隔膜方向に均一に押圧して各部材を密着させた電解槽が開示されている(特許文献1)。
On the other hand, in an industrial electrolytic cell such as a salt electrolytic cell, a leaf spring or a metal mesh may be used in order to smoothly supply power from the electrode current collector to the electrode.
However, as described above, since the leaf spring and the metal net are rigid bodies, the ion exchange membrane may be damaged, the deformation rate may be small, and sufficient electrical connection may not be obtained.
In order to eliminate such drawbacks, an electrolytic cell is disclosed in which a metallic coil is mounted between a cathode and a cathode end plate in place of a metal mesh, and the cathode is uniformly pressed in the direction of the diaphragm and the members are brought into close contact with each other. (Patent Document 1).
この金属性コイルはコイルの線径が非常に小さく、変形率が高いため、各部材を十分に密着させ、安定した電解槽の操業が可能になる。
しかし特許文献1に記載の電解槽では、陽極又は陰極に加えて金属性コイルを電解槽内に設置しているため、部品点数が多くなり、陰極が剛体であると十分な密着性が得られないことがあるという欠点がある。
Since this metallic coil has a very small wire diameter and a high deformation rate, each member can be brought into close contact with each other, and a stable electrolytic cell can be operated.
However, in the electrolytic cell described in Patent Document 1, since the metallic coil is installed in the electrolytic cell in addition to the anode or the cathode, the number of parts increases, and sufficient adhesion can be obtained when the cathode is a rigid body. There is a disadvantage that there is not.
このような欠点を解消するために、電極触媒を担持した金属性コイルから成る電極、又は耐食性フレームに前記金属性コイルを巻回して構成される電極が提案されている(特許文献2)。この技術は、金属性コイルを、電極をイオン交換膜方向に押し付ける態様で使用するのではなく、電極そのものとして使用することを特徴としている。この電極は、その高強度及び強靭性によりその形態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できるという利点を有している。しかし前記電極はこのようは多大な利点を有するものの製造に手間が掛かるという不都合がある。 In order to eliminate such drawbacks, an electrode composed of a metallic coil carrying an electrode catalyst or an electrode configured by winding the metallic coil around a corrosion-resistant frame has been proposed (Patent Document 2). This technique is characterized in that the metallic coil is not used in such a manner that the electrode is pressed in the direction of the ion exchange membrane, but is used as the electrode itself. This electrode is maintained in its form for a long time due to its high strength and toughness, so that the ion exchange membrane or the like is not mechanically damaged, and may be excessively deformed to cause insufficient power supply. And has the advantage of being able to produce caustic soda and the like with high efficiency. However, although the electrode has such great advantages, there is a disadvantage that it takes time to manufacture.
本発明は、このような従来技術の欠点を解消した電解用立体電極とそれを使用するイオン交換膜電解槽を提供することを目的とする。 An object of the present invention is to provide a three-dimensional electrode for electrolysis in which the disadvantages of the prior art are eliminated and an ion exchange membrane electrolytic cell using the same.
本発明は、第1に、電極触媒を担持した板状金属電極基体に複数の切り込みを形成し、当該切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成したことを特徴とする電解用立体電極であり、第2に、イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽において、前記陽極及び陰極の少なくとも一方が,電極触媒を担持した板状金属電極基体に形成した複数の切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成した立体電極であり、当該立体電極の金属電極基体がイオン交換膜に密着し、前記弾性導電体が電極集電体に接触していることを特徴とするイオン交換膜電解槽である。 According to the present invention, first, a plurality of cuts are formed in a plate-shaped metal electrode substrate carrying an electrode catalyst, and the cut portions are bent in the same direction with respect to the electrode substrate to form an elastic conductor. Secondly, in an ion exchange membrane electrolytic cell partitioned into an anode chamber containing an anode and an anode chamber containing a cathode by an ion exchange membrane, at least one of the anode and the cathode Is a three-dimensional electrode in which an elastic conductor is formed by bending a plurality of cut portions formed in a plate-shaped metal electrode base supporting an electrode catalyst in the same direction with respect to the electrode base, and the metal electrode of the three-dimensional electrode An ion exchange membrane electrolytic cell characterized in that a substrate is in close contact with an ion exchange membrane, and the elastic conductor is in contact with an electrode current collector.
以下本発明を詳細に説明する。
本発明の立体電極では、板状金属電極基体に形成した複数の切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成する。折曲角度(θ)は0°<θ<180°の任意の範囲で設定でき、好ましくは10°以上90°以下、より好ましくは30°以上80°以下である。
前記切り込み部を折曲して形成される弾性導電体を、例えばイオン交換膜と電極集電体間に内向きに押し付けるように設置すると、前記弾性導電体は弾力を得て、前記イオン交換膜と電極集電体間に保持される。
The present invention will be described in detail below.
In the three-dimensional electrode of the present invention, the plurality of cut portions formed in the plate-shaped metal electrode base are bent in the same direction with respect to the electrode base to form an elastic conductor. The bending angle (θ) can be set in an arbitrary range of 0 ° <θ <180 °, preferably 10 ° to 90 °, more preferably 30 ° to 80 °.
When an elastic conductor formed by bending the cut portion is installed so as to be pressed inward between, for example, an ion exchange membrane and an electrode current collector, the elastic conductor obtains elasticity, and the ion exchange membrane And the electrode current collector.
これにより電極以外に弾性を有する部材を電解槽内に設置する必要がなくなり、電極のみで電極としての機能の他に電極をイオン交換膜等に弾性的に押圧し、これにより例えば電極とイオン交換膜が均一密着するといった効果が生じる。しかも弾性を発生させる弾性導電体がイオン交換膜に接触しないため、イオン交換膜が損傷することがない。
更に複数存在する前記弾性導電体の折曲先端部を電極集電体に接触又は溶接させると、前記弾性導電体の数と同じ給電経路を確保できる。
しかも通常の孔あき板を電極基体として使用する場合と異なり、弾性導電体自体も電極機能を有するため、有効電極面積が減少することがない。
This eliminates the need to install an elastic member other than the electrode in the electrolytic cell. In addition to the function as an electrode, the electrode is elastically pressed against an ion exchange membrane, etc., thereby, for example, ion exchange with the electrode. The effect is that the film adheres uniformly. Moreover, since the elastic conductor that generates elasticity does not contact the ion exchange membrane, the ion exchange membrane is not damaged.
Further, when the bent tip portions of the plurality of elastic conductors that are present are brought into contact with or welded to the electrode current collector, the same power supply paths as the number of the elastic conductors can be secured.
In addition, unlike the case where a normal perforated plate is used as the electrode substrate, the elastic conductor itself has an electrode function, so that the effective electrode area does not decrease.
本発明の立体電極の電極基体は良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、或いは銅合金全面に無電解ニッケルメッキを施した固有抵抗の小さい金属で構成することが望ましい。電極基体は無孔性シート状であっても、エキスパンデッドメタル等の有孔性であっても良い。
この電極基体にはラネーニッケル触媒をニッケルにより分散メッキすることで電極触媒を担持する。
前記切り込み部は好ましくは矩形(短冊)状に形成するが、正方形、半円形、先細台形状、先太台形状等の任意形状が可能である。複数の切り込み部は電極基体にランダムに形成しても良いが、縦横に整列させて形成することが好ましい。
前記切り込み部の電極基体全表面積に対する形成割合は5〜60%が望ましく、15〜30%がより望ましい。5%未満であると弾性及び導電性が不足することがあり、60%を超えると電極全体の強度が不足したり、イオン交換膜と離間する弾性導電体の割合が増えすぎて抵抗値が上昇してエネルギーロスが生じることがある。
弾性導電体形成後の電極基体表面は平滑のままでも良いが、ローレット加工、ルーバー加工、コルゲ−ト(波型)加工等を施すこともできる。
The electrode base of the three-dimensional electrode of the present invention is preferably made of nickel, nickel alloy, stainless steel, or copper alloy showing good corrosion resistance and a metal having a low specific resistance obtained by electroless nickel plating on the entire surface. The electrode substrate may be a non-porous sheet or may be porous such as expanded metal.
The electrode base is supported on the electrode substrate by disperse-plating a Raney nickel catalyst with nickel.
The cut portion is preferably formed in a rectangular (strip) shape, but can be any shape such as a square, semi-circular shape, a tapered trapezoidal shape, or a tapered trapezoidal shape. The plurality of cut portions may be randomly formed on the electrode substrate, but are preferably formed by being aligned vertically and horizontally.
The formation ratio of the cut portion to the total surface area of the electrode substrate is preferably 5 to 60%, and more preferably 15 to 30%. If it is less than 5%, elasticity and conductivity may be insufficient. If it exceeds 60%, the strength of the entire electrode is insufficient, or the ratio of elastic conductors that are separated from the ion exchange membrane increases so that the resistance value increases. Energy loss may occur.
The surface of the electrode substrate after the formation of the elastic conductor may be smooth, but knurling, louvering, corrugated (corrugated) processing or the like can also be performed.
本発明のイオン交換膜電解槽での電解反応はクロルアルカリ(食塩)電解による水酸化アルカリ(苛性ソーダ)の生成反応であることが望ましいが、電極として前述の立体電極が使用可能な反応であれば特に限定されない。
本発明の立体電極をイオン交換膜電解槽に収容する際には、前述の通りイオン交換膜と電極集電体間に内向きに押し付ける(通常は電極集電体により弾性導電体含めた立体電極をイオン交換膜に押し付ける)ように設置すると、立体電極に弾力が付与されて、例えば立体電極がイオン交換膜に密着するといった効果が生じる。
イオン交換膜としては、現行のイオン交換膜型食塩電解等で使用されているカルボン酸やスルフォン酸、または両者複合の酸をイオン交換基とするパーフルオロ陽イオン交換膜が使用できる。
The electrolytic reaction in the ion exchange membrane electrolytic cell of the present invention is preferably a reaction for producing alkali hydroxide (caustic soda) by chloralkali (sodium chloride) electrolysis, but any reaction that can use the aforementioned three-dimensional electrode as an electrode. There is no particular limitation.
When the three-dimensional electrode of the present invention is accommodated in the ion exchange membrane electrolytic cell, as described above, it is pressed inward between the ion exchange membrane and the electrode current collector (usually a three-dimensional electrode including an elastic conductor by the electrode current collector). Is pressed against the ion exchange membrane), elasticity is applied to the three-dimensional electrode, and for example, the three-dimensional electrode is brought into close contact with the ion-exchange membrane.
As the ion exchange membrane, a perfluoro cation exchange membrane having a carboxylic acid or sulfonic acid used in current ion exchange membrane type salt electrolysis or the like, or a complex acid of both, as an ion exchange group can be used.
このような構成から成るイオン交換膜電解槽を使用して例えば食塩電解を行うには、陽極室に食塩水溶液を、陰極室に希釈苛性ソーダ水溶液を供給しながら、両極間に通電する。立体電極の有する高強度及び強靭性により部材相互の位置関係が安定化するため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。 In order to perform, for example, salt electrolysis using the ion exchange membrane electrolytic cell having such a configuration, current is supplied between the two electrodes while supplying a salt solution to the anode chamber and a diluted caustic soda solution to the cathode chamber. Due to the high strength and toughness of the three-dimensional electrode, the positional relationship between the members is stabilized, so that the ion exchange membrane or the like is not mechanically damaged or excessively deformed, resulting in insufficient power supply. No caustic soda can be produced with high efficiency.
本発明の立体電極は、板状の金属電極基体に複数の切り込み部を形成して、当該切り込み部を同一方向に折曲して弾性導電体を形成するのみで製造できる。しかも弾性導電体により電極全体に弾力が付与され高強度及び強靭性の電極として機能する。
この立体電極を装着したイオン交換膜電解槽は、立体電極の有する高強度及び強靭性により部材相互の位置関係が安定化して円滑な電解を実行できる。
The three-dimensional electrode of the present invention can be manufactured simply by forming a plurality of cut portions in a plate-like metal electrode base and bending the cut portions in the same direction to form an elastic conductor. In addition, elasticity is imparted to the entire electrode by the elastic conductor and it functions as a high-strength and tough electrode.
The ion exchange membrane electrolytic cell equipped with this three-dimensional electrode can perform smooth electrolysis with the positional relationship between the members stabilized by the high strength and toughness of the three-dimensional electrode.
次に、本発明の立体電極及び当該立体電極を装着したイオン交換膜電解槽を添付図面に示す例に基づいて説明する。
図1aは切り込み部を形成した電極基体を示す一部破断斜視図、図1bは図1aの切り込み部を折曲して弾性導電体を形成した立体電極の一部破断斜視図、図2は図1bの立体電極を装着したイオン交換膜電解槽の部分横断平面図、図3は図2のイオン交換膜電解槽の陰極室における電気の流れを示す斜視図である。
Next, a three-dimensional electrode of the present invention and an ion exchange membrane electrolytic cell equipped with the three-dimensional electrode will be described based on examples shown in the accompanying drawings.
FIG. 1a is a partially broken perspective view showing an electrode substrate in which a cut portion is formed, FIG. 1b is a partially broken perspective view of a three-dimensional electrode in which an elastic conductor is formed by bending the cut portion of FIG. 1a, and FIG. FIG. 3 is a perspective view showing the flow of electricity in the cathode chamber of the ion exchange membrane electrolytic cell shown in FIG. 2.
図1aに示すように、無孔板状の金属製電極基体11に、図示の例では同一方向を向く矩形状の切り込み部12を1列3個、5例の計15個形成する。隣接する列の各切り込み部12は互いに逆方向を向くように形成されている。
次いで各切り込み部12を電極基体11に対して同一方向に、図示の例では電極基体11の下方に向けて折曲して弾性導電体13を成形するとともに、各弾性導電体13の先端部を電極基体11と平行に折曲して接続片14を形成し、計15本の弾性導電体13を有する立体電極ユニット15とする(図1b)。
As shown in FIG. 1a, in a non-porous plate-like
Next, each cut
図2に示すイオン交換膜電解槽16は、図1bに示した立体電極ユニット15を3ユニット1組として陽極17及び陰極18として使用する例を示している。陽極17及び陰極18として機能する各立体電極ユニット15はそれぞれの表面側(弾性導電体の存在しない側)をイオン交換膜19に密着させ、かつそれらのそれぞれの短辺側を隣接する立体電極ユニット15の短辺側と接触させて立体電極を構成している。
前記イオン交換膜電解槽16は陽極室20及び陰極室21にそれぞれ陽極集電体22と陰極集電体23を有している。陽極17側の隣接する立体電極ユニット15の接触部と前記陽極集電体22間は、第1陽極給電板24で接続され、かつ陰極18側の隣接する立体電極ユニット15の接触部と前記陰極集電体23間は、第1陰極給電板25で接続されている。
The ion exchange membrane
The ion exchange membrane
更に第1陽極給電板24同士は第2陽極給電板26で電気的に接続され、当該第2陽極給電板26には全ての陽極側立体電極15の接続片14が電気的に接続され、弾性導電体13にイオン交換膜19方向を向く外力を与えている。更に第1陰極給電板25同士は第2陰極給電板27で電気的に接続され、当該第2陰極給電板27には全ての陰極側立体電極15の接続片14が電気的に接続され、弾性導電体13にイオン交換膜19方向を向く外力を与えている。
Furthermore, the first anode
このイオン交換膜電解槽16の陽極室20に食塩水を供給し、かつ陰極室21に希釈苛性ソーダ水溶液を供給しながら通電すると、陰極室で濃厚苛性ソーダ水溶液が得られる。
このとき、各立体電極ユニット15の弾性導電体13が電極全体に弾力を付与し高強度及び強靭性の電極として機能するため、長期間安定した運転を可能にする。しかも図3に示すように、陰極側(陽極側は省略するが同様に給電される)では、陰極給電体23から第1陰極給電板25を通して隣接する立体電極ユニット15の接触部に直接給電されるとともに、前記第1陰極給電板25に給電された電流は、第2陰極給電板27に分岐し、当該第2陰極給電板27に接続された接続片14及び弾性導電体13を通して各立体電極15の表面に給電される。従って給電経路が多数存在し、確実な給電が達成できる。
When saline is supplied to the
At this time, the
本発明の立体電極又は立体電極ユニットは図1bに示したものに限定されず、図4から図11に示した種々の変形が可能である。なお図4から図11で図1a及びbと同一部材には同一符合を付して説明を省略する。
図4の第1変形例は、図1aと異なり並列する列間の切り込み部12aを千鳥状に形成した電極基体11aを有する立体電極15aである。
図5の第2変形例は、図1aの無孔状であった電極基体と異なり、エキスパンデッドメタル等の有孔性電極基体11bを使用している。
図示は省略したが、有孔性電極基体に千鳥状に切り込み部を形成することも可能である。
The three-dimensional electrode or the three-dimensional electrode unit of the present invention is not limited to the one shown in FIG. 1b, and various modifications shown in FIGS. 4 to 11 are possible. In FIGS. 4 to 11, the same members as those in FIGS.
A first modification of FIG. 4 is a three-dimensional electrode 15a having an electrode base 11a in which cut portions 12a between parallel rows are formed in a staggered manner unlike FIG. 1a.
The second modification of FIG. 5 uses a porous electrode substrate 11b such as expanded metal, unlike the non-porous electrode substrate of FIG. 1a.
Although illustration is omitted, it is also possible to form cut portions in a staggered manner in the porous electrode substrate.
図6の第3変形例は、図1bの立体電極ユニット15の切り込み部12間及び切り込み部12の外側の矩形部31の両端にルーバー状の傾斜32が生じるように塑性変形させた電極基体11cである。
図7の第4変形例は、図4の立体電極ユニット15の切り込み部12間及び切り込み部12の外側の矩形部31の両端にルーバー状の傾斜32が生じるように塑性変形させた電極基体11dの例である。
図示は省略したが、有孔性電極基体にルーバー状の傾斜32が生じるように塑性変形させても良い。
The third modification of FIG. 6 is an electrode base body 11c that is plastically deformed so that louver-
The fourth modification of FIG. 7 is an electrode base 11d that is plastically deformed so that louver-
Although not shown, the porous electrode substrate may be plastically deformed so that a louver-
図8の第5変形例は、図6の第3変形例の改良に係るもので、矩形部31の両端にルーバー状の傾斜32を生じさせるだけでなく、弾性導電体13の基部及び切り込み部12の一端にも前記ルーバー状の傾斜32と逆向きになるようにルーバー状の傾斜33が生じるように塑性変形させた電極基体11eの例である。
図示は省略したが、有孔性電極基体や千鳥状の切り込み部を有する電極基体にルーバー状の傾斜32、33が生じるように塑性変形させても良い。
The fifth modification example of FIG. 8 relates to the improvement of the third modification example of FIG. 6, and not only causes the louver-
Although not shown in the figure, the electrode base having a porous electrode base or a staggered cut may be plastically deformed so that
図9の第6変形例は、図1aの電極基体の替わりに弾性導電体13及び接続片以外にローレット加工を施した電極基体11fを使用する例である。
図示は省略したが、有孔性電極基体や千鳥状の切り込み部を有する電極基体にローレット加工を施しても良い。
The sixth modification of FIG. 9 is an example in which an electrode substrate 11f that is knurled in addition to the
Although illustration is omitted, knurling may be applied to a porous electrode substrate or an electrode substrate having staggered cuts.
図10の第7変形例は、図1bの電極基体の弾性導電体13及び接続片以外に多数の小径の山形突起34を接着した電極基体11gの例である。
図示は省略したが、有孔性電極基体や千鳥状の切り込み部を有する電極基体に山形突起34を接着しても良い。
The seventh modification of FIG. 10 is an example of an electrode substrate 11g in which a large number of small-
Although not shown, the
図11の第8変形例は、図9のローレット加工に替えて波型加工を付した電極基体11hの例である。
図示は省略したが、有孔性電極基体や千鳥状の切り込み部を有する電極基体に波型加工を行っても良い。
The eighth modified example of FIG. 11 is an example of an electrode substrate 11h that has been subjected to corrugated processing instead of the knurling processing of FIG.
Although illustration is omitted, the corrugated processing may be performed on the porous electrode substrate or the electrode substrate having the staggered cut portions.
次に本発明に係わる立体電極やイオン交換膜電解槽の実施例を説明するが、該実施例は本発明を限定するものではない。 Next, examples of the three-dimensional electrode and the ion exchange membrane electrolytic cell according to the present invention will be described, but the examples do not limit the present invention.
[実施例1]
次のようにして単位イオン交換膜電解槽を組み立てた。
陽極は有効面積が1540cm2(幅11cm×高さ140cmm)であるペルメレック電極株式会社製の食塩電解槽用低酸素型DSEを使用した。この陽極を陽極室隔壁に陽極リブを使用して溶接により取り付けた。
陰極室内には、平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、銅合金に無電解ニッケルメッキを施し更にラネーニッケル触媒を分散メッキしたエキスパンデッドメタル型陰極集電体を取り付けた。
[Example 1]
A unit ion exchange membrane electrolytic cell was assembled as follows.
The anode used was a low oxygen type DSE for a salt electrolytic cell manufactured by Permerek Electrode Co., Ltd. having an effective area of 1540 cm 2 (
In the cathode chamber, a cathode rib made of flat nickel was used, and an expanded metal cathode current collector in which an electroless nickel plating was applied to a copper alloy and a Raney nickel catalyst was dispersedly plated was attached to the cathode chamber partition. .
立体電極ユニットの電極基体として、縦110mm、横350mm、厚み0.2mmの銅合金板を用いた。この銅合金板をエキスパンデッドメタル型に成形した後、プレス加工を行い、5mmピッチで、幅2mm×長さ9mmの切り込み部を1列に6個で36列形成した。その後この銅合金全面に無電解ニッケルメッキを施し、ラネーニッケル触媒をニッケルにより分散メッキし電極触媒を担持した。
次いで前記各切り込み部を同一方向に約45°の角度で折曲して弾性導電体とし、更にその先端を電極基体と平行になるように折曲して立体電極ユニットとした。
A copper alloy plate having a length of 110 mm, a width of 350 mm, and a thickness of 0.2 mm was used as the electrode substrate of the three-dimensional electrode unit. After this copper alloy plate was formed into an expanded metal mold, press working was performed to form 36 notches with a width of 2 mm and a length of 9 mm at a pitch of 5 mm, with six in one row. Thereafter, electroless nickel plating was applied to the entire surface of the copper alloy, and Raney nickel catalyst was dispersedly plated with nickel to carry the electrode catalyst.
Next, each of the cut portions was bent at an angle of about 45 ° in the same direction to obtain an elastic conductor, and the tip thereof was bent so as to be parallel to the electrode substrate to obtain a three-dimensional electrode unit.
この立体電極ユニット4個を互いに接触するように前記陰極集電体上に並べて配置した。
陽極と陰極の間に、陽イオン交換膜(旭硝子株式会社製Flemion−F8020)を配置してイオン交換膜電解槽を組立てた。
陽極室に濃度302g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.949Vであった。
The four three-dimensional electrode units were arranged side by side on the cathode current collector so as to be in contact with each other.
A cation exchange membrane (Flemion-F8020 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 302 g / liter to the anode chamber and a sodium hydroxide aqueous solution to the cathode chamber to a concentration of 32 wt%. . The electrolytic cell voltage was 2.949V.
[実施例2]
陽極及び陽極室は実施例1と同様の構成した。
陰極室内には、平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、ニッケル製エキスパンデッドメタル型陰極集電体を取り付けた。
[Example 2]
The anode and the anode chamber were configured in the same manner as in Example 1.
A cathode rib made of flat nickel was used in the cathode chamber, and a nickel expanded metal cathode current collector was attached to the cathode chamber partition.
立体電極ユニットの電極基体として、縦110mm、横350mm、厚み0.2mmのニッケル板を用いた。この銅ニッケル板をエキスパンデッドメタル型に成形した後、プレス加工を行い、5mmピッチで、幅2mm×長さ9mmの切り込み部を1列に6個で36列形成した。その後このニッケル板にラネーニッケル触媒をニッケルにより分散メッキし電極触媒を担持した。
次いで前記各切り込み部を同一方向に約45°の角度で折曲して弾性導電体とし、更にその先端を電極基体と平行になるように折曲して立体電極ユニットとした。
A nickel plate having a length of 110 mm, a width of 350 mm, and a thickness of 0.2 mm was used as the electrode base of the three-dimensional electrode unit. This copper-nickel plate was formed into an expanded metal mold and then pressed to form 36 rows of 6 incisions with a width of 2 mm and a length of 9 mm at a pitch of 5 mm. Thereafter, Raney nickel catalyst was dispersedly plated with nickel on the nickel plate to carry the electrode catalyst.
Next, each of the cut portions was bent at an angle of about 45 ° in the same direction to obtain an elastic conductor, and the tip thereof was bent so as to be parallel to the electrode substrate to obtain a three-dimensional electrode unit.
この立体電極ユニット4個を互いに接触するように前記陰極集電体上に並べて配置した。
陽極と陰極の間に、陽イオン交換膜(旭硝子株式会社製Flemion−F8020)を配置してイオン交換膜電解槽を組立てた。
陽極室に濃度304グラム/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.942Vであった。
The four three-dimensional electrode units were arranged side by side on the cathode current collector so as to be in contact with each other.
A cation exchange membrane (Flemion-F8020 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 304 g / liter to the anode chamber and a sodium hydroxide aqueous solution to the cathode chamber to a concentration of 32% by weight. It was. The electrolytic cell voltage was 2.942V.
[実施例3]
次のようにしてイオン交換膜電解槽を組み立てた。
陰極はニッケル製エキスパンデッドメタルにラネーニッケル触媒をニッケルにより分散メッキし触媒を担持した、有効面積が1540cm2(幅11cm×高さ140cm)である電極を使用した。この陰極を電解槽の陰極室隔壁に陰極リブを使用して取り付けた。
陽極室内には、平板状チタン材からなる陽極リブを使用して、陽極室隔壁に、チタン製エキスパンデッドメタル型陽極集電体を取り付けた。
[Example 3]
An ion exchange membrane electrolytic cell was assembled as follows.
As the cathode, an electrode having an effective area of 1540 cm 2 (
An anode rib made of a flat titanium material was used in the anode chamber, and a titanium expanded metal anode current collector was attached to the anode chamber partition.
立体電極ユニットの電極基体として、縦110mm、横350mm、厚み0.5mmのチタン板を用いた。このチタンをエキスパンデッドメタル型に成形した後、プレス加工を行い、5mmピッチで、幅2mm×長さ9mmの切り込み部を1列に6個で36列形成した。その後このチタン材の全面に熱分解法により、RuO2−TiO2系触媒を担持した。
次いで前記各切り込み部を同一方向に約45°の角度で折曲して弾性導電体とし、更にその先端を電極基体と平行になるように折曲して立体電極ユニット(陽極)とした。
A titanium plate having a length of 110 mm, a width of 350 mm, and a thickness of 0.5 mm was used as the electrode base of the three-dimensional electrode unit. After this titanium was formed into an expanded metal mold, pressing was performed to form 36 notches of 6 mm in a row with a width of 2 mm and a length of 9 mm at a pitch of 5 mm. Thereafter, a RuO 2 —TiO 2 catalyst was supported on the entire surface of the titanium material by a thermal decomposition method.
Next, each of the cut portions was bent at an angle of about 45 ° in the same direction to obtain an elastic conductor, and the tip thereof was bent so as to be parallel to the electrode substrate to obtain a three-dimensional electrode unit (anode).
この立体電極ユニット4個を互いに接触するように前記陽極集電体上に並べて配置した。
陽極と陰極の間に、陽イオン交換膜(旭硝子株式会社製Flemion−F8020)を配置してイオン交換膜電解槽を組立てた。
陽極室に濃度302グラム/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.940Vであった。
The four three-dimensional electrode units were arranged side by side on the anode current collector so as to be in contact with each other.
A cation exchange membrane (Flemion-F8020 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 302 g / liter to the anode chamber and a sodium hydroxide aqueous solution to the cathode chamber to a concentration of 32% by weight. It was. The electrolytic cell voltage was 2.940V.
[実施例4]
立体電極ユニット(陽極)の電極基体であるチタン板をエキスパンデッドメタル型に成形せずに、平板状のまま使用したこと以外は、実施例3と同じ条件で単位イオン交換膜電解槽を組み立てた。
陽極室に濃度303グラム/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.990Vであった。
[Example 4]
The unit ion exchange membrane electrolytic cell was assembled under the same conditions as in Example 3 except that the titanium plate, which is the electrode base of the three-dimensional electrode unit (anode), was used in the form of a flat plate without being formed into an expanded metal mold. It was.
Electrolysis was performed under conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a salt solution of 303 g / liter to the anode chamber and a sodium hydroxide aqueous solution to the cathode chamber to a concentration of 32 wt%. It was. The electrolytic cell voltage was 2.990V.
[比較例]
立体構造を有しない電極を用いて次のようにイオン交換膜電解槽を組み立てた。陰極はニッケル製エキスパンデッドメタルにラネーニッケル触媒をニッケルにより分散メッキし触媒を担持した、有効面積が1540cm2(幅11cm×高さ140cm)である電極を使用した。この陰極を電解槽の陰極室隔壁に陰極リブを使用して溶接により取り付けた。
陽極は有効面積が1540cm2(幅11cm×高さ140cmm)であるペルメレック電極株式会社製の食塩電解槽用低酸素型DSEを使用した。この陽極を陽極室隔壁に陽極リブを使用して溶接により取り付けた。
陽極と陰極の間に、陽イオン交換膜(旭硝子株式会社製Flemion−F8020)を配置してイオン交換膜電解槽を組立てた。
陽極室に濃度304グラム/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は3.185Vであった。
[Comparative example]
An ion exchange membrane electrolytic cell was assembled as follows using an electrode having no three-dimensional structure. As the cathode, an electrode having an effective area of 1540 cm 2 (
The anode used was a low oxygen type DSE for a salt electrolytic cell manufactured by Permerek Electrode Co., Ltd. having an effective area of 1540 cm 2 (
A cation exchange membrane (Flemion-F8020 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed under conditions of a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 304 g / liter to the anode chamber and a sodium hydroxide aqueous solution to the cathode chamber to a concentration of 32% by weight. It was. The electrolytic cell voltage was 3.185V.
11、11a〜11h……電極基体 12……切り込み部 13……弾性導電体 14……接続片 15、15a……立体電極(ユニット) 16……イオン交換膜電解槽 17……陽極 18……陰極 19……イオン交換膜 20……陽極室 21……陰極室 22……陽極集電体 23……陰極集電体 24……第1陽極給電板 25……第1陰極給電板 26……第2陽極給電板 27……第2陰極給電板 31……矩形部 32、33……傾斜 34……山形突起
11, 11 a to 11 h ......
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005278198A JP2007084907A (en) | 2005-09-26 | 2005-09-26 | Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell |
EP06019924A EP1767671B1 (en) | 2005-09-26 | 2006-09-22 | Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using the three-dimensional electrode |
US11/525,941 US7927471B2 (en) | 2005-09-26 | 2006-09-25 | Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode |
CN2006101627307A CN1974858B (en) | 2005-09-26 | 2006-09-26 | Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005278198A JP2007084907A (en) | 2005-09-26 | 2005-09-26 | Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007084907A true JP2007084907A (en) | 2007-04-05 |
Family
ID=37972184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005278198A Pending JP2007084907A (en) | 2005-09-26 | 2005-09-26 | Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007084907A (en) |
CN (1) | CN1974858B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063613A (en) * | 2006-09-06 | 2008-03-21 | Chlorine Eng Corp Ltd | Electrolytic method |
JP2009035767A (en) * | 2007-07-31 | 2009-02-19 | Masaaki Arai | Electrode |
JP2016518522A (en) * | 2013-04-10 | 2016-06-23 | ティッセンクルップ・ウーデ・クロリン・エンジニアーズ(イタリア)ソシエタ・ア・レスポンサビリタ・リミタータ | Electrolytic cell and method for retrofitting electrolytic cell |
WO2020022440A1 (en) * | 2018-07-27 | 2020-01-30 | 株式会社大阪ソーダ | Electroconductive elastic body for electrolytic bath, and electrolytic bath |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5945154B2 (en) * | 2012-04-27 | 2016-07-05 | ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 | Ion exchange membrane electrolytic cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57164990A (en) * | 1981-04-03 | 1982-10-09 | Toyo Soda Mfg Co Ltd | Electrolyzing method for aqueous alkali chloride solution |
JP2002155388A (en) * | 2000-09-08 | 2002-05-31 | Fujita Works Co Ltd | Method of manufacturing electrolytic cell unit, electrolytic cell unit, rib for electrolytic cell unit, welding method and welding system |
JP2004300543A (en) * | 2003-03-31 | 2004-10-28 | Chlorine Eng Corp Ltd | Electrode for electrolysis and ion-exchange membrane electrolytic cell using it |
-
2005
- 2005-09-26 JP JP2005278198A patent/JP2007084907A/en active Pending
-
2006
- 2006-09-26 CN CN2006101627307A patent/CN1974858B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57164990A (en) * | 1981-04-03 | 1982-10-09 | Toyo Soda Mfg Co Ltd | Electrolyzing method for aqueous alkali chloride solution |
JP2002155388A (en) * | 2000-09-08 | 2002-05-31 | Fujita Works Co Ltd | Method of manufacturing electrolytic cell unit, electrolytic cell unit, rib for electrolytic cell unit, welding method and welding system |
JP2004300543A (en) * | 2003-03-31 | 2004-10-28 | Chlorine Eng Corp Ltd | Electrode for electrolysis and ion-exchange membrane electrolytic cell using it |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008063613A (en) * | 2006-09-06 | 2008-03-21 | Chlorine Eng Corp Ltd | Electrolytic method |
JP2009035767A (en) * | 2007-07-31 | 2009-02-19 | Masaaki Arai | Electrode |
JP2016518522A (en) * | 2013-04-10 | 2016-06-23 | ティッセンクルップ・ウーデ・クロリン・エンジニアーズ(イタリア)ソシエタ・ア・レスポンサビリタ・リミタータ | Electrolytic cell and method for retrofitting electrolytic cell |
WO2020022440A1 (en) * | 2018-07-27 | 2020-01-30 | 株式会社大阪ソーダ | Electroconductive elastic body for electrolytic bath, and electrolytic bath |
Also Published As
Publication number | Publication date |
---|---|
CN1974858B (en) | 2012-01-25 |
CN1974858A (en) | 2007-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695418B2 (en) | Elastic current collector for electrochemical cells | |
JP4834329B2 (en) | Ion exchange membrane electrolytic cell | |
JP5860075B2 (en) | Electrolytic cell | |
JP2010533239A5 (en) | ||
JPWO2004048643A1 (en) | Bipolar zero-gap electrolysis cell | |
JP3707985B2 (en) | Alkali metal salt electrolytic cell | |
CA3021831C (en) | Electrolytic cell including elastic member | |
US7303661B2 (en) | Electrode for electrolysis and ion exchange membrane electrolytic cell | |
WO2013161836A1 (en) | Cell for ion exchange membrane electrolysis | |
JP5437651B2 (en) | Ion exchange membrane electrolytic cell and method for producing the same | |
JP2007084907A (en) | Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell | |
JP2014037586A (en) | Electrolytic cell and electrolytic bath | |
US11643739B2 (en) | Anode for ion exchange membrane electrolysis vessel, and ion exchange membrane electrolysis vessel using same | |
JP4246530B2 (en) | Electrode for electrolysis and ion exchange membrane electrolytic cell using the same | |
JP3860132B2 (en) | Ion exchange membrane electrolyzer using hydrogen generating cathode | |
JP3501453B2 (en) | Ion exchange membrane electrolytic cell | |
US7927471B2 (en) | Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode | |
WO2014199440A1 (en) | Ion exchange membrane electrolytic cell | |
JP4975402B2 (en) | Electrolysis method | |
WO2010122785A1 (en) | Ion-exchange membrane electrolyzer | |
JP2013216922A (en) | Ion exchange membrane electrolytic cell | |
CN111058055B (en) | Cathode structure of ion membrane electrolytic cell | |
JP2000178782A (en) | Ion-exchange membrane electrolytic cell | |
JP2013108150A (en) | Zero-gap electrolytic cell and method for manufacturing the same | |
JPS5871382A (en) | Electrolytic cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091218 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100609 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20100615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100909 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20101022 |