JP4246530B2 - Electrode for electrolysis and ion exchange membrane electrolytic cell using the same - Google Patents

Electrode for electrolysis and ion exchange membrane electrolytic cell using the same Download PDF

Info

Publication number
JP4246530B2
JP4246530B2 JP2003096401A JP2003096401A JP4246530B2 JP 4246530 B2 JP4246530 B2 JP 4246530B2 JP 2003096401 A JP2003096401 A JP 2003096401A JP 2003096401 A JP2003096401 A JP 2003096401A JP 4246530 B2 JP4246530 B2 JP 4246530B2
Authority
JP
Japan
Prior art keywords
electrolytic cell
cathode
exchange membrane
ion exchange
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096401A
Other languages
Japanese (ja)
Other versions
JP2004300543A (en
Inventor
眞二 片山
清人 浅海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2003096401A priority Critical patent/JP4246530B2/en
Priority to US10/811,947 priority patent/US7303661B2/en
Priority to EP04007671.3A priority patent/EP1464728B1/en
Priority to CN2004100319210A priority patent/CN1537973B/en
Publication of JP2004300543A publication Critical patent/JP2004300543A/en
Application granted granted Critical
Publication of JP4246530B2 publication Critical patent/JP4246530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルカリ金属塩化物水溶液等の電解に使用できる電解用電極及びこれを使用するイオン交換膜電解槽に関する。
【0002】
【従来の技術】
クロルアルカリ電解を代表とする電解工業は、素材産業として重要な役割を果たしている。このような重要な役割を持つものの、クロルアルカリ電解に要する消費エネルギーが大きく、日本のようにエネルギーコストが高い国ではその省エネルギー化の達成が強く要望されている。
例えば、クロルアルカリ電解は、環境問題の解決と共に省エネルギー化を達成するために、水銀法から隔膜法を経てイオン交換膜法へと転換され、約25年で約40%の省エネルギー化を達成してきた。しかし、この省エネルギー化でも不十分で、エネルギーである電力コストが全製造費の約半分を占めているが、現行の方法を使用する限りこれ以上の電力節約は不可能なところまで来ている。
【0003】
食塩電解に使用する水素発生陰極装着電解槽では、陽極、イオン交換膜及び水素発生陰極の三者を密着状態で配置して電解電圧の低下を図っているが、電解面積が数平方メートルにも達する大型の電解槽では、陽極及び陰極を剛性部材で電極室にすると、両電極をイオン交換膜に密着させて電極間隔を所定値に保持することは困難であった。
電極間距離あるいは電極と電極集電体間の距離を小さくするためあるいはほぼ一定値に維持するための手段として、弾性材料を使用する電解槽が知られている。
この弾性材料には金属の細線の織布、不織布、網などが非剛性材料と、板バネ等の剛性材料が知られている。
【0004】
非剛性材料は、電解槽への装着後に、対極から過度に押圧された場合に部分的に変形して電極間距離が不均一になったり、非剛性材料の細線がイオン交換膜に突き刺さるといった不都合がある。又板バネ等の剛性材料では、イオン交換膜を傷つけたり、塑性変形が生じて再使用が不可能になるといった欠点がある。
又食塩電解槽のようなイオン交換膜電解槽では、陽極や陰極をイオン交換膜に密着させて低電圧で運転を継続できることが望ましく、電極をイオン交換膜方向に押圧するための種々の方法が提案されている。
【0005】
【特許文献1】
特公昭63−53272号公報(第1図〜第8図)
【0006】
【発明が解決しようとする課題】
前述したようにイオン交換膜を陽−陰極間で狭持する電解槽の構造上の特徴は、電極をイオン交換膜に均一に密着させてイオン交換膜の破損をさけるため及び陽−陰両電極間距離を最小に保つため、少なくとも一方の電極の極間距離方向への移動が自由な構造とし、電極を弾力性部材で押し狭持圧を調節できる点にある。
弾力性部材としては、金属ワイヤーからなる編物や織物又はこれを積層したもの、或いは三次元的に編んであるか、三次元的に編んだ後これにうねり加工等を施した形状、並びに金属繊維からなる不織物、コイルバネ(スプリング)、板バネなどがあり、いずれも何らかのバネ弾性を有するものである。
【0007】
一方食塩電解槽などの工業用の電解槽では、電極集電体から電極への電力供給を円滑に行うために、板バネや金属網状体等が使用されることがある。
しかし前述の通り、板バネや金属網状体は剛体であるため、イオン交換膜を傷付けたり、変形率が小さく、十分な電気的接続が得られないことがある。
このような欠点を解消するために、金属網状体に替えて金属製コイル体を陰極と陰極端板の間に装着して前記陰極を隔膜方向に均一に押圧して各部材を密着させた電解槽が開示されている(特許文献1)。
【0008】
この金属製コイル体はコイルの線径が非常に小さく、変形率が高いため、各部材を十分に密着させ、安定した電解槽の操業が可能になる。
しかし特許文献1に記載の電解槽では、陽極又は陰極に加えて金属製コイル体を電解槽内に設置しているため、部品点数が多くなり、陰極が剛体であると十分な密着性が得られないことがあるという欠点がある。
本発明は、従来の金属製コイル体を電極をイオン交換膜方向に押し付ける態様で使用するのではなく、電極そのものとして使用する電解用電極及びこれを使用する電解槽を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の電解用電極は、食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極である。本発明のイオン交換膜電解槽は、イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽において、前記陽極及び陰極の少なくとも一方が、耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材であることを特徴とするイオン交換膜電解槽である。
【0010】
以下、本発明を詳細に説明する。
本発明の対象とするイオン交換膜電解槽では、陽極及び陰極の少なくとも一方として、弾性クッション材を使用する。
これにより電極自身が弾性を有するため、従来のように電極以外に弾性を有する部材を電解槽内に設置する必要がなくなり、電極のみで電極としての機能の他に電極をイオン交換膜等に弾性的に押圧し、これにより例えば電極とイオン交換膜が均一密着するといった効果が生じる。弾性クッション材は、例えば局所的に指で押えると凹み、指を離すと復元するもので、他部材の凹凸に対して極めて密着性が高い。
本発明のイオン交換膜電解槽での電解反応はクロルアルカリ(食塩)電解による水酸化アルカリ(苛性ソーダ)の生成反応であることが望ましいが、電極として前述の弾性クッション材が使用可能な反応であれば特に限定されない。
【0011】
本発明のイオン交換膜電解槽の陽極や陰極としては、弾性クッション材を使用する。
金属製コイル体は、良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、或いは銅等の固有抵抗の小さい金属に良好な耐食性を示すニッケル等をめっき等で被覆して製造した線材をロール加工により螺旋コイルに加工することにより得られる。線材の断面形状は、円、楕円、角部が丸い矩形等が好ましい。イオン交換膜の損傷を防止するために、三角形又は矩形のような鋭利な角部を有する断面形状は望ましくない。例えば直径0.17mmのニッケル線(NW2201)をロール加工すると、断面形状が約0.05mm・0.5mmの角部が丸い矩形に成り、巻き径が約6mmであるコイル線となり、得られたコイル線は好ましく使用できる。
金属製コイル体は、本発明では耐食性フレームに巻回して構成した弾性クッション材として使用する。
【0012】
つまり前記金属製コイル体は変形率が高いため、取扱い難く、作業員の意図通りに電解槽の所定箇所に設置することが困難になることが多い。更に容易に変形する(強度が不十分である)ため、一旦電解槽の所定箇所に設置しても電解槽内の電解液や生成ガスにより位置が偏って各部材の均一密着が困難になることがある。
前記弾性クッション材は、例えば長方形状の耐食性フレームの4本の枠杆のうち対向する2本の間に、ほぼ均一密度になるように1本の又は複数本の金属製コイル体を巻回すことにより得られる。この弾性クッション材では、耐食性フレームの左右に通常2層の金属製コイル体が積層されるが、金属製コイル体自体が変形し易いため、隣接するコイル同士が櫛歯状に噛み合わさせて、見掛け上、1層になっている。このようにして得られた弾性クッション材は、食器洗浄用の金属タワシのような外観を有している。
【0013】
前記金属製コイル体を使用する弾性クッション材の組立は、電解槽外の作業であるため、容易に行うことができ、得られた弾性クッション材は、電解槽組立時に、電解槽内の対象電極となるよう装着するようにすれば良く、この装着時にも弾性クッション材自体は耐食性フレームの強度により組立に支障が出る程には変形しないため、容易に所定箇所に設置できる。
【0014】
この金属製コイル体の径(コイルの見掛け上の直径)は電解槽内に装着されることにより通常10〜70%まで縮んで弾性が生じ、この弾性により電極自身で例えばイオン交換膜と集電体間に保持できるようになり、集電体から電極への給電が容易になる。線径の小さい金属製コイル体を使用すれば必然的に電極や集電体と弾性クッション材との接触点の数が多くなり、均一接触が可能になる。電解槽に装着された後の弾性クッション材は、その耐食性フレームにより形状が保持されるため、塑性変形を受けることが殆どなく、電解槽の解体−再組立時にも殆どの場合再使用できる。
【0015】
本発明の弾性クッション材(又は金属製コイル体)を電極としてイオン交換膜電解槽を組み立てる際には、イオン交換膜と電極集電体間等に弾性クッション材等を位置させ、その後は通常通りに組立てれば電極の位置に弾性クッション材等が保持された電解槽が得られる。
【0016】
前述のような構成から成るイオン交換膜電解槽を使用して食塩電解を行うには、陽極室に食塩水溶液等の電解液を、陰極室に希釈苛性ソーダ水溶液を供給しながら、両極間に通電する。弾性クッション材等が電極として機能する電解槽では、弾性クッション材等の高強度及び強靭性によりこの状態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。
【0017】
【発明の実施の形態】
本発明による電解槽で使用可能な弾性クッション材の例を図1〜図4に基づいて説明する。図1は耐食性フレームの斜視図、図2は弾性クッション材を例示する斜視図、図3は図2のA−A線縦断面図、図4は図2のB−B線縦断面図である。
【0018】
図1に示すように、耐食性フレーム3はニッケル等の金属丸棒で長方形の枠1と、その長手方向の1対の丸棒間に掛け渡された補強杆2から成っている。
図3及び図4に示す金属製コイル体4は、細径の金属線をコイル状にロール加工して得られ、例えば洗浄用の金属タワシのように剛性のない自由に変形できる材料になっている。この金属製コイル体4は図2に示すように、例えば直径約2mmのニッケル製耐食性フレーム3の長手方向の1対の丸棒間のほぼ全長に渡って巻回されて弾性クッション材5が製造される。
このようにして製造された弾性クッション材5は、金属製コイル体4が耐食性フレーム3に巻回されているため、耐食性フレーム3の形状のまま保持され、金属製コイル体4が耐食性フレーム3から離脱することは殆どなく、金属製コイル体4を耐食性フレーム3と一体化したものとして取り扱える。
【0019】
図5は、弾性クッション材を単極式食塩電解槽の陰極として使用した例を示す概略平面図である。
図では、電解槽40内に、上下方向を向く1対の導電棒41が立設され、この導電棒41の周囲に陰極液循環通電部材42が設置され、この通電部材42の面に沿って陰極集電体43が電気的に接続されている。
次いで前記陰極集電体43には陰極として機能する弾性クッション材5が電気的に接続されている。
【0020】
図6は、弾性クッション材を複極式食塩電解槽の陰極として使用した例を示す概略平面図である。
図では、電解槽50内には、接合された陽極隔壁51と陰極隔壁52の陽極側には上下方向を向く4個の一体化された陽極保持部材53が帯状接合部54を陽極隔壁51に接合することにより固定され、各陽極保持部材53の中には陽極液循環通路55が確保されている。
【0021】
又前記接合隔壁の陰極側には前記陽極保持部材53に対応する陰極保持部材56が帯状接合部57を陰極隔壁52に接合することにより固定され、各陰極保持部材56の中には陰極液循環通路58が確保されている。
前記陽極保持部材53の中央外側には凸状部59が形成され、この凸状部59を通してエキスパンデッドメタル状の陽極60への給電が行われる。
前記4個の陰極保持部材56の平坦面には、陰極として機能する弾性クッション材5(又は金属製コイル体4)が電気的に接触し、前記陰極保持部材56から弾性クッション材5へ給電が行われる。
【0022】
弾性クッション材5を陰極として使用すると、金属製コイル体4が耐食性フレーム3に巻回されているため、取り扱いが容易で形が崩れたりすることが殆ど無い。
この状態で、陽極室に食塩水を、陰極室に希釈苛性ソーダ水溶液をそれぞれ供給しながら両極間に通電すると、陰極室で濃縮苛性ソーダ水溶液が得られる。
【0023】
次に本発明に係る水素発生陰極を使用するイオン交換膜電解槽に関する実施例及び比較例を記載するが、これらは本発明を限定するものではない。
【0024】
[実施例1]
次のようにして単位イオン交換膜電解槽を組み立てた。
陽極はペルメレック電極株式会社製のチタンのエキスパンデッドメタルに白金族金属酸化物を有する電極触媒被覆を形成した、有効面積が1540cm2(幅11cm×高さ140cm)である寸法安定性電極を使用した。この陽極を電解槽の陽極室隔壁に陽極リブを使用して取り付けた。
平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、ニッケル製エキスパンデッドメタル型陰極集電体を取り付けた。
【0025】
金属製コイル体は、線径が0.17mmで、引張強度620〜680N/m2のニッケル線(NW2201)をロール加工により約0.5mm幅のコイル線にし、コイルの巻き径が約6mmにしたものを用いた。
この金属製コイル体を、直径2mmのニッケル丸棒製枠(耐食性フレーム)に巻回して直方体状に形状を整え、概略サイズが厚さ10mm×幅110mm×長さ350mmの弾性クッション材とした。この弾性クッション材のコイル線密度は約7g/dm2であった。
【0026】
次いでこの弾性クッション材に次のようにして白金めっきを行って弾性陰極とした。
つまり当該弾性クッション材を陰極とし、ヘキサクロロ白金酸水溶液(20g/リットル)を含浸したチタン棒が入ったプラスチックブラシを陽極とした筆めっき法(電流0.5A、1dm2当たりのめっき時間5分)により弾性クッション材を構成する各金属製コイル体のイオン交換膜側表面に白金めっきを行った。
この白金担持弾性クッション材を前記陰極集電体上に4枚並べて配置した。
陽極と陰極の間に陽イオン交換膜(旭硝子株式会社製Flemion−F8934)を配置してイオン交換膜電解槽を組立てた。
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.89Vであった。
【0027】
参考例1
次のようにしてイオン交換膜電解槽を組み立てた。
陽極はペルメレック電極株式会社製のチタンのエキスパンデッドメタルに、白金族金属酸化物を有する電極触媒被覆を形成した、有効面積が1540cm2(幅11cm・高さ140cm)である寸法安定性電極を使用した。この陽極を電解槽の陽極室隔壁に陽極リブを使用して取り付けた。
平板状ニッケルからなる陰極リブを使用して、陰極室隔壁に、ニッケル製エキスパンデッドメタル型陰極集電体を取り付けた。
【0028】
厚さ5mm×幅11cm×長さ20cmのニッケル繊維を開繊機にかけて均一な綿状にした織物を、ヘキサクロロ白金酸水溶液(20g/リットル)と塩酸(10g/リットル)の混合液に室温で1時間浸漬して白金を析出させて陰極とした。
この陰極(白金担持織物)7枚を陰極集電体上に並べ、陽極と陰極の間には陽イオン交換膜(旭硝子株式会社製フレミオンF8934)を配置してイオン交換膜電解槽を組立てた。
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.87Vであった。
【0029】
[比較例1]
陽極は参考例1と同様に作製し、陰極集電体も参考例1と同様にして取り付けた。
ニッケル製の線径が0.08mmのワイヤー8本をまとめてメリヤス編みした金網を2枚重ねクリンプしたマット状体(ニッケル製弾性通電体)を、前記陰極集電体上に配置した。
【0030】
次いで線径0.15mm、開孔率68%、各孔の面積0.49mm2のニッケル製金網に次の操作を行って活性物質を被覆した。つまりニッケル製金網をスチーム脱脂し、次いで15%硝酸中で1分間エッチングした後、ヘキサクロロ白金酸6水塩水溶液(20g/リットル)、硝酸セシウム6水塩水溶液(30g/リットル)及び硝酸(50g/リットル)の組成のペイントを塗布し、塗布後、50℃で5分間乾燥し、次いで500℃の加熱器中で10分間加熱し、室温に冷却した。このサイクル(ペイント塗布−乾燥−分解)を白金濃度が5g/m2になるまで繰り返した。
このようにして得られたニッケル製マットに接してニッケル金網を陰極として配置し、陽極と陰極の間には陽イオン交換膜(旭硝子株式会社製フレミオンF8934)を配置してイオン交換膜電解槽を組立てた。
【0031】
陽極室には、濃度310g/リットルの食塩水を、陰極室には濃度が32重量%となるように苛性ソーダ水溶液をそれぞれ供給しながら、電流密度40A/dm2、温度85℃の条件で電解を行った。電解槽電圧は2.90Vであった。
【0032】
実施例1と比較例1を比較すると、陰極としてニッケル製の弾性クッション材を使用した実施例1の方が、陰極としてニッケルマット及びニッケル金網を使用した比較例1より電解槽電圧が低く、効果的な電解を行えることが分かった。
【0033】
【発明の効果】
本発明は、耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極である。
この電解用電極は、その高強度及び強靭性によりその形態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。
更に弾性電極を収容した電解槽では、弾性電極が自由に変形でき、更に十分な導電性を有するため、電極と電極集電体間を確実に電気的に接続でき、確実な給電が可能になる。
【図面の簡単な説明】
【図1】本発明で使用可能な弾性クッション材中の耐食性フレームの斜視図。
【図2】本発明で使用可能な弾性クッション材を例示する斜視図。
【図3】図2のA−A線縦断面図。
【図4】図2のB−B線縦断面図。
【図5】弾性クッション材を陰極として使用した単極式食塩電解槽の例を示す概略平面図。
【図6】弾性クッション材を陰極として使用した複極式食塩電解槽の例を示す概略平面図。
【符号の説明】
1 長方形枠
2 補強杆
3 耐食性フレーム
4 金属製コイル体
5 弾性クッション材
40 単極式電解槽
41 導電棒
42 陰極液循環通電部材
43 陰極集電体
50 複極式電解槽
51 陽極隔壁
52 陰極隔壁
53 陽極保持部材
54 帯状接合部
55 陽極液循環通路
56 陰極保持部材
57 帯状接合部
58 陰極液循環通路
59 凸状部
60 陽極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode for electrolysis that can be used for electrolysis of an aqueous alkali metal chloride solution and the like, and an ion exchange membrane electrolytic cell using the same.
[0002]
[Prior art]
The electrolytic industry represented by chloralkali electrolysis plays an important role as a material industry. Although having such an important role, the energy consumption required for chloralkali electrolysis is large, and in countries with high energy costs such as Japan, there is a strong demand for achieving energy saving.
For example, chloralkali electrolysis has been converted from the mercury method to the ion exchange membrane method through the diaphragm method in order to achieve environmental conservation as well as solving environmental problems, and has achieved energy saving of about 40% in about 25 years. . However, even this energy saving is not enough, and the power cost of energy accounts for about half of the total manufacturing cost, but no further power savings are possible using the current method.
[0003]
In the electrolytic cell equipped with a hydrogen generating cathode used for salt electrolysis, the anode, ion exchange membrane and hydrogen generating cathode are arranged in close contact to reduce the electrolysis voltage, but the electrolysis area reaches several square meters. In a large electrolytic cell, when the anode and the cathode are made into electrode chambers with rigid members, it is difficult to keep both electrodes in close contact with the ion exchange membrane and to keep the electrode spacing at a predetermined value.
An electrolytic cell using an elastic material is known as a means for reducing the distance between electrodes or the distance between an electrode and an electrode current collector or maintaining it at a substantially constant value.
As this elastic material, non-rigid materials such as metal woven fabrics, nonwoven fabrics, and nets, and rigid materials such as leaf springs are known.
[0004]
The non-rigid material is partially deformed when it is excessively pressed from the counter electrode after being attached to the electrolytic cell, resulting in non-uniform distance between the electrodes, or the thin wire of the non-rigid material pierces the ion exchange membrane. There is. Further, a rigid material such as a leaf spring has a drawback that the ion exchange membrane is damaged, or plastic deformation occurs and the reuse becomes impossible.
Also, in an ion exchange membrane electrolytic cell such as a salt electrolytic cell, it is desirable that the anode and the cathode be in close contact with the ion exchange membrane so that the operation can be continued at a low voltage, and there are various methods for pressing the electrode in the direction of the ion exchange membrane. Proposed.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 63-53272 (FIGS. 1 to 8)
[0006]
[Problems to be solved by the invention]
As described above, the structural feature of the electrolytic cell that holds the ion exchange membrane between the positive and negative electrodes is to prevent the ion exchange membrane from being damaged by uniformly adhering the electrode to the ion exchange membrane and to both the positive and negative electrodes. In order to keep the distance between the electrodes at least, the structure is such that the movement of at least one of the electrodes in the inter-electrode distance direction is free, and the electrode can be pushed by an elastic member to adjust the holding pressure.
Elastic members include knitted or woven fabrics made of metal wires or laminates of these, or shapes that are three-dimensionally knitted or three-dimensionally knitted and then swelled, etc., and metal fibers There are non-woven fabrics, coil springs (springs), leaf springs, etc., all of which have some spring elasticity.
[0007]
On the other hand, in an industrial electrolytic cell such as a salt electrolytic cell, a leaf spring or a metal mesh may be used in order to smoothly supply power from the electrode current collector to the electrode.
However, as described above, since the leaf spring and the metal net are rigid bodies, the ion exchange membrane may be damaged, the deformation rate may be small, and sufficient electrical connection may not be obtained.
In order to eliminate such drawbacks, there is provided an electrolytic cell in which a metallic coil body is mounted between the cathode and the cathode end plate instead of the metal mesh body, and the cathode is uniformly pressed in the direction of the diaphragm and the respective members are brought into close contact with each other. (Patent Document 1).
[0008]
Since this metal coil body has a very small wire diameter and a high deformation rate, each member can be brought into close contact with each other, and a stable electrolytic cell operation can be performed.
However, in the electrolytic cell described in Patent Document 1, since the metal coil body is installed in the electrolytic cell in addition to the anode or the cathode, the number of parts increases, and sufficient adhesion is obtained when the cathode is a rigid body. There is a drawback that it may not be possible.
An object of the present invention is to provide an electrode for electrolysis used as an electrode itself and an electrolytic cell using the same, instead of using a conventional metal coil body in a mode of pressing an electrode in the direction of an ion exchange membrane. .
[0009]
[Means for Solving the Problems]
Electrolytic electrode of the present invention is the electrode for electrolysis, characterized in that it comprises a resilient cushioning material bearing the formed electrode catalyst by winding a metal coil body corrosion resistance frames. The ion exchange membrane electrolyzer of the present invention, in the ion exchange membrane electrolytic cell is partitioned into a cathode chamber containing an anode chamber and a cathode for accommodating the anode by an ion exchange membrane, at least one of the anode and cathode, corrosion resistance An ion exchange membrane electrolytic cell characterized by being an elastic cushion material carrying an electrode catalyst formed by winding a metal coil body around a frame.
[0010]
Hereinafter, the present invention will be described in detail.
In the ion exchange membrane electrolytic cell which is the subject of the present invention , an elastic cushion material is used as at least one of the anode and the cathode.
As a result, the electrode itself has elasticity, so there is no need to install an elastic member other than the electrode in the electrolytic cell as in the prior art. Thus, there is an effect that, for example, the electrode and the ion exchange membrane are uniformly adhered. The elastic cushion material, for example, is recessed when pressed locally with a finger and restored when the finger is released, and has extremely high adhesion to the unevenness of other members.
The electrolytic reaction in the ion exchange membrane electrolytic cell of the present invention is preferably a reaction for producing alkali hydroxide (caustic soda) by chloralkali (sodium chloride) electrolysis, but any reaction that can use the elastic cushion material described above as an electrode. If it does not specifically limit.
[0011]
An elastic cushion material is used as the anode or cathode of the ion exchange membrane electrolytic cell of the present invention .
A coil body made of metal is made by rolling a wire produced by coating nickel, nickel alloy, stainless steel, or copper, which has good corrosion resistance, with nickel, which has good corrosion resistance, on a metal having low specific resistance by plating or the like. It is obtained by processing into a spiral coil. The cross-sectional shape of the wire is preferably a circle, an ellipse, a rectangle with round corners, or the like. In order to prevent damage to the ion exchange membrane, a cross-sectional shape with sharp corners such as a triangle or rectangle is not desirable. For example, when a nickel wire (NW2201) having a diameter of 0.17 mm is rolled, a square wire having a cross-sectional shape of about 0.05 mm / 0.5 mm is formed into a round rectangle, and a coil wire having a winding diameter of about 6 mm is obtained. A coil wire can be preferably used.
Metal coil body, to use as the elastic cushion material formed by winding a corrosion frame in the present invention.
[0012]
That is, since the metal coil body has a high deformation rate, it is difficult to handle and it is often difficult to install the metal coil body at a predetermined location of the electrolytic cell as intended by the operator. Furthermore, since it is easily deformed (the strength is insufficient), even if it is once installed at a predetermined location in the electrolytic cell, the position is biased by the electrolyte or generated gas in the electrolytic cell, making it difficult to evenly adhere to each member There is.
The elastic cushion material is formed by winding one or a plurality of metal coil bodies so as to obtain a substantially uniform density between two opposing frame frames of a rectangular corrosion resistant frame, for example. Is obtained. In this elastic cushion material, two layers of metal coil bodies are usually laminated on the left and right sides of the corrosion-resistant frame. However, since the metal coil bodies themselves are easily deformed, the adjacent coils are engaged with each other in a comb-like shape, and apparently. The top is a single layer. The elastic cushion material thus obtained has an appearance like a metal scrub for tableware washing.
[0013]
Since the assembly of the elastic cushion material using the metal coil body is an operation outside the electrolytic cell, it can be easily performed, and the obtained elastic cushion material is the target electrode in the electrolytic cell when the electrolytic cell is assembled. The elastic cushion material itself is not deformed so as to hinder the assembly due to the strength of the corrosion-resistant frame, and can be easily installed at a predetermined location.
[0014]
The diameter of this metal coil body (the apparent diameter of the coil) is usually reduced to 10 to 70% by mounting in the electrolytic cell, and elasticity is generated. This elasticity causes the electrode itself to collect current with, for example, an ion exchange membrane. It becomes possible to hold between the bodies, and power supply from the current collector to the electrode becomes easy. If a metal coil body having a small wire diameter is used, the number of contact points between the electrode or current collector and the elastic cushion material inevitably increases, and uniform contact becomes possible. Since the shape of the elastic cushion material after being attached to the electrolytic cell is held by the corrosion-resistant frame, the elastic cushion material is hardly subjected to plastic deformation and can be reused in most cases even when the electrolytic cell is disassembled and reassembled.
[0015]
When an ion exchange membrane electrolytic cell is assembled using the elastic cushion material (or metal coil body) of the present invention as an electrode, an elastic cushion material or the like is positioned between the ion exchange membrane and the electrode current collector, and thereafter, as usual. As a result, an electrolytic cell in which an elastic cushion material or the like is held at the position of the electrode can be obtained.
[0016]
In order to perform salt electrolysis using the ion exchange membrane electrolytic cell having the above-described configuration, current is passed between both electrodes while supplying an electrolyte such as a saline solution to the anode chamber and a dilute caustic soda solution to the cathode chamber. . In an electrolytic cell in which an elastic cushion material or the like functions as an electrode, this state is maintained for a long time due to the high strength and toughness of the elastic cushion material or the like, so that the ion exchange membrane or the like is not mechanically damaged. Caustic soda or the like can be manufactured with high efficiency without excessive deformation and insufficient power supply.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the elastic cushion material that can be used in the electrolytic cell according to the present invention will be described with reference to FIGS. 1 is a perspective view of a corrosion resistant frame, FIG. 2 is a perspective view illustrating an elastic cushion material, FIG. 3 is a longitudinal sectional view taken along line AA in FIG. 2, and FIG. 4 is a longitudinal sectional view taken along line BB in FIG. .
[0018]
As shown in FIG. 1, the corrosion-resistant frame 3 is composed of a rectangular frame 1 made of a metal round bar such as nickel and a reinforcing bar 2 spanned between a pair of round bars in the longitudinal direction.
The metal coil body 4 shown in FIGS. 3 and 4 is obtained by rolling a thin metal wire into a coil shape, and becomes a material that can be freely deformed without rigidity, such as a metal scrubber for cleaning. Yes. As shown in FIG. 2, the metal coil body 4 is wound over almost the entire length between a pair of round bars in the longitudinal direction of a nickel corrosion resistant frame 3 having a diameter of about 2 mm, for example, to produce an elastic cushion material 5. Is done.
The elastic cushion material 5 manufactured in this manner is held in the shape of the corrosion-resistant frame 3 because the metal coil body 4 is wound around the corrosion-resistant frame 3, and the metal coil body 4 is removed from the corrosion-resistant frame 3. The metal coil body 4 is hardly detached and can be handled as an integral part of the corrosion-resistant frame 3.
[0019]
FIG. 5 is a schematic plan view showing an example in which an elastic cushion material is used as a cathode of a monopolar salt electrolytic cell.
In the figure, a pair of conductive rods 41 are provided in the electrolytic cell 40 so as to face in the vertical direction, and a catholyte circulation energizing member 42 is installed around the conductive rod 41, along the surface of the energizing member 42. A cathode current collector 43 is electrically connected.
Next, an elastic cushion material 5 that functions as a cathode is electrically connected to the cathode current collector 43.
[0020]
FIG. 6 is a schematic plan view showing an example in which an elastic cushion material is used as a cathode of a bipolar salt electrolytic cell.
In the figure, in the electrolytic cell 50, four integrated anode holding members 53 facing the vertical direction are formed on the anode side of the anode partition 51 and the cathode partition 52 bonded to each other. An anolyte circulation passage 55 is secured in each anode holding member 53.
[0021]
Further, a cathode holding member 56 corresponding to the anode holding member 53 is fixed to the cathode side of the bonding partition by joining a strip-shaped joining portion 57 to the cathode partition 52, and each cathode holding member 56 has a catholyte circulation. A passage 58 is secured.
A convex portion 59 is formed outside the center of the anode holding member 53, and power is supplied to the expanded metal anode 60 through the convex portion 59.
The flat surfaces of the four cathode holding members 56 are in electrical contact with the elastic cushion material 5 (or the metal coil body 4) functioning as a cathode, and power is supplied from the cathode holding member 56 to the elastic cushion material 5. Done.
[0022]
When the elastic cushion material 5 is used as a cathode, the metal coil body 4 is wound around the corrosion-resistant frame 3, so that the handling is easy and the shape is hardly lost.
In this state, when a saline solution is supplied to the anode chamber and a dilute caustic soda solution is supplied to the cathode chamber, and electricity is applied between both electrodes, a concentrated caustic soda solution is obtained in the cathode chamber.
[0023]
Next, although the Example and comparative example regarding an ion exchange membrane electrolytic cell which use the hydrogen generating cathode which concerns on this invention are described, these do not limit this invention.
[0024]
[Example 1]
A unit ion exchange membrane electrolytic cell was assembled as follows.
The anode used is a dimensionally stable electrode with an effective area of 1540cm 2 (width 11cm x height 140cm) formed by the electrode catalyst coating with platinum group metal oxide on titanium expanded metal manufactured by Permerek Electrode Co., Ltd. did. This anode was attached to the anode chamber partition of the electrolytic cell using anode ribs.
Using a cathode rib made of flat nickel, a nickel expanded metal cathode current collector was attached to the cathode chamber partition.
[0025]
The metal coil body has a wire diameter of 0.17 mm, a nickel wire (NW2201) with a tensile strength of 620 to 680 N / m 2 is rolled into a coil wire with a width of about 0.5 mm, and the coil winding diameter is about 6 mm. Was used.
This metal coil body was wound around a nickel round bar frame (corrosion-resistant frame) having a diameter of 2 mm to adjust the shape to a rectangular parallelepiped shape, and an elastic cushion material having an approximate size of 10 mm thickness × 110 mm width × 350 mm length was obtained. The coil linear density of this elastic cushion material was about 7 g / dm 2 .
[0026]
Next, this elastic cushion material was subjected to platinum plating as follows to obtain an elastic cathode.
In other words, by the brush plating method (current 0.5A, plating time 5 minutes per 1 dm 2 ) using the elastic cushion material as a cathode and a plastic brush containing a titanium rod impregnated with hexachloroplatinic acid aqueous solution (20 g / liter) as an anode. Platinum plating was performed on the ion exchange membrane side surface of each metal coil body constituting the elastic cushion material.
Four platinum-carrying elastic cushion materials were arranged side by side on the cathode current collector.
A cation exchange membrane (Flemion-F8934 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed at a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 310 g / liter to the anode chamber and an aqueous sodium hydroxide solution to the cathode chamber to a concentration of 32% by weight. went. The electrolytic cell voltage was 2.89V.
[0027]
[ Reference Example 1 ]
An ion exchange membrane electrolytic cell was assembled as follows.
The anode is a dimensionally stable electrode having an effective area of 1540 cm 2 (width 11 cm, height 140 cm) in which an electrode catalyst coating having a platinum group metal oxide is formed on titanium expanded metal manufactured by Permerek Electrode Co., Ltd. used. This anode was attached to the anode chamber partition of the electrolytic cell using anode ribs.
Using a cathode rib made of flat nickel, a nickel expanded metal cathode current collector was attached to the cathode chamber partition.
[0028]
A uniform cotton-like woven fabric made of nickel fiber with a thickness of 5 mm x width 11 cm x length 20 cm in a fiber spreader is mixed with a mixture of hexachloroplatinic acid aqueous solution (20 g / liter) and hydrochloric acid (10 g / liter) at room temperature for 1 hour. It was immersed to deposit platinum to form a cathode.
Seven of these cathodes (platinum-supporting fabrics) were arranged on a cathode current collector, and a cation exchange membrane (Flemion F8934 manufactured by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to assemble an ion exchange membrane electrolytic cell.
Electrolysis was performed at a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 310 g / liter to the anode chamber and an aqueous sodium hydroxide solution to the cathode chamber to a concentration of 32% by weight. went. The electrolytic cell voltage was 2.87V.
[0029]
[Comparative Example 1]
The anode was prepared in the same manner as in Reference Example 1, and the cathode current collector was attached in the same manner as in Reference Example 1 .
A mat-like body (nickel elastic conductive body) obtained by crimping two knitted wire meshes of eight nickel wires having a wire diameter of 0.08 mm was placed on the cathode current collector.
[0030]
Subsequently, a nickel wire net having a wire diameter of 0.15 mm, a hole area ratio of 68%, and an area of each hole of 0.49 mm 2 was coated with the active substance by the following operation. In other words, after steam degreasing the nickel wire mesh and then etching in 15% nitric acid for 1 minute, hexachloroplatinic acid hexahydrate aqueous solution (20 g / liter), cesium nitrate hexahydrate aqueous solution (30 g / liter) and nitric acid (50 g / liter) Liter) of paint, applied and dried at 50 ° C. for 5 minutes, then heated in a 500 ° C. heater for 10 minutes and cooled to room temperature. This cycle (paint coating-drying-decomposition) was repeated until the platinum concentration reached 5 g / m 2 .
The nickel wire mesh was placed as a cathode in contact with the nickel mat thus obtained, and a cation exchange membrane (Flemion F8934 made by Asahi Glass Co., Ltd.) was placed between the anode and the cathode to provide an ion exchange membrane electrolytic cell. Assembled.
[0031]
Electrolysis was performed at a current density of 40 A / dm 2 and a temperature of 85 ° C. while supplying a saline solution of 310 g / liter to the anode chamber and an aqueous sodium hydroxide solution to the cathode chamber to a concentration of 32% by weight. went. The electrolytic cell voltage was 2.90V.
[0032]
Comparing Example 1 and Comparative Example 1, towards the Example 1 using the nickel elastic cushion material as a cathode, the nickel matte and nickel wire net to lower cell voltage than Comparative Example 1 was used as a cathode, effect It was found that electrolysis can be performed.
[0033]
【The invention's effect】
The present invention is an electrode for electrolysis comprising an elastic cushion material carrying an electrode catalyst formed by winding a metal coil body around a corrosion-resistant frame.
This electrode for electrolysis maintains its form for a long period of time due to its high strength and toughness, so that the ion exchange membrane or the like is not mechanically damaged or excessively deformed, resulting in insufficient power supply. No caustic soda can be produced with high efficiency.
Furthermore, in an electrolytic cell containing an elastic electrode, the elastic electrode can be freely deformed and has sufficient conductivity, so that the electrode and the electrode current collector can be reliably electrically connected, and reliable power supply becomes possible. .
[Brief description of the drawings]
FIG. 1 is a perspective view of a corrosion-resistant frame in an elastic cushion material that can be used in the present invention.
FIG. 2 is a perspective view illustrating an elastic cushion material that can be used in the present invention.
3 is a vertical sectional view taken along line AA in FIG. 2;
4 is a longitudinal sectional view taken along line BB in FIG. 2. FIG.
FIG. 5 is a schematic plan view showing an example of a monopolar salt electrolytic cell using an elastic cushion material as a cathode.
FIG. 6 is a schematic plan view showing an example of a bipolar salt electrolytic cell using an elastic cushion material as a cathode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rectangular frame 2 Reinforcement rod 3 Corrosion-resistant frame 4 Metal coil body 5 Elastic cushion material
40 single electrode electrolytic cell
41 Conductive rod
42 Catholyte circulating energization member
43 Cathode current collector
50 Bipolar electrolytic cell
51 Anode barrier
52 Cathode barrier
53 Anode holding member
54 Band joint
55 Anolyte circulation passage
56 Cathode holding member
57 Strip joint
58 Catholyte circulation passage
59 Convex
60 anode

Claims (3)

食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材を含んで成ることを特徴とする電解用電極。 Electrolytic electrodes, characterized in that it comprises a resilient cushioning material bearing the formed electrode catalyst by winding a metal coil body corrosion resistance frames. イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽において、前記陽極及び陰極の少なくとも一方が、耐食性フレームに金属製コイル体を巻回して構成される電極触媒を担持した弾性クッション材であることを特徴とするイオン交換膜電解槽。In the ion exchange membrane electrolytic cell is partitioned into a cathode chamber containing an anode chamber and a cathode for accommodating the anode by an ion exchange membrane, at least one of the anode and cathode, by winding a metal coil body corrosion resistance frame structure An ion exchange membrane electrolytic cell characterized by being an elastic cushion material carrying an electrode catalyst. 弾性クッション材が電極集電体に接触し、該電極集電体から給電される請求項に記載のイオン交換膜電解槽。The ion exchange membrane electrolytic cell according to claim 2 , wherein the elastic cushion material is in contact with the electrode current collector and is supplied with power from the electrode current collector.
JP2003096401A 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same Expired - Fee Related JP4246530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003096401A JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same
US10/811,947 US7303661B2 (en) 2003-03-31 2004-03-30 Electrode for electrolysis and ion exchange membrane electrolytic cell
EP04007671.3A EP1464728B1 (en) 2003-03-31 2004-03-30 Electrode for electrolysis and ion exchange membrane electrolytic cell
CN2004100319210A CN1537973B (en) 2003-03-31 2004-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096401A JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same

Publications (2)

Publication Number Publication Date
JP2004300543A JP2004300543A (en) 2004-10-28
JP4246530B2 true JP4246530B2 (en) 2009-04-02

Family

ID=33408480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096401A Expired - Fee Related JP4246530B2 (en) 2003-03-31 2003-03-31 Electrode for electrolysis and ion exchange membrane electrolytic cell using the same

Country Status (1)

Country Link
JP (1) JP4246530B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767671B1 (en) 2005-09-26 2012-05-02 CHLORINE ENGINEERS CORP., Ltd. Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using the three-dimensional electrode
JP4975402B2 (en) * 2006-09-06 2012-07-11 クロリンエンジニアズ株式会社 Electrolysis method
JP2007084907A (en) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
JP4846869B1 (en) 2010-09-07 2011-12-28 クロリンエンジニアズ株式会社 Cathode structure for electrolysis and electrolytic cell using the same
JP5653209B2 (en) * 2010-12-28 2015-01-14 東ソー株式会社 Ion exchange membrane electrolytic cell
JP5945154B2 (en) 2012-04-27 2016-07-05 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell
JP5970250B2 (en) 2012-06-13 2016-08-17 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 Elastic cushion material for ion exchange membrane electrolytic cell
CN104718317A (en) * 2013-06-11 2015-06-17 氯工程公司 Ion exchange membrane electrolytic cell
US11613821B2 (en) 2018-07-13 2023-03-28 Panasonic Intellectual Property Management Co., Ltd. Electrolyzed water generator
JP7289077B2 (en) * 2018-07-13 2023-06-09 パナソニックIpマネジメント株式会社 Electrolyzed water generator

Also Published As

Publication number Publication date
JP2004300543A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US7303661B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell
KR101581730B1 (en) Elastic current collector for electrochemical cells
JP4846869B1 (en) Cathode structure for electrolysis and electrolytic cell using the same
JP5860075B2 (en) Electrolytic cell
JP3707985B2 (en) Alkali metal salt electrolytic cell
JP4246530B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell using the same
JP6183620B2 (en) Zero gap type anode for salt electrolyzer, salt electrolyzer, and salt electrolysis method using the same
JP5945154B2 (en) Ion exchange membrane electrolytic cell
JP3860132B2 (en) Ion exchange membrane electrolyzer using hydrogen generating cathode
JP5632780B2 (en) Electrolytic cell manufacturing method
CN104379815B (en) Resilient snubber and the ion-exchange membrane electrolyzer for having used the resilient snubber
JP2000178781A (en) Electrolytic cell and fixed pin used for the same
TW202124779A (en) Elastic mat for alkaline water electrolysis vessel
JP2007084907A (en) Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
WO2014199440A1 (en) Ion exchange membrane electrolytic cell
JP3869383B2 (en) Ion-exchange membrane electrolytic cell using liquid-permeable gas diffusion cathode
EP1767671B1 (en) Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using the three-dimensional electrode
JP6318678B2 (en) Ion exchange membrane electrolytic cell
JP2014221930A (en) Ion exchange membrane electrolytic cell
CN218786669U (en) Mesh belt anode structure
JP2014214350A (en) Ion exchange membrane electrolytic bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Ref document number: 4246530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees