JP2008063613A - Electrolytic method - Google Patents

Electrolytic method Download PDF

Info

Publication number
JP2008063613A
JP2008063613A JP2006241731A JP2006241731A JP2008063613A JP 2008063613 A JP2008063613 A JP 2008063613A JP 2006241731 A JP2006241731 A JP 2006241731A JP 2006241731 A JP2006241731 A JP 2006241731A JP 2008063613 A JP2008063613 A JP 2008063613A
Authority
JP
Japan
Prior art keywords
electrode
exchange membrane
ion exchange
electrolysis
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006241731A
Other languages
Japanese (ja)
Other versions
JP4975402B2 (en
Inventor
Yoshitsugu Shinomiya
吉継 四宮
Tsuneo Tokumori
恒雄 徳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP2006241731A priority Critical patent/JP4975402B2/en
Priority to EP06019924A priority patent/EP1767671B1/en
Priority to US11/525,941 priority patent/US7927471B2/en
Priority to CN2006101627307A priority patent/CN1974858B/en
Publication of JP2008063613A publication Critical patent/JP2008063613A/en
Application granted granted Critical
Publication of JP4975402B2 publication Critical patent/JP4975402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably continue the electrolysis of an electrolyte containing impurities using an electrode having high strength and high toughness. <P>SOLUTION: A three-dimensional electrode 15 fabricated by bending a plurality of snicks 12 which are formed in a plate-like metal electrode substrate 11 toward the same direction to form an elastic conductive body 13 is used for the electrolysis of the electrolyte containing the impurities such as the electrolysis of white liquor. The three-dimensional electrode with higher strength and higher toughness is provided only by bending the plurality of the formed snicks. When the three-dimensional electrode is used in an ion exchange membrane electrolytic cell, the positional relation among mutual members is made stable, thus polysulfide ion or the like can be produced at high efficiency without mechanically damaging an ion exchange membrane or the like and without excessively deforming the same nor making power supply insufficient. Since the electrode has a wide surface area, the impurities deposited per unit surface area is made small to continue the electrolysis over a long period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、不純物を含有する電解液の電解方法に関し、より詳細には立体電極を使用して前記不純物を含有する電解液を電解する方法に関する。   The present invention relates to a method for electrolyzing an electrolytic solution containing impurities, and more particularly to a method for electrolyzing an electrolytic solution containing impurities using a three-dimensional electrode.

食塩電解槽などの工業用電解槽では、電極集電体から電極への電力供給を円滑に行うために、板バネや金属網状体等が使用されることがある。
しかし板バネや金属網状体は剛体であるため、イオン交換膜を傷付けたり、変形率が小さく、十分な電気的接続が得られないことがある。
このような欠点を解消するために、金属網状体に替えて金属性コイルを陰極と陰極端板の間に装着して前記陰極を隔膜方向に均一に押圧して各部材を密着させた電解槽が開示されている(特許文献1)。
特公昭63−53272号公報(第1図〜第8図)
In an industrial electrolytic cell such as a salt electrolytic cell, a leaf spring or a metal mesh may be used to smoothly supply power from the electrode current collector to the electrode.
However, since the leaf spring and the metal net are rigid bodies, the ion exchange membrane may be damaged, the deformation rate may be small, and sufficient electrical connection may not be obtained.
In order to eliminate such drawbacks, an electrolytic cell is disclosed in which a metallic coil is mounted between a cathode and a cathode end plate instead of a metal mesh, and the cathode is uniformly pressed in the direction of the diaphragm and the respective members are brought into close contact with each other. (Patent Document 1).
Japanese Patent Publication No. 63-53272 (FIGS. 1 to 8)

この技術は、金属性コイルを、電極をイオン交換膜方向に押し付ける態様で使用するのではなく、電極そのものとして使用することを特徴としている。この電極は、その高強度及び強靭性によりその形態が長期間維持されるため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できるという利点を有している。しかし前記電極はこのようは多大な利点を有するものの製造に手間が掛かるという不都合があった。
本出願人は、このような従来技術の欠点を解消した電解用立体電極を提案した(特願2005−278198)。この立体電極は、板状金属電極基体に形成した複数の切り込みを前記基体に対して同一方向に折曲して弾性導電体を形成することにより製造される。
This technique is characterized in that the metallic coil is not used in such a manner that the electrode is pressed in the direction of the ion exchange membrane, but is used as the electrode itself. This electrode is maintained in its form for a long time due to its high strength and toughness, so that the ion exchange membrane or the like is not mechanically damaged, and may be excessively deformed to cause insufficient power supply. And has the advantage of being able to produce caustic soda and the like with high efficiency. However, although the electrode has such great advantages, there is a disadvantage that it takes time to manufacture.
The present applicant has proposed a three-dimensional electrode for electrolysis that has solved the drawbacks of the prior art (Japanese Patent Application No. 2005-278198). This three-dimensional electrode is manufactured by bending a plurality of cuts formed in a plate-like metal electrode substrate in the same direction with respect to the substrate to form an elastic conductor.

ところで、木材資源の有効利用として、化学パルプの高収率化は重要な課題であり、この化学パルプの主流をなすクラフトパルプの高収率化技術として多硫化物蒸解プロセスがある。この多硫化物蒸解プロセスにおける蒸解薬液は、硫化ナトリウムを含むアルカリ性水溶液、いわゆる白液を、活性炭等の触媒の存在下に空気等の分子状酸素により酸化することにより製造されている。
この方法により硫化物イオンベースで転化率60%、選択率60%程度で、多硫化イオウ濃度が5g/L程度の多硫化物蒸解物を得ることができる。しかし、この方法では、副反応により蒸解には全く寄与しないチオ硫酸イオンが副生してしまうため、高濃度の多硫化イオンを含む蒸解液を高選択率で製造することは困難であった。
By the way, as an effective use of wood resources, increasing the yield of chemical pulp is an important issue, and there is a polysulfide cooking process as a technique for increasing the yield of kraft pulp which is the mainstream of this chemical pulp. The cooking chemical in this polysulfide cooking process is produced by oxidizing an alkaline aqueous solution containing sodium sulfide, so-called white liquor, with molecular oxygen such as air in the presence of a catalyst such as activated carbon.
By this method, a polysulfide cooked product having a conversion rate of about 60% and a selectivity of about 60% on a sulfide ion basis and a sulfur polysulfide concentration of about 5 g / L can be obtained. However, in this method, thiosulfate ions that do not contribute to cooking at all are produced as a by-product due to side reactions, so that it is difficult to produce a cooking solution containing a high concentration of polysulfide ions with high selectivity.

ここで、多硫化イオンとはポリサルファイドサルファ(PS−S)とも称され、例えば多硫化ナトリウムNa2Xにおける価数0のイオウ、即ち原子(X−1)個分のイオウをいう。なお本願明細書では、多硫化物イオン中の酸化数−2のイオウに相当するイオウ(SX 2-につき1原子分のイオウ)と硫化物イオウ(S2-)を総称してNa2S態イオウと称することがある。 Here, the polysulfide ion is also referred to as polysulfide sulfide (PS-S), for example, sulfur having a valence of 0 in sodium polysulfide Na 2 S X , that is, sulfur corresponding to (X-1) atoms. In the present specification, sulfur corresponding to sulfur having an oxidation number of −2 in polysulfide ions (sulfur for one atom per S X 2− ) and sulfide sulfur (S 2− ) are collectively referred to as Na 2 S. Sometimes referred to as state sulfur.

一方PCT国際公開WO95/00701号には、多硫化物蒸解液の電解製造方法が開示されている。この方法では、担体上にルテニウム、イリジウム、白金、パラジウム等の酸化物を被覆したアノードを使用している。具体的には多数のエクスパンドメタルを組み合わせた担体の三次元メッシュ電極が開示されている。
また特表2000−515106号公報にも同じく多硫化物蒸解液の電解製造方法が開示され、炭素なら成る多孔性アノードを用い、特に直径1〜300μmの炭素繊維の集積体がアノードとして使用されている。
On the other hand, PCT International Publication No. WO95 / 00701 discloses an electrolytic production method for polysulfide cooking liquor. In this method, an anode in which an oxide such as ruthenium, iridium, platinum or palladium is coated on a support is used. Specifically, a carrier three-dimensional mesh electrode in which a large number of expanded metals are combined is disclosed.
Similarly, Japanese Patent Publication No. 2000-515106 discloses a method for electrolytic production of polysulfide cooking liquor, using a porous anode made of carbon, in particular, an aggregate of carbon fibers having a diameter of 1 to 300 μm is used as the anode. Yes.

これらの電極は、白液電解(多硫化物蒸解液の電解製造)に使用される場合でもこれ以外の電解に使用される場合でも、原料電解液に不純物が含まれると、この不純物が電解中に電極表面に付着してセル電圧が上昇し、これを回避するために、電極を洗浄し、最悪の場合には電極の交換を定期的に実行する必要が生じていた。
特に多孔体内部に析出した不純物は、物理的洗浄では十分除去できず、酸やキレート等を使用する化学的洗浄が必要になり、設備費が嵩み、取り扱いも煩雑であった。
Whether these electrodes are used for white liquor electrolysis (electrolysis production of polysulfide cooking liquor) or for other types of electrolysis, if impurities are included in the raw electrolyte, these impurities are being electrolyzed. In order to avoid this, the cell voltage increases due to adhesion to the electrode surface, and it is necessary to clean the electrode and, in the worst case, periodically replace the electrode.
In particular, impurities deposited inside the porous body cannot be sufficiently removed by physical cleaning, and chemical cleaning using an acid, a chelate, or the like is required, resulting in high equipment costs and complicated handling.

このように不純物を含む電解液を従来の電解用電極を使用して電解すると、電極表面に析出するだけでなく、膜への悪影響も現れ、長期間安定した運転を実現するための障害となっている。
従って本発明は、不純物を含む電解液の電解に使用しても、電極表面への不純物の析出が少なく、より長期間に亘って、安定した電解操業を可能にする電解方法を提供することを目的とする。
When electrolyzing an electrolytic solution containing impurities in this manner using a conventional electrode for electrolysis, it not only deposits on the electrode surface, but also has an adverse effect on the film, which is an obstacle to realizing stable operation for a long time. ing.
Therefore, the present invention provides an electrolysis method that allows stable electrolysis operation over a longer period of time, even when used for electrolysis of an electrolyte solution containing impurities, with less precipitation of impurities on the electrode surface. Objective.

本発明は、電極触媒を担持した板状金属電極基体に複数の切り込みを形成し、当該切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成した立体電極を使用して、不純物を含有する電解液を電解することを特徴とする電解方法であり、この電解時にイオン交換膜と電極集電体を使用し、前記立体電極の金属電極基体がイオン交換膜に密着し、前記弾性導電体が電極集電体に接触していることが好ましい。   The present invention uses a three-dimensional electrode in which a plurality of cuts are formed in a plate-shaped metal electrode substrate carrying an electrode catalyst, and the cut portions are bent in the same direction with respect to the electrode substrate to form an elastic conductor. The electrolytic method is characterized by electrolyzing an electrolytic solution containing impurities. During the electrolysis, an ion exchange membrane and an electrode current collector are used, and the metal electrode substrate of the three-dimensional electrode is in close contact with the ion exchange membrane. The elastic conductor is preferably in contact with the electrode current collector.

以下本発明を詳細に説明する。
本発明方法で使用する立体電極では、板状金属電極基体に形成した複数の切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成する。折曲角度(θ)は0°<θ<180°の任意の範囲で設定でき、好ましくは10°以上90°以下、より好ましくは30°以上80°以下である。
前記切り込み部を折曲して形成される弾性導電体を、例えばイオン交換膜と電極集電体間に内向きに押し付けるように設置すると、前記弾性導電体は弾力を得て、前記イオン交換膜と電極集電体間に保持される。
The present invention will be described in detail below.
In the three-dimensional electrode used in the method of the present invention, an elastic conductor is formed by bending a plurality of cut portions formed in a plate-shaped metal electrode substrate in the same direction with respect to the electrode substrate. The bending angle (θ) can be set in an arbitrary range of 0 ° <θ <180 °, preferably 10 ° to 90 °, more preferably 30 ° to 80 °.
When an elastic conductor formed by bending the cut portion is installed so as to be pressed inward between, for example, an ion exchange membrane and an electrode current collector, the elastic conductor obtains elasticity, and the ion exchange membrane And the electrode current collector.

これにより電極以外に弾性を有する部材を電解槽内に設置する必要がなくなり、電極のみで電極としての機能の他に電極をイオン交換膜等に弾性的に押圧することができるようになり、これにより例えば電極とイオン交換膜が均一密着するといった効果が生じる。しかも弾性を発生させる弾性導電体がイオン交換膜に接触しないため、イオン交換膜が損傷することがない。
更に複数存在する前記弾性導電体の折曲先端部を電極集電体に接触又は溶接させると、前記弾性導電体の数と同じ給電経路を確保できる。
しかも通常の孔あき板を電極基体として使用する場合と異なり、弾性導電体自体も電極機能を有するため、有効電極面積が減少することがない。
This eliminates the need to install an elastic member other than the electrode in the electrolytic cell, and the electrode can be elastically pressed against the ion exchange membrane or the like in addition to the electrode function. Thus, for example, an effect that the electrode and the ion exchange membrane are in close contact with each other occurs. Moreover, since the elastic conductor that generates elasticity does not contact the ion exchange membrane, the ion exchange membrane is not damaged.
Further, when the bent tip portions of the plurality of elastic conductors that are present are brought into contact with or welded to the electrode current collector, the same power supply paths as the number of the elastic conductors can be secured.
In addition, unlike the case where a normal perforated plate is used as the electrode substrate, the elastic conductor itself has an electrode function, so that the effective electrode area does not decrease.

本発明方法の立体電極の電極基体は良好な耐食性を示すニッケル、ニッケル合金、ステンレス鋼、或いは銅合金全面に無電解ニッケルメッキを施した固有抵抗の小さい金属で構成することが望ましい。電極基体は無孔性シート状であっても、エキスパンデッドメタル等の有孔性であっても良い。
この電極基体にはラネーニッケル触媒をニッケルにより分散メッキすることで電極触媒を担持できる。
The electrode base of the three-dimensional electrode of the method of the present invention is preferably composed of a metal having a low specific resistance obtained by electroless nickel plating on the entire surface of nickel, nickel alloy, stainless steel, or copper alloy exhibiting good corrosion resistance. The electrode substrate may be a non-porous sheet or may be porous such as expanded metal.
An electrode catalyst can be supported on the electrode substrate by dispersing and plating Raney nickel catalyst with nickel.

前記切り込み部は好ましくは矩形(短冊)状に形成するが、正方形、半円形、先細台形状、先太台形状等の任意形状が可能である。複数の切り込み部は電極基体にランダムに形成しても良いが、縦横に整列させて形成することが好ましい。
前記切り込み部の電極基体全表面積に対する形成割合は5〜60%が望ましく、15〜30%がより望ましい。5%未満であると弾性及び導電性が不足することがあり、60%を超えると電極全体の強度が不足したり、イオン交換膜と離間する弾性導電体の割合が増えすぎて抵抗値が上昇してエネルギーロスが生じることがある。
弾性導電体形成後の電極基体表面は平滑のままでも良いが、ローレット加工、ルーバー加工、コルゲ−ト(波型)加工等を施すこともできる。
The cut portion is preferably formed in a rectangular (strip) shape, but can be any shape such as a square, semi-circular shape, a tapered trapezoidal shape, or a tapered trapezoidal shape. The plurality of cut portions may be randomly formed on the electrode substrate, but are preferably formed by being aligned vertically and horizontally.
The formation ratio of the cut portion to the total surface area of the electrode substrate is preferably 5 to 60%, and more preferably 15 to 30%. If it is less than 5%, elasticity and conductivity may be insufficient. If it exceeds 60%, the strength of the entire electrode is insufficient, or the ratio of elastic conductors that are separated from the ion exchange membrane increases so that the resistance value increases. Energy loss may occur.
The surface of the electrode substrate after the formation of the elastic conductor may be smooth, but knurling, louvering, corrugated (corrugated) processing or the like can also be performed.

本発明方法で使用するイオン交換膜電解槽での電解反応は、前述の不純物を含有する白液電解による多硫化物イオンの生成、特に多硫化物蒸解液の電解製造に使用することが望ましいが、電極として前述の立体電極が使用可能な、不純物を含有する電解液の電極反応であれば特に限定されず、例えば廃酸回収や海水電解反応などにも適用できる。
本発明方法で使用する立体電極をイオン交換膜電解槽に収容する際には、前述の通りイオン交換膜と電極集電体間に内向きに押し付ける(通常は電極集電体により弾性導電体含めた立体電極をイオン交換膜に押し付ける)ように設置すると、立体電極に弾力が付与されて、例えば立体電極がイオン交換膜に密着するといった効果が生じる。
イオン交換膜としては、現行の電解で使用されているカルボン酸やスルフォン酸、または両者複合の酸をイオン交換基とするパーフルオロ陽イオン交換膜が使用できる。
The electrolytic reaction in the ion exchange membrane electrolytic cell used in the method of the present invention is preferably used for the production of polysulfide ions by white liquor electrolysis containing the aforementioned impurities, particularly for electrolytic production of polysulfide cooking liquor. The electrode reaction is not particularly limited as long as it is an electrode reaction of an electrolytic solution containing impurities, in which the aforementioned three-dimensional electrode can be used as an electrode, and can be applied to, for example, waste acid recovery or seawater electrolysis reaction.
When the three-dimensional electrode used in the method of the present invention is accommodated in the ion exchange membrane electrolytic cell, it is pressed inwardly between the ion exchange membrane and the electrode current collector as described above (usually including an elastic conductor by the electrode current collector). If the three-dimensional electrode is pressed against the ion exchange membrane, elasticity is imparted to the three-dimensional electrode, and for example, the three-dimensional electrode is brought into close contact with the ion-exchange membrane.
As the ion exchange membrane, a perfluoro cation exchange membrane having an ion exchange group of carboxylic acid or sulfonic acid used in current electrolysis or a complex acid of both can be used.

このような構成から成るイオン交換膜電解槽を使用して白液電解を行うには、例えば陽極室に不純物を含有する白液又はその希釈液を、陰極室に希釈苛性ソーダ水溶液を供給しながら、両極間に通電する。立体電極の有する高強度及び強靭性により部材相互の位置関係が安定化するため、イオン交換膜等が機械的に損傷したりすることなく、又過度に変形して給電が不十分になることがなく、苛性ソーダ等を高効率で製造できる。更に使用する立体電極が大きな表面積を有するため、不純物が電極表面に析出しても、単位面積当たりの析出量が少なくなり、セル電圧の上昇も従来の電極より少なく、更に多孔性でないため、表面に析出した不純物も容易に除去できる。   In order to perform white liquor electrolysis using an ion exchange membrane electrolytic cell having such a structure, for example, while supplying a white liquor containing impurities in the anode chamber or a diluted solution thereof, a diluted caustic soda aqueous solution is supplied to the cathode chamber, Energize between both poles. Due to the high strength and toughness of the three-dimensional electrode, the positional relationship between the members is stabilized, so that the ion exchange membrane or the like is not mechanically damaged or excessively deformed, resulting in insufficient power supply. No caustic soda can be produced with high efficiency. Furthermore, since the solid electrode to be used has a large surface area, even if impurities are deposited on the electrode surface, the amount deposited per unit area is reduced, the cell voltage is increased less than the conventional electrode, and the surface is not porous. Impurities precipitated in can be easily removed.

本発明方法で使用する立体電極は、板状の金属電極基体に複数の切り込み部を形成して、当該切り込み部を同一方向に折曲して弾性導電体を形成するのみで製造でき、しかも弾性導電体により電極全体に弾力が付与され高強度及び強靭性の電極として機能する。
この立体電極を装着したイオン交換膜電解槽は、立体電極の有する高強度及び強靭性により部材相互の位置関係が安定化して円滑な電解を実行できる。
この立体電極を不純物を含有する電解液の電解、特に白液電解に使用すると、比較的長期間安定して電解を継続できる。
The three-dimensional electrode used in the method of the present invention can be manufactured simply by forming a plurality of cut portions in a plate-like metal electrode substrate, bending the cut portions in the same direction, and forming an elastic conductor. Elasticity is imparted to the entire electrode by the conductor, and it functions as a high-strength and tough electrode.
The ion exchange membrane electrolytic cell equipped with this three-dimensional electrode can perform smooth electrolysis with the positional relationship between the members stabilized by the high strength and toughness of the three-dimensional electrode.
When this three-dimensional electrode is used for electrolysis of an electrolytic solution containing impurities, particularly white liquor electrolysis, electrolysis can be continued stably for a relatively long period of time.

次に、本発明方法に使用できる立体電極を装着したイオン交換膜電解槽を添付図面に示す例に基づいて説明する。
図1aは切り込み部を形成した電極基体を示す一部破断斜視図、図1bは図1aの切り込み部を折曲して弾性導電体を形成した立体電極の一部破断斜視図、図2は図1bの立体電極を装着したイオン交換膜電解槽の部分横断平面図、図3は図2のイオン交換膜電解槽の陰極室における電気の流れを示す斜視図である。
Next, an ion exchange membrane electrolytic cell equipped with a three-dimensional electrode that can be used in the method of the present invention will be described based on an example shown in the accompanying drawings.
FIG. 1a is a partially broken perspective view showing an electrode substrate in which a cut portion is formed, FIG. 1b is a partially broken perspective view of a three-dimensional electrode in which an elastic conductor is formed by bending the cut portion of FIG. 1a, and FIG. FIG. 3 is a perspective view showing the flow of electricity in the cathode chamber of the ion exchange membrane electrolytic cell shown in FIG. 2.

図1aに示すように、無孔板状の金属製電極基体11に、図示の例では同一方向を向く矩形状の切り込み部12を1列3個、5例の計15個形成する。隣接する列の各切り込み部12は互いに逆方向を向くように形成されている。
次いで各切り込み部12を電極基体11に対して同一方向に、図示の例では電極基体11の下方に向けて折曲して弾性導電体13を成形するとともに、各弾性導電体13の先端部を電極基体11と平行に折曲して接続片14を形成し、計15本の弾性導電体13を有する立体電極ユニット15とする(図1b)。
As shown in FIG. 1a, in a non-porous plate-like metal electrode base 11, in the illustrated example, three rectangular cut portions 12 facing the same direction are formed in a row, and a total of 15 examples of 5 in a row. The notches 12 in adjacent rows are formed so as to face in opposite directions.
Next, each cut portion 12 is bent in the same direction with respect to the electrode substrate 11, and in the illustrated example, is bent toward the lower side of the electrode substrate 11 to form the elastic conductor 13, and the tip portion of each elastic conductor 13 is A connection piece 14 is formed by bending in parallel with the electrode base 11 to form a solid electrode unit 15 having a total of 15 elastic conductors 13 (FIG. 1b).

図2に示すイオン交換膜電解槽16は、図1bに示した立体電極ユニット15を3ユニット1組として陽極17及び陰極18として使用する例を示している。陽極17及び陰極18として機能する各立体電極ユニット15はそれぞれの表面側(弾性導電体の存在しない側)をイオン交換膜19に密着させ、かつそれらのそれぞれの短辺側を隣接する立体電極ユニット15の短辺側と接触させて立体電極を構成している。
前記イオン交換膜電解槽16は陽極室20及び陰極室21にそれぞれ陽極集電体22と陰極集電体23を有している。陽極17側の隣接する立体電極ユニット15の接触部と前記陽極集電体22間は、第1陽極給電板24で接続され、かつ陰極18側の隣接する立体電極ユニット15の接触部と前記陰極集電体23間は、第1陰極給電板25で接続されている。
The ion exchange membrane electrolytic cell 16 shown in FIG. 2 shows an example in which the three-dimensional electrode unit 15 shown in FIG. 1B is used as an anode 17 and a cathode 18 as a set of three units. The three-dimensional electrode units 15 functioning as the anode 17 and the cathode 18 have their respective surface sides (sides where no elastic conductor is present) in close contact with the ion exchange membrane 19, and their respective short sides are adjacent to the three-dimensional electrode unit. A three-dimensional electrode is formed in contact with the short side of 15.
The ion exchange membrane electrolytic cell 16 has an anode current collector 22 and a cathode current collector 23 in an anode chamber 20 and a cathode chamber 21, respectively. A contact portion between the adjacent solid electrode unit 15 on the anode 17 side and the anode current collector 22 are connected by a first anode power supply plate 24, and a contact portion between the adjacent solid electrode unit 15 on the cathode 18 side and the cathode The current collectors 23 are connected by a first cathode power supply plate 25.

更に第1陽極給電板24同士は第2陽極給電板26で電気的に接続され、当該第2陽極給電板26には全ての陽極側立体電極15の接続片14が電気的に接続され、弾性導電体13にイオン交換膜19方向を向く外力を与えている。更に第1陰極給電板25同士は第2陰極給電板27で電気的に接続され、当該第2陰極給電板27には全ての陰極側立体電極15の接続片14が電気的に接続され、弾性導電体13にイオン交換膜19方向を向く外力を与えている。   Furthermore, the first anode power supply plates 24 are electrically connected to each other by a second anode power supply plate 26, and the connection pieces 14 of all the anode-side three-dimensional electrodes 15 are electrically connected to the second anode power supply plate 26 to be elastic. An external force is applied to the conductor 13 in the direction of the ion exchange membrane 19. Further, the first cathode power supply plates 25 are electrically connected to each other by a second cathode power supply plate 27, and the connection pieces 14 of all the cathode side three-dimensional electrodes 15 are electrically connected to the second cathode power supply plate 27, and are elastic. An external force is applied to the conductor 13 in the direction of the ion exchange membrane 19.

このイオン交換膜電解槽16の陽極室20に不純物を含有する白液を供給し、かつ陰極室21に希釈苛性ソーダ水溶液を供給しながら通電すると、陽極室で多硫化物イオンが生成し、陽極側立体電極15表面の不純物等が析出する。しかし立体電極15の表面積が大きく、その表面が平滑であるため、電圧上昇が僅かで、析出した不純物を簡単に除去できる。なお陽極室に白液の替わりに食塩水を供給すると、陰極室で濃厚苛性ソーダ水溶液が得られる。
このとき、各立体電極ユニット15の弾性導電体13が電極全体に弾力を付与し高強度及び強靭性の電極として機能するため、長期間安定した運転を可能にする。しかも図3に示すように、陰極側(陽極側は省略するが同様に給電される)では、陰極集電体23から第1陰極給電板25を通して隣接する立体電極ユニット15の接触部に直接給電されるとともに、前記第1陰極給電板25に給電された電流は、第2陰極給電板27に分岐し、当該第2陰極給電板27に接続された接続片14及び弾性導電体13を通して各立体電極15の表面に給電される。従って給電経路が多数存在し、確実な給電が達成できる。
When a white liquor containing impurities is supplied to the anode chamber 20 of the ion exchange membrane electrolytic cell 16 and the dilute caustic soda aqueous solution is supplied to the cathode chamber 21, polysulfide ions are generated in the anode chamber, and the anode side Impurities and the like on the surface of the three-dimensional electrode 15 are deposited. However, since the surface area of the three-dimensional electrode 15 is large and the surface thereof is smooth, the voltage rise is slight and the deposited impurities can be easily removed. When saline is supplied to the anode chamber instead of white liquor, a concentrated aqueous solution of caustic soda is obtained in the cathode chamber.
At this time, the elastic conductor 13 of each three-dimensional electrode unit 15 imparts elasticity to the entire electrode and functions as a high-strength and tough electrode, thus enabling stable operation for a long period of time. Moreover, as shown in FIG. 3, on the cathode side (the anode side is omitted, power is supplied in the same manner), power is directly supplied from the cathode current collector 23 to the contact portion of the adjacent three-dimensional electrode unit 15 through the first cathode power supply plate 25. In addition, the current supplied to the first cathode power supply plate 25 branches to the second cathode power supply plate 27 and passes through the connection piece 14 and the elastic conductor 13 connected to the second cathode power supply plate 27. Power is supplied to the surface of the electrode 15. Therefore, there are many power supply paths, and reliable power supply can be achieved.

次に本発明方法による電解運転の実施例を説明するが、該実施例は本発明を限定するものではない。   Next, although the Example of the electrolysis driving | operation by this invention method is described, this Example does not limit this invention.

[実施例1]
次のようにして単位イオン交換膜電解槽を組み立てた。
陰極は有効面積が20cm2(幅4cm×高さ5cm)であるニッケル製エキスパンデッドメタルにラネーニッケル触媒をニッケルにより分散メッキし触媒を担持した。
この陰極を陰極室隔壁に陰極リブを使用して溶接により取り付けた。
陽極室内には、平板状ニッケルからなる陽極リブを使用して、陽極室隔壁に、銅合金に無電解ニッケルメッキを施し更にラネーニッケル触媒を分散メッキしたエキスパンデッドメタル型陽極集電体を取り付けた。
[Example 1]
A unit ion exchange membrane electrolytic cell was assembled as follows.
The cathode was a Raney nickel catalyst dispersedly plated with nickel on a nickel expanded metal having an effective area of 20 cm 2 (width 4 cm × height 5 cm) to carry the catalyst.
This cathode was attached to the cathode compartment partition by welding using a cathode rib.
In the anode chamber, an anode rib made of flat nickel was used, and an expanded metal anode current collector in which an electroless nickel plating was applied to a copper alloy and a Raney nickel catalyst was dispersed and plated was attached to the anode chamber partition wall. .

立体電極ユニットの電極基体として、縦50mm、横40mm、厚み0.2mmの銅合金板を用いた。この銅合金板をエキスパンデッドメタル型に成形した後、プレス加工を行い、5mmピッチで、幅2mm×長さ9mmの切り込み部を1列に4個で10列形成した。その後この銅合金全面に無電解ニッケルメッキを施し、ラネーニッケル触媒をニッケルにより分散メッキし電極触媒を担持した。
次いで前記各切り込み部を同一方向に約45°の角度で折曲して弾性導電体とし、更にその先端を電極基体と平行になるように折曲して立体電極ユニットとした。
A copper alloy plate having a length of 50 mm, a width of 40 mm, and a thickness of 0.2 mm was used as the electrode base of the three-dimensional electrode unit. After this copper alloy plate was formed into an expanded metal mold, pressing was performed to form 10 notches with 5 mm pitch, 4 mm in width and 9 mm in length in one row. Thereafter, electroless nickel plating was applied to the entire surface of the copper alloy, and Raney nickel catalyst was dispersedly plated with nickel to carry the electrode catalyst.
Next, each of the cut portions was bent at an angle of about 45 ° in the same direction to obtain an elastic conductor, and the tip thereof was bent so as to be parallel to the electrode substrate to obtain a three-dimensional electrode unit.

この立体電極ユニットを前記陽極集電体上に配置した。
陽極と陰極の間に、フッ素樹脂系陽イオン交換膜(旭硝子株式会社製のフレミオン)を配置してイオン交換膜電解槽を組立てた。
濃度30g/リットルの硫化ナトリウム水溶液に、不純物である浮遊物質を20ppmを添加した擬似白液を調製した。
この擬似白液を陽極室に収容し、10重量%苛性ソーダ水溶液を陰極室に収容し、電流密度を0.5〜6KA/m2の範囲で変化させながら温度84〜86℃の条件で電解を行った。電流密度とセル電圧との関係を図4のグラフ(電流電圧曲線)の「A」に示した。
This three-dimensional electrode unit was disposed on the anode current collector.
An ion exchange membrane electrolytic cell was assembled by placing a fluororesin cation exchange membrane (Flemion manufactured by Asahi Glass Co., Ltd.) between the anode and the cathode.
A pseudo white liquor was prepared by adding 20 ppm of suspended substances as impurities to an aqueous sodium sulfide solution having a concentration of 30 g / liter.
The pseudo white liquor is accommodated in the anode chamber, the 10 wt% aqueous sodium hydroxide solution is accommodated in the cathode chamber, and electrolysis is performed at a temperature of 84 to 86 ° C. while changing the current density in the range of 0.5 to 6 KA / m 2. went. The relationship between the current density and the cell voltage is shown by “A” in the graph (current-voltage curve) of FIG.

[比較例]
立体構造を有しない電極を用いて次のようにイオン交換膜電解槽を組み立てた。陰極は実施例1と同じ電極を使用した。
陽極は、実施例1の立体電極に代えて、縦50mm、横40mm、厚み2.0mmで、表面積2500m2/m3で平均孔径が0.8mmのニッケル発泡体を使用した。
実施例1と同じ条件で電解した際の電流密度とセル電圧との関係を図4のグラフの「B」に示した。
図4のグラフから判るように、各電流密度において、実施例1の立体電極のセル電圧が比較例の発泡ニッケルより、0.2〜0.7V低かった。
[Comparative example]
An ion exchange membrane electrolytic cell was assembled as follows using an electrode having no three-dimensional structure. The same electrode as in Example 1 was used as the cathode.
Instead of the three-dimensional electrode of Example 1, a nickel foam having a length of 50 mm, a width of 40 mm, a thickness of 2.0 mm, a surface area of 2500 m 2 / m 3 and an average pore diameter of 0.8 mm was used.
The relationship between the current density and the cell voltage when electrolyzed under the same conditions as in Example 1 is shown in “B” of the graph of FIG.
As can be seen from the graph of FIG. 4, at each current density, the cell voltage of the three-dimensional electrode of Example 1 was 0.2 to 0.7 V lower than the foamed nickel of the comparative example.

図1aは切り込み部を形成した電極基体を示す一部破断斜視図、図1bは図1aの切り込み部を折曲して弾性導電体を形成した立体電極の一部破断斜視図である。FIG. 1a is a partially broken perspective view showing an electrode substrate in which a cut portion is formed, and FIG. 1b is a partially broken perspective view of a three-dimensional electrode in which an elastic conductor is formed by bending the cut portion of FIG. 1a. 図1bの立体電極を装着したイオン交換膜電解槽の部分横断平面図である。It is a partial cross-sectional top view of the ion exchange membrane electrolyzer equipped with the three-dimensional electrode of FIG. 1b. 図2のイオン交換膜電解槽の陰極室における電気の流れを示す斜視図である。It is a perspective view which shows the flow of the electricity in the cathode chamber of the ion exchange membrane electrolytic cell of FIG. 実施例1及び比較例における電流密度とセル電圧の関係(電流電圧曲線)を示すグラフである。It is a graph which shows the relationship (current voltage curve) of the current density and cell voltage in Example 1 and a comparative example.

符号の説明Explanation of symbols

11……電極基体 12……切り込み部 13……弾性導電体 14……接続片 15……立体電極(ユニット) 16……イオン交換膜電解槽 17……陽極 18……陰極 19……イオン交換膜 20……陽極室 21……陰極室 22……陽極集電体 23……陰極集電体 24……第1陽極給電板 25……第1陰極給電板 26……第2陽極給電板 27……第2陰極給電板   DESCRIPTION OF SYMBOLS 11 ... Electrode base 12 ... Notch part 13 ... Elastic conductor 14 ... Connection piece 15 ... Solid electrode (unit) 16 ... Ion exchange membrane electrolytic cell 17 ... Anode 18 ... Cathode 19 ... Ion exchange Membrane 20... Anode chamber 21... Cathode chamber 22... Anode current collector 23... Cathode current collector 24... First anode power supply plate 25. ... Second cathode power supply plate

Claims (4)

電極触媒を担持した板状金属電極基体に複数の切り込みを形成し、当該切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成した立体電極を使用して、不純物を含有する電解液を電解することを特徴とする電解方法。   A plurality of cuts are formed in a plate-shaped metal electrode substrate supporting an electrode catalyst, and impurities are removed using a three-dimensional electrode in which the cut portions are bent in the same direction with respect to the electrode substrate to form an elastic conductor. An electrolysis method comprising electrolyzing an electrolyte solution contained therein. 不純物を含有する電解液が白液である請求項1記載の電解方法。   The electrolytic method according to claim 1, wherein the electrolytic solution containing impurities is a white liquor. 白液が浮遊物質を1〜20ppm含有し、この白液の電解により多硫化物を生成するようにした請求項2記載の電解方法。   The electrolysis method according to claim 2, wherein the white liquor contains 1 to 20 ppm of floating substances, and polysulfides are generated by electrolysis of the white liquor. イオン交換膜により陽極を収容する陽極室と陰極を収容する陰極室に区画されたイオン交換膜電解槽の前記陽極及び陰極の少なくとも一方が,電極触媒を担持した板状金属電極基体に形成した複数の切り込み部を前記電極基体に対して同一方向に折曲して弾性導電体を形成した立体電極であり、当該立体電極の金属電極基体がイオン交換膜に密着し、前記弾性導電体が電極集電体に接触した状態で、不純物を含有する電解液を電解することを特徴とする電解方法。
A plurality of the anode and cathode of an ion exchange membrane electrolytic cell partitioned into an anode chamber containing an anode by an ion exchange membrane and a cathode chamber containing a cathode are formed on a plate-shaped metal electrode substrate carrying an electrode catalyst. A three-dimensional electrode in which an elastic conductor is formed by bending the cut portion of the electrode in the same direction with respect to the electrode base, the metal electrode base of the three-dimensional electrode is in close contact with the ion exchange membrane, and the elastic conductor is the electrode collector. An electrolysis method comprising electrolyzing an electrolytic solution containing impurities in a state of contact with an electric body.
JP2006241731A 2005-09-26 2006-09-06 Electrolysis method Expired - Fee Related JP4975402B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006241731A JP4975402B2 (en) 2006-09-06 2006-09-06 Electrolysis method
EP06019924A EP1767671B1 (en) 2005-09-26 2006-09-22 Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using the three-dimensional electrode
US11/525,941 US7927471B2 (en) 2005-09-26 2006-09-25 Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode
CN2006101627307A CN1974858B (en) 2005-09-26 2006-09-26 Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241731A JP4975402B2 (en) 2006-09-06 2006-09-06 Electrolysis method

Publications (2)

Publication Number Publication Date
JP2008063613A true JP2008063613A (en) 2008-03-21
JP4975402B2 JP4975402B2 (en) 2012-07-11

Family

ID=39286574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241731A Expired - Fee Related JP4975402B2 (en) 2005-09-26 2006-09-06 Electrolysis method

Country Status (1)

Country Link
JP (1) JP4975402B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164990A (en) * 1981-04-03 1982-10-09 Toyo Soda Mfg Co Ltd Electrolyzing method for aqueous alkali chloride solution
JPS57194287A (en) * 1981-05-27 1982-11-29 Asahi Glass Co Ltd Electrolytic cell
WO1995000701A1 (en) * 1993-06-28 1995-01-05 Eka Nobel Ab Production of polysulphide by electrolysis of white liquor containing sulphide
JPH11343106A (en) * 1998-05-29 1999-12-14 Asahi Glass Co Ltd Production of polysulfide by electrolytic oxidation
JP2001073180A (en) * 1999-09-06 2001-03-21 Kawasaki Kasei Chem Ltd Production of polysulfide
JP2004300543A (en) * 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd Electrode for electrolysis and ion-exchange membrane electrolytic cell using it
JP2007084907A (en) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164990A (en) * 1981-04-03 1982-10-09 Toyo Soda Mfg Co Ltd Electrolyzing method for aqueous alkali chloride solution
JPS57194287A (en) * 1981-05-27 1982-11-29 Asahi Glass Co Ltd Electrolytic cell
WO1995000701A1 (en) * 1993-06-28 1995-01-05 Eka Nobel Ab Production of polysulphide by electrolysis of white liquor containing sulphide
JPH11343106A (en) * 1998-05-29 1999-12-14 Asahi Glass Co Ltd Production of polysulfide by electrolytic oxidation
JP2001073180A (en) * 1999-09-06 2001-03-21 Kawasaki Kasei Chem Ltd Production of polysulfide
JP2004300543A (en) * 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd Electrode for electrolysis and ion-exchange membrane electrolytic cell using it
JP2007084907A (en) * 2005-09-26 2007-04-05 Chlorine Eng Corp Ltd Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell

Also Published As

Publication number Publication date
JP4975402B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
Asghari et al. Advances, opportunities, and challenges of hydrogen and oxygen production from seawater electrolysis: An electrocatalysis perspective
RU2568546C2 (en) Anode for electroextraction and method of electroextraction with its use
KR20130112037A (en) Method and apparatus for the electrochemical reduction of carbon dioxide
JP2009215580A (en) Cathode for hydrogen generation
CN1537973B (en) Electrode for electrolysis and ion exchange membrane electrolytic cell
JP5632780B2 (en) Electrolytic cell manufacturing method
TWI630287B (en) Membrane electrode assembly and electrolyzed water production device using the same
JP5819790B2 (en) Electrolytic cell and electrolytic cell
JP2007084907A (en) Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell
JP5583002B2 (en) Ion exchange membrane electrolytic cell
CN114402095B (en) Cross-flow water electrolysis
JP2013076151A (en) Electrolytic cell and electrolytic bath
US7927471B2 (en) Three-dimensional electrode for electrolysis, ion exchange membrane electrolytic cell and method of electrolysis using three-dimensional electrode
JP4975402B2 (en) Electrolysis method
CN102154660A (en) Elastic electrode in ionic membrane electrolytic bath
JP6435413B2 (en) Pipe type electrolytic cell
KR102204669B1 (en) Hydrogen production system using acid-base solution
CA2841234C (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
CN202072771U (en) Elastic electrode in ion film electrolyser
JP5854788B2 (en) Zero-gap electrolytic cell and method for manufacturing the same
CN111058055B (en) Cathode structure of ion membrane electrolytic cell
JPS6327432B2 (en)
JP5271429B2 (en) Cathode for hydrogen generation
JPS5871382A (en) Electrolytic cell
JP6837342B2 (en) Electrode for hydrogen generation and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101208

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees