JP2012140652A - Ion-exchange membrane method electrolytic cell - Google Patents
Ion-exchange membrane method electrolytic cell Download PDFInfo
- Publication number
- JP2012140652A JP2012140652A JP2010292305A JP2010292305A JP2012140652A JP 2012140652 A JP2012140652 A JP 2012140652A JP 2010292305 A JP2010292305 A JP 2010292305A JP 2010292305 A JP2010292305 A JP 2010292305A JP 2012140652 A JP2012140652 A JP 2012140652A
- Authority
- JP
- Japan
- Prior art keywords
- exchange membrane
- electrolytic cell
- support member
- ion exchange
- electrode support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003014 ion exchange membrane Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000007797 corrosion Effects 0.000 claims abstract description 60
- 238000005260 corrosion Methods 0.000 claims abstract description 60
- 229910052751 metal Inorganic materials 0.000 claims description 35
- 239000002184 metal Substances 0.000 claims description 35
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 40
- 238000005868 electrolysis reaction Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 23
- 229910052759 nickel Inorganic materials 0.000 description 20
- 230000000694 effects Effects 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/60—Constructional parts of cells
- C25B9/65—Means for supplying current; Electrode connections; Electric inter-cell connections
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、クロルアルカリ電解を代表とする電解工業に用いられるイオン交換膜法電解槽に関する。即ち、所要エネルギーを低減する目的で開発した、陽極と陰極との距離を可及的に短くしたゼロギャップ電解槽であって、陰極が変形せず、イオン交換膜を破損せず、長時間安定的に電解操業ができるという特長を有するイオン交換膜電解槽の構造に関する。 The present invention relates to an ion exchange membrane method electrolytic cell used in the electrolytic industry represented by chloralkali electrolysis. In other words, a zero-gap electrolytic cell developed for the purpose of reducing the required energy and made as short as possible between the anode and the cathode, the cathode does not deform, the ion exchange membrane is not damaged, and is stable for a long time. The present invention relates to a structure of an ion exchange membrane electrolytic cell having a feature that it can be electrolytically operated.
クロルアルカリ電解を代表とするイオン交換膜法電解工業は、素材産業として重要な役割を果たしているが、電気エネルギーの消費量が多大である。そのため、イオン交換膜法電解工業の省エネルギー化は普遍の課題と位置付けられ、種々の研究開発が持続的に実施されている。 The ion exchange membrane electrolytic industry represented by chloralkali electrolysis plays an important role as a material industry, but consumes a great deal of electric energy. For this reason, energy saving in the ion exchange membrane electrolytic industry is regarded as a universal issue, and various research and development are being carried out continuously.
電解時に消費する電気エネルギーは電解電圧に比例するため、電解電圧の削減が省エネルギー化に直結する。電解電圧の削減を目的に、陽極と陰極との距離を可及的に短くした、所謂、ゼロギャップ電解槽の研究開発が行われている。ゼロギャップ電解槽は陽極と陰極でイオン交換膜を挟持した構造で、電解液の電気抵抗を可及的に小さくでき、クロルアルカリ電解の省エネルギーに大きく貢献する。 Since the electric energy consumed during electrolysis is proportional to the electrolysis voltage, the reduction of electrolysis voltage directly leads to energy saving. For the purpose of reducing the electrolysis voltage, research and development of a so-called zero gap electrolyzer in which the distance between the anode and the cathode is made as short as possible has been performed. The zero-gap electrolytic cell has a structure in which an ion exchange membrane is sandwiched between an anode and a cathode, and can reduce the electrical resistance of the electrolytic solution as much as possible, greatly contributing to energy saving of chloralkali electrolysis.
図1はゼロギャップ電解槽の断面構造の一例を示している。ゼロギャップ電解槽は、陽極室(1)と陰極室(2)がイオン交換膜(3)で区画され、陽極(4)と陰極(5)でイオン交換膜(3)が挟まれた構造を有する。イオン交換膜は1mm以下の薄い樹脂フィルムからなり、陽極及び/又は陰極を過度に押し当てるとイオン交換膜が破損するため、ゼロギャップ電解槽においては、陽極及び/又は陰極を適度な圧力で均一にイオン交換膜に押し当てる技術が重要である。 FIG. 1 shows an example of a cross-sectional structure of a zero gap electrolytic cell. The zero gap electrolytic cell has a structure in which the anode chamber (1) and the cathode chamber (2) are partitioned by the ion exchange membrane (3), and the ion exchange membrane (3) is sandwiched between the anode (4) and the cathode (5). Have. The ion exchange membrane is made of a thin resin film of 1 mm or less, and if the anode and / or cathode are pressed too much, the ion exchange membrane will be damaged. Therefore, in the zero gap electrolytic cell, the anode and / or cathode should be uniform at an appropriate pressure. It is important to apply the technology to the ion exchange membrane.
このため、「イオン交換膜の表面に設けられた一方の電極として使用される比較的剛性の網目スクリーンと、前記イオン交換膜の他方の表面に設けられて他方の電極として使用される可撓性あるいは柔軟性の薄いスクリーンと、前記薄いスクリーンの外表面に設けられた弾性マット(弾力的圧縮性マット)」から構成されるイオン交換膜法電解槽が提案されている(例えば、特許文献1参照)。これは、可撓性の電極を、弾性マットの弾性反発力でイオン交換膜に押し当て、一方の剛性電極との間でイオン交換膜を挟持するゼロギャップ電解槽である。 For this reason, “a relatively rigid mesh screen used as one electrode provided on the surface of the ion exchange membrane, and flexibility used as the other electrode provided on the other surface of the ion exchange membrane. Alternatively, an ion exchange membrane electrolytic cell composed of a thin flexible screen and an elastic mat (elastic compressible mat) provided on the outer surface of the thin screen has been proposed (for example, see Patent Document 1). ). This is a zero-gap electrolytic cell in which a flexible electrode is pressed against an ion exchange membrane by the elastic repulsive force of an elastic mat, and the ion exchange membrane is sandwiched between one rigid electrode.
特許文献1に記載のゼロギャップ電解槽は、例えば、図1の可撓性陰極(5)の背面に設置された電極支持部材(6)が弾性マットからなり、該弾性マットの弾性反発力で可撓性陰極(5)が剛性陽極(4)に向かいイオン交換膜(3)に押し当てられる構造を有する。その電極支持部材(6)の外側には集電体(7)が設置されている。
特許文献1に記載のゼロギャップ電解槽においては、陽極(4)及び/又は陰極(5)を適度な圧力で均一にイオン交換膜(3)に押し当てることが可能となり、数平方メートルの電解面積を有する工業サイズのゼロギャップ電解槽であっても製作可能となった。
In the zero gap electrolytic cell described in
In the zero gap electrolysis cell described in
その後、該ゼロギャップ電解槽の性能改良が幅広く行われ、「可撓性あるいは柔軟性の薄い電極に、0.3mm以下の厚みであり、1ヶ所の孔の面積が0.05〜1.0mm2、かつ、開孔率が20%以上の多孔体を使用し、電極が直径0.1〜1mmのワイヤーの集合体よりなる弾性マットを使用したゼロギャップ電解槽」が開示されている(例えば、特許文献2参照)。 Thereafter, the performance of the zero gap electrolytic cell was widely improved, and “a flexible or thin electrode having a thickness of 0.3 mm or less, and the area of one hole is 0.05 to 1.0 mm. 2 and a zero gap electrolyzer using a porous body having an open area ratio of 20% or more and an elastic mat made of an assembly of wires having a diameter of 0.1 to 1 mm ”is disclosed (for example, , See Patent Document 2).
また、「耐食性フレームに金属製コイル体を巻回して構成される弾性クッション材を電極支持部材に使用したゼロギャップ電解槽」が開示されている(例えば、特許文献3参照)。これは、金属製コイル体で構成される弾性マットを耐食性フレームが形成する空間に固定したものであり、弾性マットの取り扱いが容易で、かつ、再使用が可能であるという特長を有する。特許文献3に記載される電極支持部材を図9および図10(図9のa部断面を示す)に例示する。
Further, “a zero gap electrolytic cell using an elastic cushion material formed by winding a metal coil body around a corrosion resistant frame as an electrode support member” is disclosed (for example, see Patent Document 3). This is a structure in which an elastic mat formed of a metal coil body is fixed in a space formed by a corrosion-resistant frame, and has an advantage that the elastic mat is easy to handle and can be reused. The electrode support member described in
さらに、「可撓性電極及び弾性マットが、可撓性電極及び弾性マットを貫通し、弾性マットの裏面に設置された多孔体集電板の孔に係合するピンで固定されたゼロギャップ電解槽」が提案されている(例えば、特許文献4参照)。特許文献4に記載の固定手段は、例えば、図2と、そのbでの断面を示す図3に示したように、固定用のピン(8)が、可撓性陰極(5)と金属製コイル体(10)からなる弾性マットを貫通し、集電板(7)の孔に係合し、可撓性陰極(5)及び金属製コイル体(10)が集電板(7)に固定されるように構成される。
Furthermore, “zero gap electrolysis in which the flexible electrode and the elastic mat are fixed with pins that penetrate the flexible electrode and the elastic mat and engage with the holes of the porous collector plate installed on the back surface of the elastic mat. A “tank” has been proposed (see, for example, Patent Document 4). For example, as shown in FIG. 2 and FIG. 3 showing a cross section at b, the fixing means described in
この構造の場合、その製作過程において、ピン(8)を集電板(7)の孔に係合する作業時に、金属性コイル体(10)を圧縮しながらピン(8)を集電板(7)側に向けて押し込む必要がある。ピン(8)に過度の力が加わることにより、ピン(8)が変形したり、0.3mm以下の薄い多孔体からなる可撓性陰極(5)が過度に変形、あるいは破損したりする場合があった。 In the case of this structure, during the manufacturing process, when the pin (8) is engaged with the hole of the current collector plate (7), the pin (8) is connected to the current collector plate (10) while compressing the metallic coil body (10). 7) It is necessary to push in toward the side. When excessive force is applied to the pin (8), the pin (8) is deformed, or the flexible cathode (5) made of a thin porous body of 0.3 mm or less is excessively deformed or damaged. was there.
また、ゼロギャップ電解槽を組立てる場合、可撓性陰極(5)がイオン交換膜(3)に接触し、陽極(4)側に押される。この時、陽極(4)は剛性のためイオン交換膜(3)は移動せず、可撓性陰極(5)と集電体(7)との距離が縮まり金属製コイル体(10)が圧縮され、金属製コイル体(10)の弾性反発力で可撓性陰極(5)がイオン交換膜(3)に密着する結果、陽極(4)と可撓性陰極(5)の距離が可及的に短くなる。 Moreover, when assembling a zero gap electrolytic cell, a flexible cathode (5) contacts an ion exchange membrane (3), and is pushed to the anode (4) side. At this time, since the anode (4) is rigid, the ion exchange membrane (3) does not move, the distance between the flexible cathode (5) and the current collector (7) is reduced, and the metal coil body (10) is compressed. As a result, the flexible cathode (5) is brought into close contact with the ion exchange membrane (3) by the elastic repulsion of the metal coil body (10), so that the distance between the anode (4) and the flexible cathode (5) is possible. Become shorter.
特許文献4のゼロギャップ電解槽は、図3に示した通り、ピン(8)に接している部分の可撓性陰極(5)に窪みが生じている。そのため、電解槽組み立て時にイオン交換膜(3)で押された可撓性陰極(5)が集電板(7)に移動する時に、ピン(8)近傍の可撓性陰極(5)は移動しないため、図4に示したように、ピン近傍の可撓性陰極(5)が変形し、可撓性陰極(5)の変形部分(11)がイオン交換膜(3)側に局部的に突出する不都合が生じていた。
その結果、運転中にピン(8)近傍の陰極変形部(11)がイオン交換膜(3)と擦れて、イオン交換膜が破損し易くなるなど、電解槽組立て時や運転中にイオン交換膜が破損し易いという課題を有している。
As shown in FIG. 3, the zero gap electrolytic cell of
As a result, the cathode deformation part (11) in the vicinity of the pin (8) rubs against the ion exchange membrane (3) during operation, and the ion exchange membrane is easily damaged. Has a problem of being easily damaged.
前記の通り、従来技術のゼロギャップ電解槽は、その組立て時に弾性マットや可撓性陰極を固定する作業が困難で、かつ、電解槽組立て時や運転中にイオン交換膜が破損し易いという課題を有している。
本発明の目的は、製作が簡便で、かつ、イオン交換膜の破損原因となる陰極変形部分が生じないゼロギャップ電解槽を提供することにある。
As described above, the zero gap electrolytic cell of the prior art is difficult to fix the elastic mat and the flexible cathode at the time of assembly, and the ion exchange membrane is easily damaged during the assembly of the electrolytic cell and during operation. have.
An object of the present invention is to provide a zero-gap electrolytic cell that is easy to manufacture and does not have a deformed cathode portion that causes damage to an ion exchange membrane.
本発明は、電極支持部材が可撓性電極と集電板との間に挟持されて収容される構成を有するイオン交換膜法電解槽であって、該電極支持部材は、少なくとも一部が弾性マットで覆われている耐食性フレーム(A)と、全く弾性マットで覆われていない耐食性フレーム(B)とから構成されることを特徴とするイオン交換膜法電解槽を提供する。 The present invention is an ion exchange membrane electrolytic cell having a configuration in which an electrode support member is sandwiched and accommodated between a flexible electrode and a current collector plate, and at least a part of the electrode support member is elastic. There is provided an ion exchange membrane method electrolytic cell comprising a corrosion resistant frame (A) covered with a mat and a corrosion resistant frame (B) not covered with an elastic mat at all.
本発明が提供するイオン交換膜法電解槽は、従来のゼロギャップ電解槽では困難であった弾性マットと可撓性陰極を固定する作業が極めて簡便である。さらに、イオン交換膜の破損原因となる陰極変形部分が生じないため、長期間安定的な運転が可能となる特段の効果を奏する。また、電極性能が劣化した場合の電極交換が、極めて容易に実施可能である。 In the ion exchange membrane electrolytic cell provided by the present invention, the work of fixing the elastic mat and the flexible cathode, which has been difficult in the conventional zero gap electrolytic cell, is extremely simple. In addition, since there is no deformation of the cathode that causes damage to the ion exchange membrane, there is a special effect that enables stable operation over a long period of time. Moreover, electrode replacement when electrode performance deteriorates can be performed very easily.
以下、本発明を実施するための形態を、図面を参照して詳細に説明する。
以下の記載においては、剛性陽極(4)及び可撓性陰極(5)について説明するが、電極の極性を逆にして使用する態様、即ち、剛性陰極(4)及び可撓性陽極(5)として使用する態様も本願発明の範囲とし、特許請求の範囲では、両方の態様を含めて可撓性電極として表現する。
また、本発明のイオン交換膜法電解槽の応用例として食塩電解に用いる場合を説明するが、食塩電解以外の、例えば、塩化カリウム水溶液電解やアルカリ水電解などにも好適に利用できる。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
In the following description, the rigid anode (4) and the flexible cathode (5) will be described. However, embodiments in which the polarities of the electrodes are reversed, that is, the rigid cathode (4) and the flexible anode (5) are used. The aspect used as the scope of the present invention is also within the scope of the present invention, and in the claims, both aspects are expressed as a flexible electrode.
Moreover, although the case where it uses for salt electrolysis as an application example of the ion exchange membrane method electrolyzer of this invention is demonstrated, it can utilize suitably also for potassium chloride aqueous solution electrolysis, alkaline water electrolysis, etc. other than salt electrolysis.
本発明のイオン交換膜法電解槽は、所謂、ゼロギャップ電解槽であり、その断面構造は図1で示される。陽極室(1)と陰極室(2)がイオン交換膜(3)で区画されており、電極支持部材(6)は可撓性陰極(5)と集電板(7)の間に挟持された形態で収容されている。 The ion exchange membrane method electrolytic cell of the present invention is a so-called zero gap electrolytic cell, and its cross-sectional structure is shown in FIG. The anode chamber (1) and the cathode chamber (2) are partitioned by an ion exchange membrane (3), and the electrode support member (6) is sandwiched between the flexible cathode (5) and the current collector plate (7). Are housed in different forms.
剛性陽極(4)は特に限定はなく、従来知られているものを適時用いればよい。例えば、チタンからなるエキスパンドメタルに、イリジウム酸化物及び/又はルテニウム酸化物などの塩素発生電極触媒を担持してなる塩素発生電極が広く知られている。
イオン交換膜(3)は特に限定はなく、従来知られているものを適時用いればよい。例えば、スルホン酸基やカルボン酸基などの陽イオン交換基を有するフッ素樹脂フィルムからなるイオン交換膜が広く知られている。
The rigid anode (4) is not particularly limited, and a conventionally known one may be used as appropriate. For example, a chlorine generating electrode in which an expanded metal made of titanium carries a chlorine generating electrode catalyst such as iridium oxide and / or ruthenium oxide is widely known.
The ion exchange membrane (3) is not particularly limited, and a conventionally known one may be used as appropriate. For example, an ion exchange membrane made of a fluororesin film having a cation exchange group such as a sulfonic acid group or a carboxylic acid group is widely known.
可撓性陰極(5)は柔軟であればよい。食塩電解用の可撓性陰極(5)としては、電解時に水素を発生する水素発生電極や酸素ガスを還元する酸素ガス拡散電極が広く知られており、その何れもが好適に用いられる。特に、電解時に水素を発生する水素発生陰極が好ましい。
水素発生電極は、通常、ニッケル基材に水素発生電極触媒を担持した、所謂、活性陰極が適用される。現在、種々の活性陰極が開発・実用化されており、本発明はこれらの活性陰極の何れもが使用可能である。
The flexible cathode (5) may be soft. As the flexible cathode (5) for salt electrolysis, a hydrogen generating electrode that generates hydrogen during electrolysis and an oxygen gas diffusion electrode that reduces oxygen gas are widely known, and any of them is preferably used. In particular, a hydrogen generating cathode that generates hydrogen during electrolysis is preferable.
As the hydrogen generating electrode, a so-called active cathode in which a hydrogen generating electrode catalyst is supported on a nickel base is usually applied. Currently, various active cathodes have been developed and put to practical use, and any of these active cathodes can be used in the present invention.
活性陰極に用いられるニッケル基材には特に限定はないが、ニッケル製のエキスパンドメタルなどの多孔板が一般的である。ニッケル基材の厚みは、好ましくは1mm以下、より好ましくは0.3mm以下である。ニッケル基材が厚すぎると可撓性が不足し、均一なゼロギャップが確保できず、本発明の省エネルギー効果が得られない場合があり、場合によってはイオン交換膜が過度に押されて破損が生じる。逆に、ニッケル基材の厚みの下限は、ニッケル基材がハンドリング可能であればよく、特に限定されないが、通常、0.01mm以上である。 Although there is no limitation in particular in the nickel base material used for an active cathode, perforated plates, such as an expanded metal made from nickel, are common. The thickness of the nickel substrate is preferably 1 mm or less, more preferably 0.3 mm or less. If the nickel base is too thick, the flexibility is insufficient, a uniform zero gap cannot be secured, and the energy saving effect of the present invention may not be obtained. In some cases, the ion exchange membrane is excessively pressed and damaged. Arise. On the contrary, the lower limit of the thickness of the nickel base material is not particularly limited as long as the nickel base material can be handled, but is usually 0.01 mm or more.
活性陰極のニッケル基材に担持する水素発生触媒は特に限定はないが、白金、白金合金、ルテニウム酸化物などの貴金属触媒が好ましい。貴金属触媒を用いることで少量の触媒担持量で、長期間にわたり水素過電圧を低く抑えることができるため、電解槽の安定した運転可能期間をより一層延長することができる。 The hydrogen generation catalyst supported on the nickel base of the active cathode is not particularly limited, but a noble metal catalyst such as platinum, a platinum alloy, or ruthenium oxide is preferable. By using a noble metal catalyst, the hydrogen overvoltage can be kept low over a long period of time with a small amount of catalyst, so that the stable operation period of the electrolytic cell can be further extended.
集電板(7)としては導電性で耐食性に優れた金属板を用いる。例えば、ニッケルやステンレスの板が好適に用いられる。また、銅などの導電性に優れた金属板の表面をニッケル被覆して耐食性を高めたものも好適に用いられる。
集電板(7)の厚みは特に限定はないが、1〜3mmが好ましい。1mm未満であると剛性が不足し、本発明の効果が得られない場合がある。また、厚すぎると材料コストが悪化する。
As the current collector plate (7), a metal plate having electrical conductivity and excellent corrosion resistance is used. For example, a nickel or stainless steel plate is preferably used. In addition, a metal plate with excellent conductivity, such as copper, having a surface coated with nickel and having improved corrosion resistance is also preferably used.
The thickness of the current collector plate (7) is not particularly limited, but is preferably 1 to 3 mm. If it is less than 1 mm, the rigidity is insufficient and the effects of the present invention may not be obtained. On the other hand, if it is too thick, the material cost is deteriorated.
集電板(7)は、ピン(8)と係合する孔を有する。ピン(8)を設置する位置のみに孔を設けてもよいし、集電板(7)を多孔板とし、一部の孔にピン(8)を係合させてもよい。通常、集電板(7)は多孔板とし、ピン(8)を係合させると共に、イオン交換膜(3)や可撓性陰極(5)の部位と集電板(7)裏面の部位との間で電解液やガスが円滑に流通できるようにする。 The current collector (7) has a hole that engages with the pin (8). A hole may be provided only at a position where the pin (8) is installed, or the current collector plate (7) may be a perforated plate, and the pin (8) may be engaged with a part of the holes. Usually, the current collector plate (7) is a perforated plate and engages with the pin (8), and the ion exchange membrane (3) and the flexible cathode (5) and the current collector plate (7) on the back surface To allow the electrolyte and gas to flow smoothly.
本発明のイオン交換膜法電解槽においては、前記可撓性陰極(5)と前記集電板(7)の間に電極支持部材(6)が設置されている。電極支持部材(6)は、表面の少なくとも1部が弾性マットで被覆されている。
本発明で用いる電極支持部材(6)の形態は、例えば、図5、並びに、図5のa−a線断面図を示した図6に例示される。耐食性フレーム(A)(9)の一部に金属性コイル体(10)が巻回されて弾性マットが形成されている。電極支持部材(6)の表面の少なくとも一部は弾性マットにより被覆されている。
In the ion exchange membrane method electrolytic cell of the present invention, an electrode support member (6) is installed between the flexible cathode (5) and the current collector plate (7). The electrode support member (6) has at least a part of its surface covered with an elastic mat.
The form of the electrode support member (6) used in the present invention is exemplified in FIG. 5 and FIG. 6 showing a cross-sectional view taken along the line aa in FIG. A metal coil body (10) is wound around a part of the corrosion resistant frame (A) (9) to form an elastic mat. At least a part of the surface of the electrode support member (6) is covered with an elastic mat.
図5に例示される電極支持部材(6)は、数本の耐食性フレーム(A)(9)、4本の耐食性フレーム(B)(13)及び2本のフレーム連結材(12)から構成される。電極支持部材(6)は、その外周部が耐食性フレーム(B)(13)で構成され、横方向2本の耐食性フレーム(B)(13)間は2本のフレーム連結材(12)で橋渡しされ、フレーム連結部(12)間は2本以上の耐食性フレーム(A)(9)で橋渡しされている。フレーム連結部(12)の面及び耐食性フレーム(A)(9)の面の少なくとも一部は金属製コイル体(10)の弾性マットで覆われている。 The electrode support member (6) illustrated in FIG. 5 is composed of several corrosion resistant frames (A) (9), four corrosion resistant frames (B) (13), and two frame connecting members (12). The The outer periphery of the electrode support member (6) is composed of a corrosion-resistant frame (B) (13), and the two corrosion-resistant frames (B) (13) in the lateral direction are bridged by two frame connecting materials (12). The frame connecting portions (12) are bridged by two or more corrosion resistant frames (A) (9). At least a part of the surface of the frame connecting portion (12) and the surface of the corrosion-resistant frame (A) (9) is covered with an elastic mat of the metal coil body (10).
耐食性フレーム(A)(9)は、電解液に耐食性がある材料で構成され、通常、ニッケルやステンレスの丸棒や角棒などで構成される。例えば、1〜3mm径のニッケル丸棒を組み合わせて製造する。また、銅などの導電性に優れた金属の表面をニッケル被覆して耐食性を高めたものも好適に用いられる。 The corrosion-resistant frame (A) (9) is made of a material that is corrosion-resistant to the electrolytic solution, and is usually made of a nickel or stainless steel round bar or square bar. For example, it manufactures combining 1-3 mm diameter nickel round bars. Moreover, the thing which coat | covered the surface of the metal excellent in electroconductivity, such as copper, with nickel and improved corrosion resistance is used suitably.
金属製コイル体(10)はコイル状の形状をした金属であり、例えば、金属の線材をロール加工した螺旋状の金属コイル体(10)が適用される。用いる線材は、ニッケルやステンレスなどの耐食性が高いものが好ましく使用され、また、銅などの導電性に優れた金属線材の表面をニッケル被覆して耐食性を高めたものも好適に用いられる。銅の線材をロール加工した螺旋状の金属コイル体(10)にニッケル被覆を施し、耐食性を高めたものを適用してもよい。 The metal coil body (10) is a metal having a coil shape, and for example, a spiral metal coil body (10) obtained by rolling a metal wire is applied. As the wire to be used, a material having high corrosion resistance such as nickel or stainless steel is preferably used, and a metal wire excellent in conductivity such as copper having a surface coated with nickel is preferably used. A spiral metal coil body (10) obtained by rolling a copper wire may be coated with nickel to improve corrosion resistance.
金属コイル体(10)のコイル巻き径(コイルの見掛け上の直径)は特に限定はないが、通常、3乃至10mmとすればよい。コイル巻き径が3mmより小さいと弾性マットの圧縮可能厚みが不足し、本発明の効果が発揮されない場合がある。逆に、10mmより大きいとハンドリング性が悪化する場合があり、また、圧縮時に塑性変形を受けて弾性反発力が不十分となる場合がある。
金属コイル体(10)のコイル厚みは特に限定はないが、通常、0.005〜1mm、好ましくは0.01〜0.1mmとすればよい。コイルが1mmより厚いと圧縮時の弾性反発力が異常に強くなり本発明の効果が得られない場合がある。逆に、0.005mmより薄いとハンドリング時にコイルが破損する場合がある。
The coil winding diameter (apparent diameter of the coil) of the metal coil body (10) is not particularly limited, but is usually 3 to 10 mm. If the coil winding diameter is smaller than 3 mm, the compressible thickness of the elastic mat is insufficient, and the effects of the present invention may not be exhibited. On the other hand, if it is larger than 10 mm, the handleability may be deteriorated, and the elastic repulsion may be insufficient due to plastic deformation during compression.
The coil thickness of the metal coil body (10) is not particularly limited, but is usually 0.005 to 1 mm, preferably 0.01 to 0.1 mm. If the coil is thicker than 1 mm, the elastic repulsion force during compression becomes abnormally strong, and the effects of the present invention may not be obtained. Conversely, if it is thinner than 0.005 mm, the coil may be damaged during handling.
金属コイル体(10)は、耐食性フレーム(A)(9)に巻回されて弾性マットを形成する。図5、およびそのa−a断面を示す図6に示されるように、金属コイル体(10)を、長方形状に組み合わせた耐食性フレーム(A)(9)に巻回して弾性マットを形成することができる。別態様として、2本だけを並行に配置した耐食性フレーム(A)を用いて、これに金属コイル体(10)を巻回してもよい。金属コイル体(10)を耐食性フレーム(A)(9)に巻回する場合、図5を例にとれば、長方形形状の耐食性フレーム(A)(9)を構成する4本の枠体の内、対向する2本の間にほぼ均一な密度となるように、少なくとも1本の金属コイル体(10)を巻回すればよい。
耐食性フレーム(A)(9)に巻回する金属コイル体(10)の量は、弾性マットの弾性反発力が所望の値となるように適宜調整する。巻回する量は、コイルの巻き径、厚み並びに材質で異なる。弾性反発力は、通常、非圧縮時の厚みに対し60〜80%まで弾性マットを圧縮した時の弾性反発力が平方センチメートル当たり10〜150gとすればよい。
The metal coil body (10) is wound around the corrosion resistant frame (A) (9) to form an elastic mat. As shown in FIG. 5 and FIG. 6 showing its aa cross section, the metal coil body (10) is wound around a corrosion-resistant frame (A) (9) combined in a rectangular shape to form an elastic mat. Can do. As another aspect, the metal coil body (10) may be wound around the corrosion-resistant frame (A) in which only two are arranged in parallel. When the metal coil body (10) is wound around the corrosion resistant frame (A) (9), taking FIG. 5 as an example, the four of the four frames constituting the rectangular corrosion resistant frame (A) (9) The at least one metal coil body (10) may be wound so as to obtain a substantially uniform density between the two facing each other.
The amount of the metal coil body (10) wound around the corrosion resistant frame (A) (9) is appropriately adjusted so that the elastic repulsion force of the elastic mat becomes a desired value. The amount of winding differs depending on the winding diameter, thickness and material of the coil. The elastic repulsion force should usually be 10 to 150 g per square centimeter when the elastic mat is compressed to 60 to 80% of the thickness when not compressed.
上記は、本発明の電極支持部材(6)の弾性マットを有する空間部分の構成の好ましい実施形態の1つである。次に、本発明の電極支持部材(6)の弾性マットを有さない空間部分の構成の好ましい実施形態の例を説明する。 The above is one of the preferred embodiments of the configuration of the space portion having the elastic mat of the electrode support member (6) of the present invention. Next, the example of preferable embodiment of the structure of the space part which does not have an elastic mat of the electrode support member (6) of this invention is demonstrated.
図5に示したように、金属コイル体(10)が巻回された耐食性フレーム(A)(9)には、耐食性フレーム(B)(13)が、フレーム連結材(12)を介して連結されている。図5は、耐食性フレーム(B)(13)が長方形形状の耐食性フレーム(A)(9)の周囲を全て囲んだ例であるが、耐食性フレーム(B)(13)が耐食性フレーム(A)(9)の一部を囲む場合であっても本発明の効果を得ることが可能である。 As shown in FIG. 5, the corrosion-resistant frame (A) (9) around which the metal coil body (10) is wound is connected to the corrosion-resistant frame (B) (13) via the frame connecting material (12). Has been. FIG. 5 shows an example in which the corrosion-resistant frame (B) (13) surrounds the entire periphery of the rectangular corrosion-resistant frame (A) (9), but the corrosion-resistant frame (B) (13) is the corrosion-resistant frame (A) ( The effect of the present invention can be obtained even when part of 9) is enclosed.
耐食性フレーム(B)(13)とフレーム連結材(12)の要件は、何れも耐食性フレーム(A)(9)と同一である。すなわち、耐食性フレーム(B)(13)とフレーム連結材(12)は電解液に耐食性がある材料で構成され、通常、ニッケルやステンレスの丸棒や角棒などで製造すればよい。例えば、1〜3mm径のニッケル丸棒が好ましく適用でき、銅などの導電性に優れた金属の表面をニッケル被覆して耐食性を高めたものも好適に用いられる。 The requirements of the corrosion resistant frame (B) (13) and the frame connecting material (12) are the same as those of the corrosion resistant frame (A) (9). That is, the corrosion-resistant frame (B) (13) and the frame connecting material (12) are made of a material that is corrosion-resistant to the electrolytic solution, and are usually manufactured with nickel or stainless steel round bars or square bars. For example, a nickel round bar having a diameter of 1 to 3 mm can be preferably applied, and a metal with excellent conductivity, such as copper, coated with nickel is preferably used.
耐食性フレーム(A)(9)、耐食性フレーム(B)(13)、及びフレーム連結材(12)は、同一材料を用いる必要はないが、通常、これらは同一材料からなる丸棒や角棒で構成される。
フレーム連結材(12)と耐食性フレーム(A)(9)及び/又は耐食性フレーム(B)(13)を連結する方法は特に制限はなく、溶接やネジ留めで連結すればよい。
耐食性フレーム(A)(9)と耐食性フレーム(B)(13)が形成する空間の少なくとも一部には弾性マットが存在せず、弾性マットを有さない空間が形成されている。従って、図5で示される電極支持部材(6)は、弾性マットを有する空間と、弾性マットを有さない空間を併せ持つ、本発明の好ましい実施形態の1つである。
The corrosion-resistant frame (A) (9), the corrosion-resistant frame (B) (13), and the frame connecting material (12) do not need to use the same material, but they are usually round bars and square bars made of the same material. Composed.
The method for connecting the frame connecting material (12) to the corrosion resistant frame (A) (9) and / or the corrosion resistant frame (B) (13) is not particularly limited, and may be connected by welding or screwing.
An elastic mat is not present in at least a part of the space formed by the corrosion-resistant frame (A) (9) and the corrosion-resistant frame (B) (13), and a space without the elastic mat is formed. Therefore, the electrode support member (6) shown in FIG. 5 is one of the preferred embodiments of the present invention having both a space having an elastic mat and a space not having an elastic mat.
本発明の電極支持部材(6)の好ましい他の実施形態を、図12および図13に例示する。図12は、二つの耐食性フレーム(A)(9)の各々に金属コイル体(10)が巻回されており、これらはフレーム連結材(12)で互いに連結されている。図13は、二つの耐食性フレーム(A)(9)の各々に金属コイル体(10)が巻回されており、これらはフレーム連結材(12)で互いに連結され、かつ、耐食性フレーム(B)(13)がフレーム連結剤(12)で耐食性フレーム(A)(9)に連結され、耐食性フレーム(B)(13)には金属コイル体(10)が巻回されていない。
以上の通り、複数の耐食性フレーム(A)(9)を連結部材(12)で連結したり、さらに、その周囲の一部に耐食性フレーム(B)(13)を連結部材(12)で連結したりすることにより、本発明の弾性マットを有する空間と、弾性マットを有さない空間を併せ持つ電極支持部材(6)を構成することが可能である。
Another preferred embodiment of the electrode support member (6) of the present invention is illustrated in FIGS. In FIG. 12, a metal coil body (10) is wound around each of two corrosion-resistant frames (A) (9), and these are connected to each other by a frame connecting material (12). In FIG. 13, a metal coil body (10) is wound around each of two corrosion resistant frames (A) and (9), which are connected to each other by a frame connecting material (12), and the corrosion resistant frame (B). (13) is connected to the corrosion resistant frames (A) and (9) by the frame connecting agent (12), and the metal coil body (10) is not wound around the corrosion resistant frames (B) and (13).
As described above, a plurality of corrosion-resistant frames (A) and (9) are connected by the connecting member (12), and the corrosion-resistant frames (B) and (13) are connected to a part of the periphery by the connecting member (12). It is possible to constitute the electrode support member (6) having both the space having the elastic mat of the present invention and the space not having the elastic mat.
本発明の電極支持部材(6)は、可撓性陰極(5)と集電板(7)と間に収容され、イオン交換膜法電解槽が構成される。電極支持部材(6)を可撓性陰極(5)と集電板(7)の間に収容する方法については特に限定はない。しかし、可撓性陰極(5)や電極支持部材(6)が電解槽組立時や電解槽運転時に位置がずれると、イオン交換膜(3)を破損したり、電圧が上昇したりといった、好ましくない状態が生じる場合があるので、可撓性陰極(5)及び電極支持部材(6)はイオン交換膜法電解槽に固定することが好ましい。 The electrode support member (6) of this invention is accommodated between a flexible cathode (5) and a current collecting plate (7), and an ion exchange membrane method electrolytic cell is comprised. There is no particular limitation on the method for accommodating the electrode support member (6) between the flexible cathode (5) and the current collector plate (7). However, if the position of the flexible cathode (5) or the electrode support member (6) is shifted during the assembly of the electrolytic cell or during the operation of the electrolytic cell, the ion exchange membrane (3) may be damaged or the voltage may be increased. In some cases, the flexible cathode (5) and the electrode support member (6) are preferably fixed to the ion exchange membrane electrolytic cell.
次に、本発明のイオン交換膜法電解槽における可撓性陰極(5)及び電極支持部材(6)をイオン交換膜法電解槽に固定する好ましい実施形態を説明する。
本発明のイオン交換膜法電解槽では、集電板(7)は、溶接などにより電解槽に固定されている。可撓性陰極(5)と電極支持部材(6)とを集電板(7)に固定することで、可撓性陰極(5)及び電極支持部材(6)をイオン交換膜法電解槽に固定する。例えば、可撓性陰極(5)と電極支持部材(6)と集電板(7)とを貫通するピン(8)で可撓性陰極(5)と電極支持部材(6)が集電板(7)に固定される。ピン(8)は可撓性陰極(5)は貫通するが、電極支持部材(6)の弾性マットを有する空間は貫通しないように構成される。
Next, a preferred embodiment for fixing the flexible cathode (5) and the electrode support member (6) in the ion exchange membrane electrolytic cell of the present invention to the ion exchange membrane electrolytic cell will be described.
In the ion exchange membrane method electrolytic cell of the present invention, the current collector plate (7) is fixed to the electrolytic cell by welding or the like. The flexible cathode (5) and the electrode support member (6) are fixed to the current collector plate (7) by fixing the flexible cathode (5) and the electrode support member (6) to the ion exchange membrane method electrolytic cell. Fix it. For example, the flexible cathode (5) and the electrode support member (6) are connected to the current collector plate by a pin (8) passing through the flexible cathode (5), the electrode support member (6) and the current collector plate (7). It is fixed to (7). The pin (8) is configured so as to penetrate the flexible cathode (5) but not penetrate the space having the elastic mat of the electrode support member (6).
図7、および図7のb部断面を示す図8は、可撓性陰極(5)と電極支持部材(6)を集電板(7)に固定する好ましい形態を例示したものである。ピン(8)は電極支持部材(6)の弾性マットを有さない空間部分のみで、可撓性陰極(5)と電極支持部材(6)と集電板(7)とを貫通し固定する。
例えば、図7に示されている様に、電極支持部材(6)は、耐食性フレーム(B)(13)と連結部材(12)との間の弾性マットを有しない空間部分、及び、耐食性フレーム(B)(13)と耐食性フレーム(A)(9)との間の弾性マットを有しない空間部分に、ピン(8)で貫通させ、可撓性陰極(5)と集電板(7)に固定されている。
FIG. 7 and FIG. 8 showing a cross-section of part b in FIG. 7 illustrate a preferred embodiment for fixing the flexible cathode (5) and the electrode support member (6) to the current collector plate (7). The pin (8) is only the space portion without the elastic mat of the electrode support member (6), and penetrates and fixes the flexible cathode (5), the electrode support member (6), and the current collector plate (7). .
For example, as shown in FIG. 7, the electrode support member (6) includes a space portion having no elastic mat between the corrosion-resistant frame (B) (13) and the connecting member (12), and the corrosion-resistant frame. (B) (13) and the corrosion-resistant frame (A) (9) are passed through a space portion having no elastic mat with a pin (8), and a flexible cathode (5) and a current collector plate (7) It is fixed to.
ピン(8)は耐食性があり、かつ、可撓性陰極(5)と電極支持部材(6)と集電板(7)とを貫通して固定可能なものであれば如何なるものでもよい。材質はニッケル、ステンレス、フッ素樹脂などの耐食性材料が好ましく使用できる。しかし、フッ素樹脂製のピン(8)を用いると、可撓性陰極(5)やイオン交換膜(3)を傷つける可能性が低いのでより好ましい。 As long as the pin (8) has corrosion resistance and can be fixed through the flexible cathode (5), the electrode support member (6), and the current collector plate (7), any pin may be used. The material is preferably a corrosion-resistant material such as nickel, stainless steel or fluororesin. However, it is more preferable to use a fluororesin pin (8) because the possibility of damaging the flexible cathode (5) and the ion exchange membrane (3) is low.
図14は、本発明に使用される好適なピン(8)の一例を示す。ピン(8)は円形や多角形の薄板からなる頭部(14)と先端部(15)を棒状部材(16)で連結した形状を有する。先端部(15)は、集電板(7)の孔(18)と係合する形状であり、可撓性陰極(5)側から先端部(15)を挿入し、可撓性陰極(5)と電極支持部材(6)と集電板(7)とを貫通させることで、可撓性陰極(5)と電極支持部材(6)とを集電板(7)に固定する。 FIG. 14 shows an example of a suitable pin (8) used in the present invention. The pin (8) has a shape in which a head (14) made of a circular or polygonal thin plate and a tip (15) are connected by a rod-like member (16). The tip portion (15) has a shape that engages with the hole (18) of the current collector plate (7). The tip portion (15) is inserted from the flexible cathode (5) side, and the flexible cathode (5) ), The electrode support member (6), and the current collector plate (7) are passed through to fix the flexible cathode (5) and the electrode support member (6) to the current collector plate (7).
本発明で言う「孔と係合する形状」とは、孔に挿入可能であり、かつ、挿入後は自然に抜け落ちることはないが、人為的に抜くことが可能な形状を言う。図15は、図14のピン(8)の断面図を示す。先端部(15)は切れ込み(17)を有し、自然状態では切れ込み(17)は開いており、集電板(図示せず)(7)の孔の内径よりやや大きいが、切れ込み(17)をすぼめると集電板(図示せず)(7)の孔の内径より小さくなる。従って、孔へ挿入する時は切れ込み(17)がすぼまり孔に容易に挿入できるが、挿入後は切れ込み(17)が元に戻り、孔から自然に抜けることはない。しかし、人力等で大きな力をかけると切れ込み(17)がすぼまり、孔から引く抜くことが可能である。 The “shape engaged with the hole” as used in the present invention refers to a shape that can be inserted into the hole and that cannot be pulled out naturally after insertion, but can be pulled out artificially. FIG. 15 shows a cross-sectional view of the pin (8) of FIG. The tip (15) has a cut (17), which is open in the natural state and is slightly larger than the inner diameter of the hole in the current collector (not shown) (7), but the cut (17). Is reduced to be smaller than the inner diameter of the hole of the current collector plate (not shown) (7). Accordingly, the slit (17) can be easily inserted into the concavity when inserted into the hole, but the slit (17) returns to its original state after insertion and does not come out of the hole naturally. However, when a large force is applied by human power or the like, the cut (17) is narrowed and can be pulled out from the hole.
図16は別の好ましいピン(8)の形態を例示したもので、先端部(15)は角柱の形状である。一方、集電板(7)は、例えば、エキスパンドメタルに代表される菱形形状の多数の孔を有する多孔板で構成される。ピン(8)の先端部(15)と集電板(7)の孔(18)を図17に示す関係に位置させることで、先端部(15)を孔(18)に容易に挿入又は抜き取ることができる。一方、ピン(8)の先端部(15)を集電板(7)の孔(18)に挿入した後、約90°回転させて図18に示す関係に位置させると、ピン(8)が集電板(7)から抜け落ちることはない。 FIG. 16 illustrates another preferred pin (8) configuration, with the tip (15) having a prismatic shape. On the other hand, the current collector plate (7) is composed of, for example, a perforated plate having a large number of rhombus-shaped holes typified by expanded metal. By positioning the tip (15) of the pin (8) and the hole (18) of the current collector plate (7) in the relationship shown in FIG. 17, the tip (15) can be easily inserted into or removed from the hole (18). be able to. On the other hand, when the tip (15) of the pin (8) is inserted into the hole (18) of the current collector (7) and then rotated by about 90 ° and positioned in the relationship shown in FIG. It will not fall out of the current collector plate (7).
上記に、集電板(7)の孔(18)に係合するピン(8)の先端部(15)の好ましい実施形態の一例を記載したが、他の形態であっても、先端部(15)が集電板(7)の孔(18)に挿入可能であり、かつ、挿入後は自然に抜け落ちることはないが、人為的に抜くことが可能な形状であれば、本発明の効果が得られることは無論である。 Although one example of the preferred embodiment of the tip (15) of the pin (8) that engages with the hole (18) of the current collector plate (7) has been described above, the tip ( 15) can be inserted into the hole (18) of the current collector plate (7) and does not fall off naturally after insertion, but can be pulled out artificially, the effect of the present invention. It goes without saying that is obtained.
本発明で用いられる電極支持部材(6)は、弾性マットを有する空間と弾性マットを有さない空間部分を併せ持つ新規な形状を有しており、電極支持部材(6)の弾性マットを有さない空間部分の少なくとも一部を集電板(7)に固定することにより、電極支持部材(6)をイオン交換膜電解槽に固定することが可能となる。例えば、可撓性陰極(5)と電極支持部材(6)と集電板(7)とを貫通するピン(8)で可撓性陰極(5)と電極支持部材(6)が集電板(7)に固定される。かくして、ピン(8)が可撓性陰極は貫通するが、電極支持部材の弾性マットを有する空間部分は貫通しない構造を持つことができる。 The electrode support member (6) used in the present invention has a novel shape having both a space having an elastic mat and a space portion not having an elastic mat, and has an elastic mat of the electrode support member (6). By fixing at least a part of the empty space to the current collector (7), the electrode support member (6) can be fixed to the ion exchange membrane electrolytic cell. For example, the flexible cathode (5) and the electrode support member (6) are connected to the current collector plate by a pin (8) passing through the flexible cathode (5), the electrode support member (6) and the current collector plate (7). It is fixed to (7). Thus, the pin (8) can have a structure that penetrates the flexible cathode but does not penetrate the space portion having the elastic mat of the electrode support member.
この場合、図8と図11に断面構造を示した通り、ピン(8)の取り付け作業や電解槽組立作業、並びに電解実施時の何れの場合でも、ピン(8)の受ける反発力は微々たるものであり、ピン(8)を集電板(7)の孔に係合する作業時にピン(8)が変形したり、可撓性陰極(5)が過度に変形、あるいは破損したりすることは皆無である。 In this case, as shown in the cross-sectional structures in FIGS. 8 and 11, the repulsive force received by the pin (8) is insignificant in any of the mounting operation of the pin (8), the electrolytic cell assembly operation, and the electrolysis. The pin (8) is deformed during the operation of engaging the pin (8) with the hole of the current collector plate (7), or the flexible cathode (5) is excessively deformed or damaged. There is nothing.
また、電解槽組立時に可撓性陰極(5)がイオン交換膜(3)に押されて移動するが、この時、弾性マット部の可撓性陰極(5)とピン(8)周辺の可撓性陰極(5)との移動距離は同一のため、陰極変形部(11)は発生しない。従って、電解槽組立て時や運転中にイオン交換膜が破損することもない。
なお、水素発生型の陰極に代えて、酸素ガス拡散電極を陰極に用いることも可能であることは無論である。
In addition, the flexible cathode (5) is moved by being pushed by the ion exchange membrane (3) during the assembly of the electrolytic cell. At this time, the flexible cathode (5) and the pins (8) around the elastic mat portion can be moved. Since the moving distance with the flexible cathode (5) is the same, the cathode deformed portion (11) does not occur. Therefore, the ion exchange membrane is not damaged when the electrolytic cell is assembled or during operation.
It goes without saying that an oxygen gas diffusion electrode can be used as the cathode instead of the hydrogen generating cathode.
図9と図10に例示した従来の電極支持部材(6)には、本発明でいう「全く弾性マットで覆われていない耐食性フレーム(B)」が存在しない。そのため、可撓性陰極(5)は貫通するが、電極支持部材の弾性マットを有する空間部分は貫通しない位置にピン(8)を取り付けた場合、集電板(7)に可撓性陰極(5)を固定することは可能であるが、電極支持部材(6)は固定できず、本発明の効果は得られない。全く弾性マットで覆われていない耐食性フレーム(B)が存在しない電極支持部材(6)を取り付けるためには、ピン(8)で弾性マットを貫通させることが必須であり、上記のとおり、電解槽組立て時や電解運転中にイオン交換膜が破損しやすい。 The conventional electrode support member (6) illustrated in FIGS. 9 and 10 does not have the “corrosion resistant frame (B) not covered with an elastic mat” as used in the present invention. Therefore, when the pin (8) is attached at a position where the flexible cathode (5) penetrates but the space portion having the elastic mat of the electrode support member does not penetrate, the flexible cathode (7) is attached to the current collector plate (7). 5) can be fixed, but the electrode support member (6) cannot be fixed, and the effect of the present invention cannot be obtained. In order to attach the electrode support member (6) without the corrosion-resistant frame (B) that is not covered with the elastic mat at all, it is essential to penetrate the elastic mat with the pin (8). The ion exchange membrane is easily damaged during assembly or during electrolysis.
本発明のイオン交換膜法食塩電解槽は、従来のゼロギャップ電解槽の課題を克服し、なおかつ、ゼロギャップ電解槽の有する省エネルギー性能が発揮される。すなわち、電解工業の電気分解に必要なエネルギーを低く抑え、長期間安定した運転が可能となる。
上記の特長を活かして、本発明のイオン交換膜法電解槽は、食塩電解などクロルアルカリ電解に代表される電解工業で有利に採用される。塩化カリウム水溶液電解やアルカリ水電解などにも適用できる。
The ion exchange membrane method salt electrolytic cell of the present invention overcomes the problems of the conventional zero gap electrolytic cell and exhibits the energy saving performance possessed by the zero gap electrolytic cell. That is, the energy required for electrolysis in the electrolytic industry can be kept low, and stable operation can be performed for a long time.
Taking advantage of the above features, the ion exchange membrane electrolytic cell of the present invention is advantageously employed in the electrolytic industry represented by chloralkali electrolysis such as salt electrolysis. It can also be applied to aqueous potassium chloride electrolysis and alkaline water electrolysis.
1 陽極室
2 陰極室
3 イオン交換膜
4 剛性陽極又は陽極
5 可撓性陰極又は陰極
6 電極支持部材
7 集電板
8 ピン
9 耐食性フレーム(A)
10 金属製コイル体
11 陰極変形部
12 フレーム連結材
13 耐食性フレーム(B)
14 頭部
15 先端部
16 棒状部材
17 切れ込み
18 集電板の孔
DESCRIPTION OF
DESCRIPTION OF
14
Claims (5)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292305A JP5653209B2 (en) | 2010-12-28 | 2010-12-28 | Ion exchange membrane electrolytic cell |
PCT/JP2011/080305 WO2012091055A1 (en) | 2010-12-28 | 2011-12-27 | Ion-exchange membrane method electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292305A JP5653209B2 (en) | 2010-12-28 | 2010-12-28 | Ion exchange membrane electrolytic cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012140652A true JP2012140652A (en) | 2012-07-26 |
JP5653209B2 JP5653209B2 (en) | 2015-01-14 |
Family
ID=46383146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010292305A Expired - Fee Related JP5653209B2 (en) | 2010-12-28 | 2010-12-28 | Ion exchange membrane electrolytic cell |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5653209B2 (en) |
WO (1) | WO2012091055A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020009241A1 (en) * | 2018-07-06 | 2020-01-09 | 旭化成株式会社 | Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000178781A (en) * | 1998-12-10 | 2000-06-27 | Tokuyama Corp | Electrolytic cell and fixed pin used for the same |
JP2004300543A (en) * | 2003-03-31 | 2004-10-28 | Chlorine Eng Corp Ltd | Electrode for electrolysis and ion-exchange membrane electrolytic cell using it |
JP2008063611A (en) * | 2006-09-06 | 2008-03-21 | Chlorine Eng Corp Ltd | Ion exchange membrane electrolytic cell |
JP2010174346A (en) * | 2009-01-30 | 2010-08-12 | Tosoh Corp | Electrolytic bath for ion exchange membrane method and method of manufacturing the same |
-
2010
- 2010-12-28 JP JP2010292305A patent/JP5653209B2/en not_active Expired - Fee Related
-
2011
- 2011-12-27 WO PCT/JP2011/080305 patent/WO2012091055A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000178781A (en) * | 1998-12-10 | 2000-06-27 | Tokuyama Corp | Electrolytic cell and fixed pin used for the same |
JP2004300543A (en) * | 2003-03-31 | 2004-10-28 | Chlorine Eng Corp Ltd | Electrode for electrolysis and ion-exchange membrane electrolytic cell using it |
JP2008063611A (en) * | 2006-09-06 | 2008-03-21 | Chlorine Eng Corp Ltd | Ion exchange membrane electrolytic cell |
JP2010174346A (en) * | 2009-01-30 | 2010-08-12 | Tosoh Corp | Electrolytic bath for ion exchange membrane method and method of manufacturing the same |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020009241A1 (en) * | 2018-07-06 | 2020-01-09 | 旭化成株式会社 | Electrode structure, method for producing electrode structure, electrolysis cell, and electrolysis tank |
CN112313366A (en) * | 2018-07-06 | 2021-02-02 | 旭化成株式会社 | Electrode structure, method for producing electrode structure, electrolytic cell, and electrolytic cell |
JPWO2020009241A1 (en) * | 2018-07-06 | 2021-07-08 | 旭化成株式会社 | Electrode structure, manufacturing method of electrode structure, electrolytic cell and electrolytic cell |
JP7082201B2 (en) | 2018-07-06 | 2022-06-07 | 旭化成株式会社 | Electrode structure, manufacturing method of electrode structure, electrolytic cell and electrolytic cell |
CN112313366B (en) * | 2018-07-06 | 2023-08-15 | 旭化成株式会社 | Electrode structure, method for manufacturing electrode structure, electrolytic cell, and electrolytic cell |
US11967695B2 (en) | 2018-07-06 | 2024-04-23 | Asahi Kasei Kabushiki Kaisha | Electrode structure, method for producing electrode structure, electrolytic cell, and electrolyzer |
Also Published As
Publication number | Publication date |
---|---|
WO2012091055A1 (en) | 2012-07-05 |
JP5653209B2 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4846869B1 (en) | Cathode structure for electrolysis and electrolytic cell using the same | |
JP5945154B2 (en) | Ion exchange membrane electrolytic cell | |
CN1537973B (en) | Electrode for electrolysis and ion exchange membrane electrolytic cell | |
WO2012091051A1 (en) | Ion-exchange membrane method electrolytic cell | |
JP5819790B2 (en) | Electrolytic cell and electrolytic cell | |
JP5493787B2 (en) | Ion exchange membrane electrolytic cell | |
KR101848339B1 (en) | Elastic cushion material and ion exchange membrane electrolytic cell utilizing same | |
TW202124779A (en) | Elastic mat for alkaline water electrolysis vessel | |
EP2436804A1 (en) | Gas diffusion electrode-equipped ion-exchange membrane electrolytic cell | |
JP2020007607A (en) | Electrode structure, electrolytic cell and electrolytic bath | |
JP5653209B2 (en) | Ion exchange membrane electrolytic cell | |
JP2012140653A (en) | Ion exchange membrane method type electrolytic cell | |
JP5457951B2 (en) | Electrolytic cell | |
JP3631467B2 (en) | Electrolytic cell feeder and electrolytic cell | |
JP2007084907A (en) | Cubic electrode for electrolysis, and ion exchange membrane electrolytic cell | |
WO2014199440A1 (en) | Ion exchange membrane electrolytic cell | |
JP2013216922A (en) | Ion exchange membrane electrolytic cell | |
JP2014221930A (en) | Ion exchange membrane electrolytic cell | |
JP5854788B2 (en) | Zero-gap electrolytic cell and method for manufacturing the same | |
WO2016067389A1 (en) | Ion-exchange membrane electrolytic cell | |
JP2014214350A (en) | Ion exchange membrane electrolytic bath | |
JPS6319596B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131216 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140822 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140822 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140825 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140909 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20140909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141021 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5653209 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |