JP2012140653A - Ion exchange membrane method type electrolytic cell - Google Patents

Ion exchange membrane method type electrolytic cell Download PDF

Info

Publication number
JP2012140653A
JP2012140653A JP2010292306A JP2010292306A JP2012140653A JP 2012140653 A JP2012140653 A JP 2012140653A JP 2010292306 A JP2010292306 A JP 2010292306A JP 2010292306 A JP2010292306 A JP 2010292306A JP 2012140653 A JP2012140653 A JP 2012140653A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
cathode
electrolytic cell
cushion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010292306A
Other languages
Japanese (ja)
Other versions
JP5583002B2 (en
Inventor
Yuki Suemoto
裕貴 末本
Fumio Sadahiro
文夫 貞廣
Kenji Sakamoto
健二 坂本
Yoshio Sunada
良雄 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Tosoh Corp filed Critical Chlorine Engineers Corp Ltd
Priority to JP2010292306A priority Critical patent/JP5583002B2/en
Publication of JP2012140653A publication Critical patent/JP2012140653A/en
Application granted granted Critical
Publication of JP5583002B2 publication Critical patent/JP5583002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion exchange membrane method type electrolytic cell in which the renewal cost of a cathode is low, and the electric energy as small a loss as possible.SOLUTION: The ion exchange membrane method type electrolytic cell is configured in such a way that a coil cushion material is installed on an old cathode in which an electrode catalyst is carried on an expand metal type substrate of a narrow gap type electrolytic cell, a new cathode with the electrode catalyst carried thereon is installed on the coil cushion material, and the new electrode is disposed so as to be in contact with the ion exchange membrane. A new cathode having such configuration is preferable that the electrode catalyst is carried on an expand metal in which the knurl width is 0.1-1.0 mm, the minor axis is 0.5-5.0 mm, the major axis is 1.0-10 mm, the plate thickness is 0.1-1.0 mm, and the aperture ratio is 48-60%.

Description

本発明は、イオン交換膜法電解槽に関する。さらに詳しくは、イオン交換膜と陰極とが一定の間隔を置いて配置された構成を有するイオン交換膜法電解槽、所謂ナローギャップ型イオン交換膜法電解槽を改造した、陽極とイオン交換膜と陰極が互いに密接した構成を有するイオン交換膜法電解槽、所謂ゼロギャップ型のイオン交換膜法電解槽に関する。   The present invention relates to an ion exchange membrane method electrolytic cell. In more detail, an ion exchange membrane and an ion exchange membrane having a configuration in which an ion exchange membrane and a cathode are arranged at regular intervals, a so-called narrow gap type ion exchange membrane electrolytic cell, and a modified anode The present invention relates to an ion exchange membrane electrolytic cell having a structure in which cathodes are in close contact with each other, ie, a so-called zero gap type ion exchange membrane electrolytic cell.

本発明のイオン交換膜法電解槽は、クロルアルカリ電解を代表とする電解工業に用いられるイオン交換膜法電解槽であって、その長期運転後に陰極を更新する際、陰極更新費用が著しく低減され、かつ、陰極更新後に著しい電圧低減効果を発揮する新規なイオン交換膜法電解槽に関する。   The ion exchange membrane method electrolytic cell of the present invention is an ion exchange membrane method electrolytic cell used in the electrolytic industry represented by chloralkali electrolysis, and the cathode renewal cost is remarkably reduced when renewing the cathode after its long-term operation. The present invention also relates to a novel ion exchange membrane electrolytic cell that exhibits a significant voltage reduction effect after cathode renewal.

クロルアルカリ電解を代表とするイオン交換膜法電解工業は、素材産業として重要な役割を果たしているが、その電解工業においてはイオン交換膜法電解槽(以下、「電解槽」と略記する場合がある)が技術の中心をなす。
例えば、本出願人が開発した複極式電解槽、TMB型イオン交換膜法電解槽は5kA/mという高電流密度で長期間安定的に運転可能であることが知られている(例えば、非特許文献1参照)。
The ion exchange membrane method electrolytic industry represented by chloralkali electrolysis plays an important role as a raw material industry. In the electrolytic industry, there are cases where the ion exchange membrane method electrolytic cell (hereinafter referred to as “electrolytic cell”) is abbreviated. ) Is the center of technology.
For example, it is known that the bipolar electrolytic cell developed by the present applicant and the TMB type ion exchange membrane electrolytic cell can be stably operated for a long time at a high current density of 5 kA / m 2 (for example, Non-patent document 1).

その電解槽の運転には多大な電気エネルギーが消費される。その電気エネルギーの消費主原因としては、塩素発生と水素発生との両者の電解反応による理論分解電圧の他に、陰極上での水素発生による過電圧、陽極上での塩素発生による過電圧、および、陰極と陽極との間の電解液とイオン交換膜の電気抵抗による電圧損失が知られている。   A great amount of electric energy is consumed for the operation of the electrolytic cell. The main causes of consumption of electric energy include the theoretical decomposition voltage due to the electrolytic reaction of both chlorine generation and hydrogen generation, overvoltage due to hydrogen generation on the cathode, overvoltage due to chlorine generation on the anode, and cathode The voltage loss due to the electrical resistance of the electrolyte and ion exchange membrane between the anode and the anode is known.

電解工業で使用される陰極は、運転期間と共に、水素発生に対する触媒活性が低下して、陰極の過電圧は運転期間と共に上昇し、電気エネルギーの消費量が増大する。そのため、ある一定期間の運転後には再活性化の処理、または陰極そのものの交換が必要となる。
上記TMB型イオン交換膜法電解槽をはじめ、ナローギャップ型イオン交換膜法電解槽、すなわち、イオン交換膜と陰極とが一定の間隔を置いて配置された構成を有するイオン交換膜法電解槽が広く用いられている。
In the cathode used in the electrolytic industry, the catalytic activity for hydrogen generation decreases with the operation period, the cathode overvoltage increases with the operation period, and the consumption of electric energy increases. For this reason, after a certain period of operation, a reactivation process or replacement of the cathode itself is required.
In addition to the TMB type ion exchange membrane method electrolytic cell, a narrow gap type ion exchange membrane method electrolytic cell, that is, an ion exchange membrane method electrolytic cell having a configuration in which an ion exchange membrane and a cathode are arranged at a predetermined interval Widely used.

図1に、イオン交換膜と陰極とが一定の間隔を置いて配置された構成を有するイオン交換膜法電解槽の陰極室側の構造の一例を示す。
図1において、陰極(1)とイオン交換膜(2)とは1〜3mm離れており、その距離はガスケット(4)の厚みで調整されている。このように、陰極(1)とイオン交換膜(2)とが一定の間隔を置いて配置された構成を有するイオン交換膜法電解槽は、一般的にナローギャップ型電解槽と呼ばれる。対照的に、イオン交換膜と陰極が互いに密接して配置された構成を有する電解槽はゼロギャップ型電解槽と呼ばれる。
FIG. 1 shows an example of the structure on the cathode chamber side of an ion exchange membrane method electrolytic cell having a configuration in which an ion exchange membrane and a cathode are arranged at a predetermined interval.
In FIG. 1, the cathode (1) and the ion exchange membrane (2) are 1 to 3 mm apart, and the distance is adjusted by the thickness of the gasket (4). As described above, an ion exchange membrane electrolytic cell having a configuration in which the cathode (1) and the ion exchange membrane (2) are arranged at a predetermined interval is generally called a narrow gap type electrolytic cell. In contrast, an electrolytic cell having a configuration in which an ion exchange membrane and a cathode are arranged in close proximity to each other is called a zero gap type electrolytic cell.

ナローギャップ型電解槽では、陰極(1)とイオン交換膜(2)との距離を均一に保つことが重要である。陰極(1)はリブ(3)と強固に接合されているため、長期運転の後に、陰極(1)の水素発生に対する触媒活性が低下して、これを交換しようとする場合には、陰極(1)と陰極リブ(3)接合部を切断して陰極を取外し、その後、接合部(3)を復旧し新陰極を取付けるか、又は陰極室全てを交換しなくてはならず、陰極更新にかかる費用が莫大となる。   In the narrow gap type electrolytic cell, it is important to keep the distance between the cathode (1) and the ion exchange membrane (2) uniform. Since the cathode (1) is firmly bonded to the rib (3), the catalytic activity for hydrogen generation of the cathode (1) is lowered after long-term operation, and the cathode (1) 1) and the cathode rib (3) cut the joint and remove the cathode, then either the joint (3) must be restored and a new cathode must be installed or the entire cathode chamber must be replaced. Such costs are enormous.

また、このナローギャップ型電解槽では、陰極(1)とイオン交換膜(2)との間隔分の電気抵抗損失に起因する電気エネルギーのロスが生じている。
そこで、陰極の更新費用が安価で、かつ、電気エネルギーのロスが可及的に小さいイオン交換膜法電解槽が望まれていた。
Moreover, in this narrow gap type electrolytic cell, the loss of the electric energy resulting from the electrical resistance loss for the space | interval of a cathode (1) and an ion exchange membrane (2) has arisen.
Therefore, an ion exchange membrane electrolytic cell has been desired that has a low cost for renewal of the cathode and has as little electrical energy loss as possible.

ソーダ技術ハンドブック2009(日本ソーダ工業会2009年6月30日発行;34頁、表1.15及び48頁、図1.34)Soda Technical Handbook 2009 (Japan Soda Industry Association, issued on June 30, 2009; page 34, tables 1.15 and 48, figure 1.34)

本発明の目的は、陰極の更新費用が安価で、かつ、電気エネルギーのロスが可及的に小さいイオン交換膜法電解槽を提供することにある。   An object of the present invention is to provide an ion exchange membrane electrolytic cell in which the renewal cost of the cathode is low and the loss of electric energy is as small as possible.

かくして、本発明は、ナローギャップ型イオン交換膜法電解槽のもともとの陰極(以下、これを「旧陰極」と略記する)上にコイルクッション材が設置され、該コイルクッション材の上に、電極触媒を担持した新陰極が設置され、かつ、新陰極がイオン交換膜と接触していることを特徴とするイオン交換膜法電解槽を提供する。   Thus, in the present invention, the coil cushion material is installed on the original cathode (hereinafter referred to as “old cathode”) of the narrow gap type ion exchange membrane electrolytic cell, and an electrode is formed on the coil cushion material. An ion exchange membrane method electrolytic cell is provided in which a new cathode carrying a catalyst is installed and the new cathode is in contact with the ion exchange membrane.

さらに、本発明は、他の一面において、旧陰極を有するナローギャップ型イオン交換膜法電解槽の旧陰極上にコイルクッション材を設置し、次いで、該コイルクッション材の上に電極触媒を担持した新陰極を設置し、新陰極とイオン交換膜とを接触させることを特徴とするナローギャップ型イオン交換膜法電解槽の改造方法を提供する。   Further, according to another aspect of the present invention, a coil cushion material is installed on the old cathode of the narrow gap type ion exchange membrane electrolytic cell having the old cathode, and then an electrode catalyst is supported on the coil cushion material. Provided is a method for remodeling a narrow gap type ion exchange membrane electrolytic cell characterized by installing a new cathode and bringing the new cathode into contact with an ion exchange membrane.

本発明のイオン交換膜法電解槽は、既存のナローギャップ型イオン交換膜法電解槽の改造品である。すなわち、ナローギャップ型イオン交換膜法電解槽を長期運転後に、水素発生に対する触媒活性が劣化した陰極を取り替えずにそのままにして、図2に示すように、その陰極(1)上にコイルクッション(5)を載せて、その上に、触媒を担持した新規な陰極(6)(以下、「新陰極」と略記する)を設置し、新陰極(6)をイオン交換膜(2)に接触させた構成を有する、所謂、ゼロギャップ型イオン交換膜法電解槽とナローギャップ型イオン交換膜法電解槽との組み合わせに関するものである。   The ion exchange membrane method electrolytic cell of the present invention is a modified product of an existing narrow gap type ion exchange membrane method electrolytic cell. That is, after operating the narrow gap type ion exchange membrane electrolytic cell for a long period of time, without replacing the cathode whose catalytic activity for hydrogen generation has deteriorated, the coil cushion (1) is placed on the cathode (1) as shown in FIG. 5), a new cathode (6) carrying a catalyst (hereinafter abbreviated as “new cathode”) is placed thereon, and the new cathode (6) is brought into contact with the ion exchange membrane (2). The present invention relates to a combination of a so-called zero gap ion exchange membrane electrolytic cell and a narrow gap ion exchange membrane electrolytic cell.

本発明のイオン交換膜法電解槽においては、ナローギャップ型イオン交換膜法電解槽の旧陰極(1)を取り替えずに、図2に示すように、新陰極(6)を取り付けることにより、電極の性能を回復せしめて、水素発生の過電圧を低下せしめると共に、旧陰極(1)と新陰極(6)との間にコイルクッション材(5)を介することにより、従来は旧陰極(1)とイオン交換膜(2)との間に存在したギャップをなくしたゼロギャップ状態として、ギャップに負荷される電圧分をなくすことにより、消費する電気エネルギーが削減される。   In the ion exchange membrane electrolytic cell of the present invention, the electrode is obtained by attaching a new cathode (6) as shown in FIG. 2 without replacing the old cathode (1) of the narrow gap type ion exchange membrane electrolytic cell. In addition to reducing the overvoltage of hydrogen generation, a conventional coil (5) is interposed between the old cathode (1) and the new cathode (6). The electric energy consumed is reduced by eliminating the voltage applied to the gap as a zero gap state in which the gap existing between the ion exchange membrane (2) is eliminated.

加えて、コイルクッション材(5)から新陰極(6)を通してイオン交換膜(2)に所定の圧力をかけることにより、コイルクッション材(5)の弾性反発力を所望面圧とすれば、新陰極(6)とイオン交換膜(2)との接触圧力が均一となり、過剰な接触圧力によるイオン交換膜(2)の破損が生じない。   In addition, by applying a predetermined pressure from the coil cushion material (5) to the ion exchange membrane (2) through the new cathode (6), the coil rebound force of the coil cushion material (5) is set to a desired surface pressure. The contact pressure between the cathode (6) and the ion exchange membrane (2) becomes uniform, and the ion exchange membrane (2) is not damaged by the excessive contact pressure.

従来のナローギャップ型イオン交換膜法電解槽の陰極室側の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure by the side of the cathode chamber of the conventional narrow gap type ion exchange membrane method electrolytic cell. 本発明のイオン交換膜法電解槽の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the ion exchange membrane method electrolytic cell of this invention. コイルクッション材に使用する金属枠の一例を示す斜視図である。It is a perspective view which shows an example of the metal frame used for a coil cushion material. コイルクッション材に使用する金属製コイル体の一例を示す断面図である。It is sectional drawing which shows an example of the metal coil body used for a coil cushion material. コイルクッション材の一例を示す斜視図である。It is a perspective view which shows an example of a coil cushion material. 新陰極を、ピンでコイルクッション材を介して、旧陰極に固定した構造を示す断面図である。It is sectional drawing which shows the structure which fixed the new cathode to the old cathode through the coil cushion material with the pin. コイルクッション材を旧陰極上に設置した平面図である。It is the top view which installed the coil cushion material on the old cathode. 本発明のイオン交換膜法電解槽の組み立て図である。It is an assembly drawing of the ion exchange membrane method electrolytic cell of this invention. 従来のTMB型イオン交換膜法電解槽の組み立て図である。It is an assembly drawing of the conventional TMB type ion exchange membrane method electrolytic cell.

以下、本発明を実施するための形態を、図面を参照して詳細に説明する。
以下の記述では、食塩電解に用いるイオン交換膜法電解槽を例に説明するが、本発明のイオン交換膜法電解槽は、食塩電解以外、例えば、塩化カリウム水溶液電解やアルカリ水電解などにも好適に利用し得ることは無論である。
また、本発明のイオン交換膜法電解槽は、複極式イオン交換膜法電解槽と単極式イオン交換膜法電解槽の何れにも好適に使用可能である。
本発明のイオン交換膜法電解槽は、既存のナローギャップ型電解槽の改造品に相当するが、陽極室は特に改造する必要はなく、陰極室のみを改造してもよい。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
In the following description, an ion exchange membrane method electrolytic cell used for salt electrolysis will be described as an example. Of course, it can be suitably used.
Moreover, the ion exchange membrane method electrolytic cell of the present invention can be suitably used for both a bipolar ion exchange membrane method electrolytic cell and a monopolar ion exchange membrane method electrolytic cell.
The ion exchange membrane electrolytic cell of the present invention corresponds to a modified product of an existing narrow gap electrolytic cell, but the anode chamber is not particularly required to be modified, and only the cathode chamber may be modified.

図2に示す本発明のイオン交換膜法電解槽は、既存のナローギャップ型イオン交換膜法電解槽の陰極室に、次に記載する改造を施したものである。
まず、陰極(1)上にコイルクッション材(5)を設置する。以下の記述では、既存のナローギャップ型イオン交換膜法電解槽に設置されていた陰極(1)を旧陰極(1)として示す。次いで、コイルクッション材(5)上に新陰極(6)を設置する。このような簡便な改造を既存のナローギャップ型イオン交換膜法電解槽に施すだけで、陰極更新費用が極めて安価になり、かつ、電解槽運転時の消費電力が削減可能となるといった驚くべき効果が得られる。
The ion exchange membrane electrolytic cell of the present invention shown in FIG. 2 is obtained by modifying the cathode chamber of an existing narrow gap ion exchange membrane electrolytic cell as described below.
First, a coil cushion material (5) is installed on the cathode (1). In the following description, the cathode (1) installed in the existing narrow gap type ion exchange membrane electrolytic cell is shown as the old cathode (1). Next, a new cathode (6) is installed on the coil cushion material (5). By simply applying such a simple modification to the existing narrow gap ion exchange membrane electrolytic cell, the renewal cost of the cathode is extremely low, and the power consumption during electrolytic cell operation can be reduced. Is obtained.

以下、本発明のイオン交換膜法電解槽をより詳細に説明する。
本発明に用いる既存のナローギャップ型イオン交換膜法電解槽において、その旧陰極(1)の交換時期(陰極の電解運転時間)は特に限定されるものではないが、予め長期間の電解に供して水素発生触媒が劣化し、陰極更新が必要となった旧陰極(1)を取り替えると、陰極の水素発生触媒活性の復帰によりエネルギーロス低減が可能となり、経済的に好ましい。
Hereinafter, the ion exchange membrane method electrolytic cell of the present invention will be described in more detail.
In the existing narrow gap type ion exchange membrane electrolytic cell used in the present invention, the replacement time of the old cathode (1) (cathode electrolysis operation time) is not particularly limited. Replacing the old cathode (1), which has deteriorated the hydrogen generating catalyst and required renewal of the cathode, is economically preferable because energy loss can be reduced by returning the hydrogen generating catalyst activity of the cathode.

本発明の電解槽の水素発生反応は新陰極(6)で生じるため、旧陰極(1)の水素発生触媒が劣化していてもそのまま使用可能である。しかし、旧陰極(1)上の劣化触媒が運転中に脱落し苛性液の品質を損ねたり、イオン交換膜(2)を傷つけたりする不具合が生じる場合があるので、改造前に劣化触媒を除去することが望ましい。
劣化触媒の除去には、研磨などで物理的に除去する方法や鉱酸含有液に溶解させるなどして化学的に除去する方法などが用いられる。
Since the hydrogen generation reaction of the electrolytic cell of the present invention occurs at the new cathode (6), it can be used as it is even if the hydrogen generation catalyst of the old cathode (1) is deteriorated. However, the deteriorated catalyst on the old cathode (1) may fall off during operation, resulting in damage to the quality of the caustic liquid or damage to the ion exchange membrane (2). Remove the deteriorated catalyst before remodeling. It is desirable to do.
For removing the deteriorated catalyst, a method of physically removing it by polishing or the like, a method of chemically removing it by dissolving it in a mineral acid-containing liquid, or the like is used.

旧陰極(1)に設置するコイルクッション材(5)(図2)は、従来知られているコイルクッション材の全てが好適に利用可能である。例えば、図3に示す構造の金属枠(7)に図4に示す金属製コイル体(8)を巻き付けて製作された、図5に示すコイルクッション材(5)を使用すれば簡便で確実に設置できるため好ましい。
金属枠(7)の材質としては、ニッケルやステンレスなどの耐食性が高いものが好ましく使用される。その枠の径は1乃至3mmが好ましく、より好ましくは1乃至2mmである。枠の径が1mm未満であると強度が不足するためハンドリングが困難となる。逆に、3mmを超えると材料費が悪化し、また、イオン交換膜(2)や新陰極(6)に枠が過剰に押し付けられ、イオン交換膜(2)や新陰極(6)が破損する場合がある。
As the coil cushion material (5) (FIG. 2) installed on the old cathode (1), all conventionally known coil cushion materials can be suitably used. For example, if the coil cushion material (5) shown in FIG. 5 manufactured by winding the metal coil body (8) shown in FIG. 4 around the metal frame (7) having the structure shown in FIG. It is preferable because it can be installed.
As the material of the metal frame (7), a material having high corrosion resistance such as nickel or stainless steel is preferably used. The diameter of the frame is preferably 1 to 3 mm, more preferably 1 to 2 mm. If the diameter of the frame is less than 1 mm, the strength is insufficient and handling becomes difficult. On the other hand, when the thickness exceeds 3 mm, the material cost deteriorates, and the frame is excessively pressed against the ion exchange membrane (2) and the new cathode (6), and the ion exchange membrane (2) and the new cathode (6) are damaged. There is a case.

金属製コイル体(8)を金属枠に巻き付けてコイルクッションが構成されるが、コイル体(8)の巻き付け数は、3〜9回/cmが好ましく、より好ましくは6〜7回/cmである。コイルの巻き数が少なすぎると、反力が不足したり圧縮時にコイルが倒れ、弾性が不足したりする場合がある。逆に、巻き数が多すぎると反力が過剰となったり、ハンドリング性が悪化する場合がある。
金属製コイル体(8)には、ニッケルやステンレスなどの耐食性と電気導電性が高いものが好ましく使用される。また、銅などの導電性に優れたコイル体の表面をニッケル被覆して耐食性を高めたものも好適に用いることができる。
A coil cushion is configured by winding a metal coil body (8) around a metal frame. The number of windings of the coil body (8) is preferably 3 to 9 times / cm, more preferably 6 to 7 times / cm. is there. If the number of turns of the coil is too small, the reaction force may be insufficient or the coil may fall during compression and the elasticity may be insufficient. On the contrary, if the number of windings is too large, the reaction force may be excessive or the handling property may be deteriorated.
As the metal coil body (8), those having high corrosion resistance and high electrical conductivity such as nickel and stainless steel are preferably used. Moreover, the thing which coat | covered the surface of the coil body excellent in electroconductivity, such as copper, with nickel, and improved corrosion resistance can also be used conveniently.

金属コイル体(8)を製作する方法に制限はないが、例えば、ニッケルやステンレスの線材をロール加工し、螺旋状に成形することにより製作可能である。用いる線材の径は0.1乃至2.0mmが好ましく、より好ましくは0.1乃至1.0mmである。線材が細すぎると製作したコイル体の強度が不足し、使用時に塑性変形を受けて弾性反発力が不十分となる。逆に、太すぎると成形が困難となったり、成形できても過剰の弾性反発力となり、所望のコイルクッション材(5)が得られない。   Although there is no restriction | limiting in the method of manufacturing a metal coil body (8), For example, it can manufacture by roll-processing a nickel and stainless steel wire, and shape | molding it helically. The diameter of the wire used is preferably 0.1 to 2.0 mm, more preferably 0.1 to 1.0 mm. If the wire is too thin, the strength of the manufactured coil body is insufficient, and the elastic repulsion force becomes insufficient due to plastic deformation during use. On the other hand, if it is too thick, molding becomes difficult, or even if it can be molded, an excessive elastic repulsion force is obtained, and the desired coil cushion material (5) cannot be obtained.

金属製コイル体(8)のリング径(コイルの見掛け上の直径)は特に限定はないが、通常、3乃至10mmとすればよい。リング径が3mmより小さいと弾性マットの圧縮可能厚みが不足し、本発明の効果が発揮されない場合がある。逆に、リング径が10mmより大きいとハンドリング性が悪化する場合があり、また、圧縮時に塑性変形を受けて弾性反発力が不十分となる場合がある。   The ring diameter (apparent diameter of the coil) of the metal coil body (8) is not particularly limited, but is usually 3 to 10 mm. If the ring diameter is smaller than 3 mm, the compressible thickness of the elastic mat is insufficient, and the effects of the present invention may not be exhibited. On the contrary, if the ring diameter is larger than 10 mm, the handling property may be deteriorated, and the elastic repulsion may be insufficient due to plastic deformation during compression.

金属製コイル体(8)のコイル厚みは、図2の両矢印aによって示される長さを言うが、その厚みは特に限定はなく、通常、1〜10mm、好ましくは2〜5mmとすればよい。コイルが厚すぎると圧縮時の弾性反発力が不足し、本発明の効果が得られない場合がある。逆に、薄すぎると圧縮時の弾性反発力が異常に強くなり、イオン交換膜を損傷してしまう可能性がある。
上記のコイルクッション材(5)を旧陰極(1)に設置する方法は、図2に示すように、コイルクッション材(5)が旧陰極(1)上に固定されればよく、特に制限はない。例えば、コイルクッション材(5)の金属枠の少なくとも一部を旧陰極(1)に溶接すればよい。
The coil thickness of the metal coil body (8) refers to the length indicated by the double-headed arrow a in FIG. 2, but the thickness is not particularly limited, and is usually 1 to 10 mm, preferably 2 to 5 mm. . If the coil is too thick, the elastic repulsion force at the time of compression is insufficient, and the effects of the present invention may not be obtained. On the other hand, if it is too thin, the elastic repulsion force during compression becomes abnormally strong, and the ion exchange membrane may be damaged.
The method of installing the coil cushion material (5) on the old cathode (1) is not particularly limited as long as the coil cushion material (5) is fixed on the old cathode (1) as shown in FIG. Absent. For example, at least a part of the metal frame of the coil cushion material (5) may be welded to the old cathode (1).

本発明で使用する新陰極(6)(図2、図6)としては、食塩電解用の陰極として、電解時に水素を発生する水素発生電極が広く知られており、通常、ニッケル基材に水素発生電極触媒を担持した、所謂、活性陰極が適用される。現在、種々の活性陰極が開発・実用化されており、本発明はこれらの活性陰極の何れもが使用可能である(例えば、特開2005−330575参照)。   As the new cathode (6) (FIGS. 2 and 6) used in the present invention, a hydrogen generating electrode that generates hydrogen during electrolysis is widely known as a cathode for salt electrolysis. A so-called active cathode carrying a generating electrode catalyst is applied. Currently, various active cathodes have been developed and put to practical use, and any of these active cathodes can be used in the present invention (see, for example, JP-A-2005-330575).

新陰極(6)の金属基板として、通常のニッケル製エキスパンドメタル型電極、刻み巾:2mm、短径:6mm、長径:15mm、板厚:2mm程度の従来のニッケル製エキスパンドメタル基板を使用すると、新陰極(6)とイオン交換膜(2)との接触に際し、新陰極のメッシュ部分の剛性が高く、部分的にイオン交換膜に負荷する圧力が大きくなる場所があり、イオン交換膜(2)損傷の程度が大きく、損傷の頻度が多くなる。   As the metal substrate of the new cathode (6), when using a conventional nickel expanded metal substrate, step size: 2 mm, minor diameter: 6 mm, major diameter: 15 mm, plate thickness: about 2 mm, a conventional nickel expanded metal substrate, In contact between the new cathode (6) and the ion exchange membrane (2), there is a place where the rigidity of the mesh portion of the new cathode is high and the pressure applied to the ion exchange membrane is partially increased, the ion exchange membrane (2) The degree of damage is large and the frequency of damage increases.

従って、新陰極(6)の金属基板として、刻み巾が0.1mm以上1mm以下、短径が0.5mm以上5.0mm以下、長径が1.0mm以上10mm以下、板厚が0.1mm以上1.0mm以下のエキスパンドメタル型メッシュが好ましく使用される。このような仕様のエキスパンドメタル型メッシュの上に触媒を担持した新陰極(6)を使用し、その新陰極(6)とイオン交換膜(2)との接触に際し、新陰極(6)のメッシュ部分の剛性を低下させ、イオン交換膜(2)にかかる圧力を小さくして、イオン交換膜の損傷の程度を小さくし、損傷の頻度を小さくすることが好ましい。   Therefore, as the metal substrate of the new cathode (6), the step width is 0.1 mm or more and 1 mm or less, the minor axis is 0.5 mm or more and 5.0 mm or less, the major axis is 1.0 mm or more and 10 mm or less, and the plate thickness is 0.1 mm or more. An expanded metal type mesh of 1.0 mm or less is preferably used. The new cathode (6) carrying the catalyst on the expanded metal mesh having such specifications is used, and the mesh of the new cathode (6) is brought into contact with the new cathode (6) and the ion exchange membrane (2). It is preferable to reduce the rigidity of the portion, reduce the pressure applied to the ion exchange membrane (2), reduce the degree of damage to the ion exchange membrane, and reduce the frequency of damage.

このエキスパンデッドメタル電極の一つの空孔の面積は、(短径×長径)÷2で近似され、上記の短径及び長径によれば、0.25〜25mmと規定される。
しかしながら、電極の一つの空孔の面積が小さすぎると電極から発生する気体の抜けが悪くなるため好ましくなく、逆に、大きすぎると電極自体の強度が低下して好ましくない。電極の一つの空孔の面積は1.0〜10mmの範囲であることが好ましい。
また、電極の開口率は、余り小さいと電極から発生する気体の抜けが悪くなるため好ましくなく、大きすぎると電極自体の強度が低下するため好ましくない。電極の開口率は48〜60%が好ましい。
The area of one hole of the expanded metal electrode is approximated by (minor axis × major axis) / 2, and is defined as 0.25 to 25 mm 2 according to the minor axis and the major axis.
However, if the area of one hole of the electrode is too small, the escape of gas generated from the electrode is worsened. On the contrary, if the area is too large, the strength of the electrode itself is lowered, which is not preferred. The area of one hole of the electrode is preferably in the range of 1.0 to 10 mm 2 .
Further, if the aperture ratio of the electrode is too small, it is not preferable because the escape of gas generated from the electrode is worsened, and if it is too large, the strength of the electrode itself is decreased. The electrode aperture ratio is preferably 48 to 60%.

上記の新陰極(6)は、図6および図7に示すように、旧陰極(1)上に設置されたコイルクッション材の上に設置されるが、その設置方法は、新陰極(6)が旧陰極(1)に固定できればよく、特に制限はない。例えば、図6に示されるように、コイルクッション材(5)を貫通しない場所に開けた新陰極(6)の穴と旧陰極(1)の穴にピン(9)を通して固定すればよい。ピン(9)としては、テフロン(登録商標)のようなフッ素樹脂からなるものが好ましく用いられる。   As shown in FIGS. 6 and 7, the new cathode (6) is installed on the coil cushion material installed on the old cathode (1). There is no particular limitation as long as it can be fixed to the old cathode (1). For example, as shown in FIG. 6, the pin (9) may be fixed to the hole of the new cathode (6) and the hole of the old cathode (1) opened at a place not penetrating the coil cushion material (5). As the pin (9), a pin made of a fluororesin such as Teflon (registered trademark) is preferably used.

図2には、陽極は図示されていないが、陽極は、イオン交換膜(2)を介して新陰極(6)の反対側に位置し、イオン交換膜(2)と接触している。
この接触により、コイルクッション材(5)から新陰極(6)を通してイオン交換膜(2)に所定の圧力をかけるためには、コイルクッション材(5)の弾性反発力を平均の面圧として7〜17kPaに調整すればよい。コイルクッション材(5)の弾性反発力はコイル厚みで調整可能である。即ち、使用するコイルクッション材(5)のコイル厚みと弾性反発力の関係を予め測定しておき、本発明のイオン交換膜法電解槽を組み立てた際に、所望の弾性反発力が得られるようにコイル厚みを調整すればよい。コイル厚みの調整方法は特に限定はないが、例えば、ガスケット(4)の厚みで調整すると簡便である。
Although the anode is not shown in FIG. 2, the anode is located on the opposite side of the new cathode (6) through the ion exchange membrane (2) and is in contact with the ion exchange membrane (2).
In order to apply a predetermined pressure to the ion exchange membrane (2) from the coil cushion material (5) through the new cathode (6) by this contact, the elastic repulsive force of the coil cushion material (5) is set to an average surface pressure of 7 What is necessary is just to adjust to -17kPa. The elastic repulsion force of the coil cushion material (5) can be adjusted by the coil thickness. That is, when the relationship between the coil thickness of the coil cushion material (5) to be used and the elastic repulsion force is measured in advance and the ion exchange membrane electrolytic cell of the present invention is assembled, a desired elastic repulsion force can be obtained. The coil thickness may be adjusted. The method for adjusting the coil thickness is not particularly limited, but for example, it is convenient to adjust the thickness by the thickness of the gasket (4).

コイルクッション材(5)から新陰極(6)を通してイオン交換膜(2)に所定の圧力をかけることにより、コイルクッション材(5)の弾性反発力を平均の面圧として7〜17kPaに調整すれば、本発明の新陰極(6)とイオン交換膜(2)との接触圧力が均一となり、過剰な接触圧力によるイオン交換膜(2)の破損が生じない。特に、コイルクッション材(5)の弾性反発力が下限値7kPa以上の面圧となるように調整することにより、イオン交換膜と陰極および陽極との間隔が大きくなることが防止され、電解槽電圧を低下することができる。   By applying a predetermined pressure from the coil cushion material (5) to the ion exchange membrane (2) through the new cathode (6), the elastic repulsion force of the coil cushion material (5) is adjusted to 7 to 17 kPa as an average surface pressure. For example, the contact pressure between the new cathode (6) of the present invention and the ion exchange membrane (2) becomes uniform, and the ion exchange membrane (2) is not damaged by the excessive contact pressure. In particular, by adjusting the elastic repulsive force of the coil cushion material (5) to a surface pressure of the lower limit value of 7 kPa or more, it is possible to prevent the interval between the ion exchange membrane, the cathode and the anode from being increased, and the electrolytic cell voltage Can be reduced.

陽極は特に限定はなく、従来知られているものを適時用いればよい。例えば、チタンからなるエキスパンドメタル基板に、イリジウム酸化物及び/又はルテニウム酸化物などの塩素発生電極触媒を担持してなる塩素発生電極が広く知られている。
イオン交換膜(2)は特に限定はなく、従来知られているものを適時用いればよい。例えば、スルホン酸基やカルボン酸基などの陽イオン交換基を有するフッ素樹脂フィルムからなるイオン交換膜が広く知られている。
The anode is not particularly limited, and a conventionally known anode may be used as appropriate. For example, a chlorine generating electrode in which a chlorine generating electrode catalyst such as iridium oxide and / or ruthenium oxide is supported on an expanded metal substrate made of titanium is widely known.
The ion exchange membrane (2) is not particularly limited, and a conventionally known one may be used as appropriate. For example, an ion exchange membrane made of a fluororesin film having a cation exchange group such as a sulfonic acid group or a carboxylic acid group is widely known.

本発明を以下の実施例について具体的に説明するが、本発明はこれらの実施例により、なんら限定されるものではない。
(陰極交換前のナローギャップ型イオン交換膜法電解槽)
ナローギャップ型電解槽としてTMB型イオン交換膜法電解槽を用い食塩の電解を実施した。
The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.
(Narrow gap ion exchange membrane electrolytic cell before cathode exchange)
Sodium chloride was electrolyzed using a TMB ion exchange membrane electrolytic cell as a narrow gap electrolytic cell.

実施例1
TMB型イオン交換膜法電解槽にて、電流密度5kA/dmで6年間の連続運転を2回実施し、トータル12年間の運転を実施した。電解槽の旧陰極上に、コイルクッション材及び新陰極を設置した。
具体的には、1.2mm径のニッケル棒を図3に示される構造に組み立てて金属枠(7)を作製した。金属枠(7)に、0.1mm径のニッケル線材をロールプレスして製作した金属製コイル(8)を糸巻状に図4に示されるように巻き付け、図5に示されるようなコイルクッション材を製作した。金属製コイル(8)の巻き付け数は60回/dmとした。図7に示すようにコイルクッション材を旧陰極上に設置した。
Example 1
In the TMB type ion exchange membrane method electrolytic cell, continuous operation for 6 years was carried out twice at a current density of 5 kA / dm 2 for a total of 12 years. A coil cushion material and a new cathode were installed on the old cathode of the electrolytic cell.
Specifically, a nickel frame having a diameter of 1.2 mm was assembled into the structure shown in FIG. 3 to produce a metal frame (7). A metal coil (8) produced by roll-pressing a 0.1 mm diameter nickel wire rod is wound around a metal frame (7) in a pincushion shape as shown in FIG. 4, and a coil cushion material as shown in FIG. Was made. The number of windings of the metal coil (8) was 60 times / dm 2 . As shown in FIG. 7, the coil cushion material was installed on the old cathode.

コイルクッション材のコイル密度は3.0g/dmであり、圧縮後のコイル厚みは2.5mmとした。
新陰極(6)を次のように作製した。刻み巾:0.2mm、短径:1.0mm、長径:2.0mm、板厚:0.2mmのファインメッシュのニッケル製エキスパンドメタル(短径方向の長さ1400mm、長径方向の長さ390mm)を基板として使用し、この基板を10重量%の塩酸溶液を用いて温度50℃で15分間エッチングした後、水洗、乾燥した。
The coil density of the coil cushion material was 3.0 g / dm 2 and the coil thickness after compression was 2.5 mm.
A new cathode (6) was produced as follows. Fine mesh nickel expanded metal with step size: 0.2 mm, minor axis: 1.0 mm, major axis: 2.0 mm, plate thickness: 0.2 mm (minor axis length 1400 mm, major axis direction length 390 mm) Was used as a substrate, and this substrate was etched with a 10 wt% hydrochloric acid solution at a temperature of 50 ° C. for 15 minutes, then washed with water and dried.

次いで、ジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:4.5重量%、溶媒:8重量%硝酸溶液)、硝酸ニッケル6水和物及び水を用いて白金含有量がモル比で0.5、混合液中の白金とニッケルの合計濃度が金属換算で5重量%の塗布液を調製した。
次いで、この塗布液を前記ファインメッシュ基板に刷毛を用いて全面に塗布し、熱風式乾燥機内で80℃、15分間乾燥後、箱型電気炉を用いて空気流通下のもと500℃で15分間熱分解した。この一連の操作を5回繰り返して、白金−ニッケル合金を被覆した電極を本願の改造TMB型イオン交換膜法電解槽の新陰極(6)とした。
Subsequently, the platinum content was adjusted to a molar ratio of 0.00 using dinitrodiammine platinum nitrate solution (manufactured by Tanaka Kikinzoku, platinum concentration: 4.5 wt%, solvent: 8 wt% nitric acid solution), nickel nitrate hexahydrate and water. 5. A coating solution in which the total concentration of platinum and nickel in the mixed solution was 5% by weight in terms of metal was prepared.
Next, this coating solution is applied to the entire surface of the fine mesh substrate with a brush, dried at 80 ° C. for 15 minutes in a hot air dryer, and then subjected to 15 ° C. at 500 ° C. under air circulation using a box-type electric furnace. Pyrolyzed for minutes. This series of operations was repeated 5 times, and the electrode coated with the platinum-nickel alloy was used as the new cathode (6) of the modified TMB type ion exchange membrane electrolytic cell of the present application.

旧陰極(1)、コイルクッション材(5)及び新陰極(6)を図6に示す構造で組み立てた。コイルクッション材(5)は金属枠の四隅を旧陰極(1)に溶接することで固定した。旧陰極(1)及び新陰極(6)の外枠から30mm離した上部、真中、下部の左右合計6ヶ所に開けられた直径3.5mmの孔にテフロン(登録商標)ピン(9)を通すことで、新陰極(6)を固定した。
ガスケット(4)の厚みを調整し、コイルクッション材(5)の弾性反発力が9.8kPaとなるコイル幅に設定した。
The old cathode (1), the coil cushion material (5) and the new cathode (6) were assembled in the structure shown in FIG. The coil cushion material (5) was fixed by welding the four corners of the metal frame to the old cathode (1). A Teflon (registered trademark) pin (9) is passed through a hole with a diameter of 3.5 mm opened at a total of six locations on the left, right, upper, middle, and lower portions 30 mm away from the outer frame of the old cathode (1) and the new cathode (6). This fixed the new cathode (6).
The thickness of the gasket (4) was adjusted, and the coil width was set such that the elastic repulsion of the coil cushion material (5) was 9.8 kPa.

陽極としてペルメレック電極社製のDSE(登録商標)を、また、イオン交換膜として旭硝子社製のフレミオン(登録商標)を使用して、図8に示されるように、旧陰極(1)、コイルクッション材(5)、新陰極(6)、イオン交換膜(2)、陽極(10)を組み立てて、改造TMB型イオン交換膜法電解槽を組み立てた。陽極室の圧力に対し、陰極室の圧力を5kPa高く設定し、イオン交換膜を陽極表面に密着させ、電流密度5kA/m、陽極室出口塩水濃度:200〜210g/L、陰極室出口水酸化ナトリウム水溶液濃度:31〜33重量%、温度:90℃にて、食塩電解試験を行い、電解電圧を測定した。電解電圧は、3.0付近で推移した。 Using the DSE (registered trademark) manufactured by Permerek Electrode Co., Ltd. as the anode and the Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd. as the ion exchange membrane, as shown in FIG. The material (5), the new cathode (6), the ion exchange membrane (2), and the anode (10) were assembled to assemble a modified TMB type ion exchange membrane method electrolytic cell. The pressure in the cathode chamber is set 5 kPa higher than the pressure in the anode chamber, the ion exchange membrane is brought into close contact with the anode surface, the current density is 5 kPa / m 2 , the anode chamber outlet brine concentration: 200 to 210 g / L, the cathode chamber outlet water Sodium chloride aqueous solution concentration: 31 to 33% by weight, temperature: 90 ° C., a salt electrolysis test was performed, and an electrolysis voltage was measured. The electrolysis voltage changed around 3.0.

比較例1
図9に示す構造を有する、従来のTMB電解槽を用いて、食塩電解の比較試験をおこなった。
運転終了後のTMB型イオン交換膜法電解槽の旧陰極(1)を取り外して、板厚:1.0mm、長径:8.0mm、短径:4.0mm、刻み巾:1.0mmであるニッケル製エキスパンドメタル基板(短径方向の長さ1400mm、長径方向の長さ1200mm)に電極触媒を担持した新しい陰極(11)に更新した。
Comparative Example 1
A comparative test of salt electrolysis was conducted using a conventional TMB electrolytic cell having the structure shown in FIG.
After the operation is completed, the old cathode (1) of the TMB type ion exchange membrane method electrolytic cell is removed, and the plate thickness is 1.0 mm, the major axis is 8.0 mm, the minor axis is 4.0 mm, and the step size is 1.0 mm. It was updated to a new cathode (11) in which an electrode catalyst was supported on a nickel expanded metal substrate (length in the minor axis direction 1400 mm, length in the major axis direction 1200 mm).

陽極(2)として、ペルメレック電極社製のDSE(登録商標)を用い、また、イオン交換膜(2)として旭硝子社製のフレミオン(登録商標)を使用して、図9に示されるように、新しい陰極(11)、イオン交換膜(2)及び陽極(10)を組み立てて、TMB型イオン交換膜法電解槽を組み立て、陽極室の圧力に対し、陰極室の圧力を5kPa高く設定し、イオン交換膜を陽極表面に密着させた。   As shown in FIG. 9, using DSE (registered trademark) manufactured by Permerek Electrode Co., Ltd. as the anode (2) and using Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd. as the ion exchange membrane (2), A new cathode (11), ion exchange membrane (2), and anode (10) are assembled, a TMB type ion exchange membrane method electrolytic cell is assembled, and the pressure in the cathode chamber is set 5 kPa higher than the pressure in the anode chamber. The exchange membrane was adhered to the anode surface.

この陰極(11)とイオン交換膜(2)は2.0mm離れており、ガスケットの厚みを同じ2.0mmとした。
電流密度5kA/m、陽極室出口塩水濃度:200〜210g/L、陰極室出口水酸化ナトリウム水溶液濃度:31〜33重量%、温度:90℃にて食塩電解試験を行い、電解電圧を測定した。電解電圧は、3.2V付近で推移し、実施例1と比較して、0.2V高い電圧で推移した。
The cathode (11) and the ion exchange membrane (2) were 2.0 mm apart, and the thickness of the gasket was the same 2.0 mm.
A sodium chloride electrolysis test was performed at a current density of 5 kA / m 2 , an anode chamber outlet salt water concentration: 200 to 210 g / L, a sodium hydroxide aqueous solution concentration of 31 to 33% by weight, a temperature: 90 ° C., and an electrolysis voltage was measured. did. The electrolysis voltage changed in the vicinity of 3.2 V, and changed by 0.2 V higher than that in Example 1.

本発明のイオン交換膜法電解槽は、従来のナローギャップ型電解槽の課題、陰極の交換時における費用を削減し、かつ、電解工業の電気分解に必要なエネルギーを長期間安定的に低く抑えることができ、ゼロギャップ型電解槽の有する省エネルギー性能が得られるという特段の効果を有する。
従って、本発明のイオン交換膜法電解槽は、食塩電解などクロルアルカリ電解に代表される電解工業で利用される。食塩電解以外、例えば、塩化カリウム水溶液電解やアルカリ水電解などにも好適に利用し得る
The ion exchange membrane method electrolytic cell of the present invention reduces the problem of the conventional narrow gap type electrolytic cell, the cost of replacing the cathode, and keeps the energy required for electrolysis in the electrolytic industry stably low over a long period of time. The energy saving performance of the zero gap type electrolytic cell can be obtained.
Therefore, the ion exchange membrane method electrolytic cell of the present invention is used in the electrolytic industry represented by chloralkali electrolysis such as salt electrolysis. Other than salt electrolysis, for example, it can be suitably used for potassium chloride aqueous solution electrolysis and alkaline water electrolysis.

1:陰極又は旧陰極
2:イオン交換膜
3:陰極リブ
4:ガスケット
5:コイルクッション材
6:新陰極
7:金属枠
8:金属製コイル体
9:固定用ピン
10:陽極
11:新しい陰極
1: Cathode or old cathode 2: Ion exchange membrane 3: Cathode rib 4: Gasket 5: Coil cushion material 6: New cathode 7: Metal frame 8: Metal coil body 9: Fixing pin 10: Anode 11: New cathode

Claims (6)

旧陰極を有するナローギャップ型イオン交換膜法電解槽の旧陰極上に、コイルクッション材が設置され、該コイルクッション材の上に、電極触媒を担持した新陰極が設置され、かつ、新陰極がイオン交換膜と接触していることを特徴とするイオン交換膜法電解槽。   A coil cushion material is installed on the old cathode of the narrow gap type ion exchange membrane electrolytic cell having the old cathode, a new cathode carrying an electrode catalyst is installed on the coil cushion material, and the new cathode is An ion exchange membrane electrolytic cell characterized by being in contact with an ion exchange membrane. 新陰極が、刻み巾が0.1mm以上1.0mm以下、短径が0.5mm以上5.0mm以下、長径が1.0mm以上10mm以下、板厚が0.1mm以上1.0mm以下であり、開口率が48〜60%であるエキスパンドメタルに電極触媒が担持されている請求項1に記載のイオン交換膜法電解槽。   The new cathode has a step width of 0.1 mm to 1.0 mm, a minor axis of 0.5 mm to 5.0 mm, a major axis of 1.0 mm to 10 mm, and a plate thickness of 0.1 mm to 1.0 mm. The ion exchange membrane method electrolytic cell according to claim 1, wherein an electrode catalyst is supported on an expanded metal having an opening ratio of 48 to 60%. コイルクッション材が、金属枠に金属製コイル体を巻き付けた構造を有する請求項1又は請求項2に記載のイオン交換膜法電解槽。   The ion exchange membrane method electrolytic cell according to claim 1 or 2, wherein the coil cushion material has a structure in which a metal coil body is wound around a metal frame. 金属枠に巻き付けた金属製コイル体の巻き数が3〜9回/cmである請求項3に記載のイオン交換膜法電解槽。   The ion exchange membrane method electrolytic cell according to claim 3, wherein the number of turns of the metal coil body wound around the metal frame is 3 to 9 times / cm. コイルクッション材の弾性反発力が平均の面圧として7〜17kPaに調整される請求項1乃至4のいずれか1項に記載のイオン交換膜法電解槽。   The ion exchange membrane method electrolytic cell according to any one of claims 1 to 4, wherein an elastic repulsion force of the coil cushion material is adjusted to 7 to 17 kPa as an average surface pressure. 旧陰極を有するナローギャップ型イオン交換膜法電解槽の旧陰極上にコイルクッション材を設置し、次いで、該コイルクッション材の上に電極触媒を担持した新陰極を設置し、新陰極とイオン交換膜とを接触させることを特徴とするナローギャップ型イオン交換膜法電解槽の改造方法。   A coil cushion material is installed on the old cathode of the narrow gap type ion exchange membrane electrolytic cell having the old cathode, and then a new cathode carrying an electrode catalyst is installed on the coil cushion material, and ion exchange with the new cathode is performed. A method of remodeling a narrow gap type ion exchange membrane electrolytic cell characterized by contacting a membrane.
JP2010292306A 2010-12-28 2010-12-28 Ion exchange membrane electrolytic cell Active JP5583002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292306A JP5583002B2 (en) 2010-12-28 2010-12-28 Ion exchange membrane electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292306A JP5583002B2 (en) 2010-12-28 2010-12-28 Ion exchange membrane electrolytic cell

Publications (2)

Publication Number Publication Date
JP2012140653A true JP2012140653A (en) 2012-07-26
JP5583002B2 JP5583002B2 (en) 2014-09-03

Family

ID=46677214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292306A Active JP5583002B2 (en) 2010-12-28 2010-12-28 Ion exchange membrane electrolytic cell

Country Status (1)

Country Link
JP (1) JP5583002B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150140347A (en) * 2013-04-10 2015-12-15 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. Method of retrofitting of finite-gap electrolytic cells
CN110205644A (en) * 2019-06-03 2019-09-06 江阴市宏泽氯碱设备制造有限公司 Novel I NEOS membrane polar distance electrolytic bath
JP2020045550A (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrode
WO2021172508A1 (en) * 2020-02-26 2021-09-02 旭化成株式会社 Electrolytic tank and method for manufacturing electrolytic tank
JP7447330B2 (en) 2018-09-21 2024-03-11 旭化成株式会社 Jig for manufacturing a laminate, method for manufacturing a laminate, package, laminate, electrolytic cell, and method for manufacturing an electrolytic cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456790A (en) * 1990-06-22 1992-02-24 Permelec Electrode Ltd Reactivating method of electrode for electrolysis
JP2004300547A (en) * 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd Ion-exchange membrane electrolytic cell using hydrogen-generating cathode
JP2006322018A (en) * 2005-05-17 2006-11-30 Chlorine Eng Corp Ltd Ion exchange membrane type electrolytic cell
JP2009120882A (en) * 2007-11-13 2009-06-04 Tosoh Corp Electrolytic cell structural member and electrolytic cell using the same
JP2010174346A (en) * 2009-01-30 2010-08-12 Tosoh Corp Electrolytic bath for ion exchange membrane method and method of manufacturing the same
WO2012032793A1 (en) * 2010-09-07 2012-03-15 クロリンエンジニアズ株式会社 Negative electrode structure for electrode and electrolysis tank using same
WO2012091051A1 (en) * 2010-12-28 2012-07-05 東ソー株式会社 Ion-exchange membrane method electrolytic cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456790A (en) * 1990-06-22 1992-02-24 Permelec Electrode Ltd Reactivating method of electrode for electrolysis
JP2004300547A (en) * 2003-03-31 2004-10-28 Chlorine Eng Corp Ltd Ion-exchange membrane electrolytic cell using hydrogen-generating cathode
JP2006322018A (en) * 2005-05-17 2006-11-30 Chlorine Eng Corp Ltd Ion exchange membrane type electrolytic cell
JP2009120882A (en) * 2007-11-13 2009-06-04 Tosoh Corp Electrolytic cell structural member and electrolytic cell using the same
JP2010174346A (en) * 2009-01-30 2010-08-12 Tosoh Corp Electrolytic bath for ion exchange membrane method and method of manufacturing the same
WO2012032793A1 (en) * 2010-09-07 2012-03-15 クロリンエンジニアズ株式会社 Negative electrode structure for electrode and electrolysis tank using same
WO2012091051A1 (en) * 2010-12-28 2012-07-05 東ソー株式会社 Ion-exchange membrane method electrolytic cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150140347A (en) * 2013-04-10 2015-12-15 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. Method of retrofitting of finite-gap electrolytic cells
JP2016518522A (en) * 2013-04-10 2016-06-23 ティッセンクルップ・ウーデ・クロリン・エンジニアーズ(イタリア)ソシエタ・ア・レスポンサビリタ・リミタータ Electrolytic cell and method for retrofitting electrolytic cell
KR102274662B1 (en) * 2013-04-10 2021-07-12 티센크루프 유에이치디이 클로린 엔지니어스 (이탈리아) 에스.알.엘. Method of retrofitting of finite-gap electrolytic cells
JP2020045550A (en) * 2018-09-21 2020-03-26 旭化成株式会社 Method for manufacturing electrode
JP7260272B2 (en) 2018-09-21 2023-04-18 旭化成株式会社 Electrode manufacturing method
JP7447330B2 (en) 2018-09-21 2024-03-11 旭化成株式会社 Jig for manufacturing a laminate, method for manufacturing a laminate, package, laminate, electrolytic cell, and method for manufacturing an electrolytic cell
CN110205644A (en) * 2019-06-03 2019-09-06 江阴市宏泽氯碱设备制造有限公司 Novel I NEOS membrane polar distance electrolytic bath
WO2021172508A1 (en) * 2020-02-26 2021-09-02 旭化成株式会社 Electrolytic tank and method for manufacturing electrolytic tank
JPWO2021172508A1 (en) * 2020-02-26 2021-09-02
JP7449362B2 (en) 2020-02-26 2024-03-13 旭化成株式会社 Electrolytic cell and electrolytic cell manufacturing method

Also Published As

Publication number Publication date
JP5583002B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5693215B2 (en) Ion exchange membrane electrolytic cell
CN102762775B (en) Cathode for electrolyzing structure and use the electrolysis bath of this structure
JP5583002B2 (en) Ion exchange membrane electrolytic cell
JP4673628B2 (en) Cathode for hydrogen generation
JP3707985B2 (en) Alkali metal salt electrolytic cell
US7303661B2 (en) Electrode for electrolysis and ion exchange membrane electrolytic cell
JP5042389B2 (en) Active cathode for hydrogen generation
JP6956842B2 (en) Electrode for electrolysis, electrolytic cell, electrode laminate and electrode renewal method
JP2000192276A (en) Bipolar-type ion exchange membrane electrolytic cell
WO2011040464A1 (en) Electrode for generation of hydrogen, and electrolysis method
JP2014037586A (en) Electrolytic cell and electrolytic bath
JP5493787B2 (en) Ion exchange membrane electrolytic cell
JP5854788B2 (en) Zero-gap electrolytic cell and method for manufacturing the same
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
WO2012091055A1 (en) Ion-exchange membrane method electrolytic cell
WO2010122785A1 (en) Ion-exchange membrane electrolyzer
CN217104089U (en) Cathode reconstruction structure of N-BITAC electrolytic cell
CN104718317A (en) Ion exchange membrane electrolytic cell
US20230079666A1 (en) Electrode assembly and electrolyser
JP3906923B2 (en) Method for activating gas diffusion electrode
JP2000144467A (en) Electrolytic cell
JP2020050924A (en) Gasket for electrolytic cell and electrolytic cell
JPH04157189A (en) Electrolytic cell
JP2014214350A (en) Ion exchange membrane electrolytic bath
JP2008063613A (en) Electrolytic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5583002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250