JP2000144467A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JP2000144467A
JP2000144467A JP10320309A JP32030998A JP2000144467A JP 2000144467 A JP2000144467 A JP 2000144467A JP 10320309 A JP10320309 A JP 10320309A JP 32030998 A JP32030998 A JP 32030998A JP 2000144467 A JP2000144467 A JP 2000144467A
Authority
JP
Japan
Prior art keywords
leaf spring
electrode
exchange membrane
ion exchange
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10320309A
Other languages
Japanese (ja)
Inventor
Kazuhito Fujino
一仁 藤埜
Yoshimitsu Goto
義光 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10320309A priority Critical patent/JP2000144467A/en
Publication of JP2000144467A publication Critical patent/JP2000144467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic cell by which the interelectrode distance and bath voltage are decreased, and an ion-exchange membrane is not damaged. SOLUTION: A movable electrode connecting an electrode 4 and a rib 5 or the electrode 4 and a partition wall through a bent leaf spring member 2 is provided in an electrolytic cell. In this case, when the length between the leaf spring bend part 3 and the rib and a leaf spring connection part or between the partition wall and the leaf spring connection part is expressed by L2 and the length between the bend part and the electrode and leaf spring connection part by L1, L1/L2=0.2 to 0.9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はイオン交換膜法電解
槽に関するものであり、さらには電極間距離を短くして
電解電圧を低減させる電解槽に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell using an ion exchange membrane method, and more particularly, to an electrolytic cell that reduces the distance between electrodes to reduce the electrolytic voltage.

【0002】[0002]

【従来の技術】イオン交換膜法電解槽は、海水の電気透
析による食塩製造や、食塩の電気分解による苛性ソーダ
と塩素の製造等に広く用いられている。この中で、食塩
の電気分解により、苛性ソーダと塩素を得る塩素アルカ
リ食塩電解法を例にとると、図7に示すように、イオン
交換膜11を挾んで陰極12と陽極14とを設け、陰極
12の側に陰極リブ13および隔壁6を備え、陽極14
の側に陽極リブ15および隔壁6を備えたものである。
電解槽には通常3〜5キロアンペア/m2の非常に大き
な電流をイオン交換膜を挟んだ陽極と陰極の間に通電し
て、食塩水を電気分解している。
2. Description of the Related Art An ion-exchange membrane electrolytic cell is widely used for the production of salt by electrodialysis of seawater and the production of caustic soda and chlorine by electrolysis of salt. Among these, taking a chlor-alkali salt electrolysis method for obtaining caustic soda and chlorine by electrolysis of salt as an example, as shown in FIG. 7, a cathode 12 and an anode 14 are provided with an ion exchange membrane 11 interposed therebetween, and a cathode 12 and an anode 14 are provided. A cathode rib 13 and a partition wall 6 are provided on the side of
Is provided with an anode rib 15 and a partition 6.
In the electrolytic cell, a very large current of usually 3 to 5 kA / m 2 is supplied between the anode and the cathode with the ion exchange membrane interposed therebetween to electrolyze the salt solution.

【0003】イオン交換膜法電解槽に求められる機能と
して、電気分解に消費される電解消費電力を削減するこ
とが挙げられ、このためには電解電圧を少しでも低減す
ることが必要となる。電解電圧は主として、電極材質、
イオン交換膜の電気抵抗、電解槽の構造抵抗、および陽
極と陰極の極間距離等に依存している。このうち、特に
電極間の極間距離については、前記の電解電圧の低減に
大きく寄与するため、これまでに各種の提案がなされて
きた。
One of the functions required of an electrolytic cell using an ion-exchange membrane method is to reduce the power consumption of electrolysis consumed by electrolysis. For this purpose, it is necessary to reduce the electrolysis voltage as much as possible. Electrolysis voltage mainly depends on electrode material,
It depends on the electric resistance of the ion exchange membrane, the structural resistance of the electrolytic cell, the distance between the anode and the cathode, and the like. Of these, various proposals have been made so far, particularly regarding the distance between the electrodes, which greatly contributes to the reduction of the electrolytic voltage.

【0004】電解電圧を低減させるためには、イオン交
換膜を挟んで、電極間距離をできるだけ短くすることが
望ましい。しかし、陰極、陽極の両電極の製作精度と、
電解室枠の組立て精度の限界、および運転時の加熱によ
る熱変形歪みにより、陽極と陰極に挾んで設置している
イオン交換膜に電極を接触させず損傷を与えない平均電
極間距離は、2mm〜3mm以上となることが通常であ
る。よって電解電圧を低減するために平均電極間距離を
特に2mm以下に短縮すると、電極がイオン交換膜に局
所的に押し付けられ、イオン交換膜を局所的に押しつぶ
したり、電極がイオン交換膜とこすれることでイオン交
換膜に切り傷やピンホールなどの損傷を与え、運転が不
能となる場合が多い。このため電極とイオン交換膜とを
実質的に接触させたり、あるいは、極めて短い距離に電
極間を保持するために、電解槽の電極とリブ間、あるい
は電極と隔壁間を板ばね部材で結合する方法が提案され
ている。例えば、特開平5−306484号公報に示す
如く、電極と電解槽の隔壁若しくはリブを櫛状の板ばね
部材で結合する方法や、特開昭58−37183号公報
に示す如く、電極の支持構造を穿孔され外側へ屈曲され
た先端部を有する平面可撓型押圧部材で形成する方法、
特公昭62−3236号公報に示す如く、可撓性の空隙
性電極を板ばね等の導電性支持体で支持する方法が提案
されている。
[0004] In order to reduce the electrolysis voltage, it is desirable to minimize the distance between the electrodes with the ion exchange membrane interposed therebetween. However, the manufacturing accuracy of both cathode and anode electrodes,
The average distance between the electrodes, which does not cause damage to the ion exchange membrane installed between the anode and the cathode due to the limit of the assembly accuracy of the electrolytic chamber frame and the thermal deformation distortion caused by heating during operation, is 2 mm. Usually, it is 33 mm or more. Therefore, if the average interelectrode distance is particularly reduced to 2 mm or less in order to reduce the electrolysis voltage, the electrodes are locally pressed against the ion exchange membrane, and the ion exchange membrane is locally crushed or the electrodes are rubbed with the ion exchange membrane. In many cases, damage such as cuts and pinholes is caused on the ion exchange membrane, and the operation becomes impossible in many cases. For this reason, the electrode and the ion exchange membrane are substantially brought into contact with each other, or the electrode and the rib of the electrolytic cell or the electrode and the partition are joined by a leaf spring member in order to keep the electrode at a very short distance. A method has been proposed. For example, as shown in JP-A-5-306484, a method of connecting an electrode and a partition or rib of an electrolytic cell with a comb-shaped leaf spring member, or as shown in JP-A-58-37183, A method of forming a flat flexible pressing member having a tip portion that is pierced and bent outward,
As disclosed in Japanese Patent Publication No. 62-3236, there has been proposed a method of supporting a flexible porous electrode with a conductive support such as a leaf spring.

【0005】このような板ばね部材を用いて電極とイオ
ン交換膜とを接触させた場合、板ばね部材での弾性効果
により、イオン交換膜の押圧方向(鉛直方向)には、イ
オン交換膜は損傷を受けにくいが、電極が膜に対して鉛
直方向のみでなく水平方向にも変位してしまうので、電
極とイオン交換膜がこすれてしまい、このこすれによっ
てイオン交換膜に部分的にピンホール状の貫通孔があい
てしまうというような致命的欠陥を生じたり、あるいは
イオン交換膜表面やイオン交換膜の芯材が傷つけられる
ことで、イオン交換膜の寿命を短くしてしまうというよ
うな問題があった。
[0005] When the electrode and the ion exchange membrane are brought into contact with each other using such a leaf spring member, the ion exchange membrane is not pressed in the vertical direction by the elastic effect of the leaf spring member. Although it is not easily damaged, the electrode is displaced not only vertically but also horizontally with respect to the membrane, so that the electrode and the ion exchange membrane are rubbed. Problems such as critical defects, such as the formation of through holes, or damage to the ion exchange membrane surface or the core material of the ion exchange membrane, shortening the life of the ion exchange membrane. there were.

【0006】[0006]

【発明が解決しようとする課題】本発明は、電極間距離
を短くし、電極とイオン交換膜とを実質的に接触させた
場合でも、イオン交換膜の損傷を生じることなく、電解
電圧を低減できる電解槽を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention reduces the electrolysis voltage without causing damage to the ion exchange membrane even when the distance between the electrodes is shortened and the electrodes are substantially brought into contact with the ion exchange membrane. An object of the present invention is to provide an electrolytic cell that can be used.

【0007】[0007]

【課題を解決するための手段】本発明は、電極とリブ
間、若しくは電極と隔壁間を、屈曲した板ばね部材で結
合する可動性の電極を設けた電解槽において、板ばね屈
曲部からリブと板ばね結合部、若しくは隔壁と板ばね結
合部までの長さをL2、該屈曲部から電極と板ばね結合
部までの長さをL1としたときに、L1/L2の値を
0.2〜0.9、好ましくは0.4〜0.6の範囲であ
る電解槽、更に平均電極間距離が2mm以下である電解
槽に関するものである。
SUMMARY OF THE INVENTION The present invention relates to an electrolytic cell provided with a movable electrode for connecting between an electrode and a rib or between an electrode and a partition by a bent leaf spring member. When the length from the bent portion to the electrode and the leaf spring connection portion is L1 and the length from the bent portion to the electrode and the leaf spring connection portion is L2, the value of L1 / L2 is 0.2. The present invention relates to an electrolytic cell having an average electrode-to-electrode distance of 2 mm or less.

【0008】L1/L2の値を前記範囲とすることで、
電極とイオン交換膜を押し付けた場合に、イオン交換膜
に対し電極は押し付け方向(鉛直方向)にのみ変位し、
水平方向の変位を実質的になくし、電極とイオン交換膜
でのこすれによるイオン交換膜の損傷を防止できる。
[0008] By setting the value of L1 / L2 within the above range,
When the electrode and the ion exchange membrane are pressed, the electrode is displaced only in the pressing direction (vertical direction) against the ion exchange membrane,
Horizontal displacement is substantially eliminated, and damage to the ion exchange membrane due to rubbing between the electrode and the ion exchange membrane can be prevented.

【0009】[0009]

【発明の実施の形態】以下、本発明を図面を参照して説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0010】図1は、本発明の方法によって、電極とリ
ブ間を屈曲した板ばね部材で結合した電解槽の一部を切
り取った斜視図である。電極4とリブ5を板ばね2で結
合してある。図2は、本発明の電解槽の一部を切り取っ
た断面図である。図3は、本発明の電解槽の一実施形態
を示す断面図であり、リブを使用せず、電極4と隔壁6
を直接板ばね2で結合してある。例えば、陰極側に板ば
ねを設ける場合、電流は電極(陰極)4から板ばね2を
通り、隔壁6へ流れ込む。
FIG. 1 is a perspective view of a part of an electrolytic cell connected by a leaf spring member having a bent portion between an electrode and a rib by the method of the present invention. The electrode 4 and the rib 5 are connected by the leaf spring 2. FIG. 2 is a cross-sectional view of a part of the electrolytic cell of the present invention. FIG. 3 is a sectional view showing an embodiment of the electrolytic cell of the present invention.
Are directly connected by a leaf spring 2. For example, when a leaf spring is provided on the cathode side, current flows from the electrode (cathode) 4 through the leaf spring 2 to the partition 6.

【0011】図4は板ばね部材の断面図であり、板ばね
は屈曲角度θで曲げられている。板ばね屈曲部3からリ
ブと板ばね結合部8、若しくは隔壁と板ばね結合部9ま
での長さをL2、該屈曲部3から電極と板ばね結合部7
までの長さをL1とすると、L1/L2の値を0.2〜
0.9の範囲に設定することが好ましく、さらに好まし
くは、0.4〜0.6の範囲に設定するのが良い。最も
好ましくはL1/L2の値を0.53とすることで、こ
の場合はイオン交換膜に対する電極の水平方向の変位を
完全になくすことができる。
FIG. 4 is a sectional view of a leaf spring member, in which the leaf spring is bent at a bending angle θ. The length from the leaf spring bent portion 3 to the rib and the leaf spring connecting portion 8 or the partition and the leaf spring connecting portion 9 is L2, and the length from the bent portion 3 to the electrode and the leaf spring connecting portion 7 is L2.
Assuming that the length of L1 / L2 is 0.2,
It is preferably set to a range of 0.9, and more preferably set to a range of 0.4 to 0.6. Most preferably, by setting the value of L1 / L2 to 0.53, the horizontal displacement of the electrode with respect to the ion exchange membrane can be completely eliminated in this case.

【0012】L1/L2の値を前記範囲とすることで、
電極とイオン交換膜を押し付けた場合でも、イオン交換
膜に対する電極の水平方向の変位を実質的になくし、電
極とイオン交換膜でのこすれによるイオン交換膜の損傷
を防止することができる。
By setting the value of L1 / L2 within the above range,
Even when the electrode and the ion exchange membrane are pressed, displacement of the electrode in the horizontal direction with respect to the ion exchange membrane can be substantially eliminated, and damage to the ion exchange membrane due to rubbing between the electrode and the ion exchange membrane can be prevented.

【0013】本発明に使用する板ばね部材の肉厚は、電
流が板ばね部材を通過する際の電気抵抗ロスを必要最小
限に留めるとともに、板ばね部材の弾性効果を確保する
という観点から、0.05〜2mmにすることが好まし
く、さらに好ましくは、0.1〜0.7mmの範囲にす
るのが良い。また、電極と板ばね結合部7から板ばね屈
曲部3までの長さL1と、該屈曲部3からリブと板ばね
結合部8、若しくは隔壁と板ばね結合部9までの長さL
2を合計した長さL1+L2は、板ばね部材の電気抵抗
ロスを小さくするとともに、板ばね部材の弾性効果を確
保するという観点から、10〜200mmにすることが
好ましく、さらに好ましくは20〜100mmの範囲に
するのが良い。
The thickness of the leaf spring member used in the present invention is determined from the viewpoint of minimizing the electric resistance loss when an electric current passes through the leaf spring member and securing the elastic effect of the leaf spring member. The thickness is preferably set to 0.05 to 2 mm, more preferably 0.1 to 0.7 mm. Further, a length L1 from the electrode and the leaf spring connecting portion 7 to the leaf spring bent portion 3 and a length L from the bent portion 3 to the rib and the leaf spring connecting portion 8 or from the partition wall to the leaf spring connecting portion 9 are shown.
2 is preferably 10 to 200 mm, more preferably 20 to 100 mm, from the viewpoint of reducing the electric resistance loss of the leaf spring member and securing the elasticity effect of the leaf spring member. It is good to be in the range.

【0014】本発明に使用する板ばね部材は、図1に示
すような無孔平板に限定するものではなく、図5に示す
ような複数の孔を設けたものや、図6に示すようなエキ
スパンドメタルでもよく、また打ち抜きで円形、四角形
等の孔を設けた多孔板状のものであっても良い。板ばね
部材に前記のような開口部をもたせることで、板ばね部
材で仕切られた隣り合う室間の液の出入りを確保するこ
とが可能となる。
The leaf spring member used in the present invention is not limited to a non-perforated flat plate as shown in FIG. 1, but is provided with a plurality of holes as shown in FIG. 5 or as shown in FIG. It may be an expanded metal, or may be a perforated plate having a circular or square hole formed by punching. By providing the leaf spring member with the opening as described above, it is possible to secure the inflow and outflow of liquid between adjacent chambers partitioned by the leaf spring member.

【0015】電極をイオン交換膜と接触させる場合の接
触圧力は、イオン交換膜を損傷させない程度に保持する
ことが必要で、見掛け電極面積基準で10×103g/
cm2以下とするのが良く、好ましくは100g/cm2
以下とするのが良い。板ばね部材の長さL1+L2、及
び板ばね部材の肉厚をそれぞれ前記範囲にとり、板ばね
部材の長さと肉厚の組み合わせを選定することで、この
ような小さい接触圧力の条件でも対応することができ
る。
The contact pressure when the electrode is contacted with the ion exchange membrane, is necessary to maintain the level that does not damage the ion exchange membrane, an apparent electrode area reference 10 × 10 3 g /
cm 2 or less, preferably 100 g / cm 2
It is better to do the following. By setting the length L1 + L2 of the leaf spring member and the thickness of the leaf spring member within the above ranges and selecting a combination of the length and the thickness of the leaf spring member, it is possible to cope with such a condition of a small contact pressure. it can.

【0016】本発明の電解槽において、板ばね部材を結
合する電極は陽極であっても、陰極であっても、またそ
の両方であっても良い。一般にイオン交換膜法による電
解槽では、陽極室側に対し陰極室側の圧力を高く保ち、
この圧力差によりイオン交換膜を陽極側に押し付けてい
るので、板ばね部材をどちらか一方の電極のみに結合さ
せる場合は、陰極側と結合させることが好ましい。
In the electrolytic cell of the present invention, the electrode connecting the leaf spring member may be an anode, a cathode, or both. Generally, in an electrolytic cell using an ion exchange membrane method, the pressure on the cathode chamber side is kept higher than that on the anode chamber side,
Since the ion exchange membrane is pressed against the anode side by this pressure difference, when the leaf spring member is connected to only one of the electrodes, it is preferable to connect it to the cathode side.

【0017】本電解槽に使用する陰極形状としてはエキ
スパンドメタルが用いられるが、エキスパンドメタルに
限定するものではなく、打ち抜きで円形、四角形等の孔
をあけたパンチングメタルや、また金網についても適用
できる。エキスパンドメタルを使用する場合は、イオン
交換膜への損傷を防止する目的で、ロール等で圧延し平
滑化した形状のものを使用することが好ましい。
As the cathode shape used in the present electrolytic cell, an expanded metal is used. However, the shape of the cathode is not limited to the expanded metal, and it can also be applied to a punched metal having a hole such as a circular or square punched out or a wire mesh. . When an expanded metal is used, it is preferable to use a rolled and smoothed shape in order to prevent damage to the ion exchange membrane.

【0018】陽極形状は陰極と同様にエキスパンドメタ
ルが用いられるが、エキスパンドメタルに限定するもの
ではなく、打ち抜きで円形、四角形等の孔をあけたパン
チングメタルや、また金網についても適用できる。エキ
スパンドメタルを使用する場合は、イオン交換膜への損
傷を防止する目的で、ロール等で圧延し平滑化した形状
のものを使用することが好ましい。
As the anode, an expanded metal is used as in the case of the cathode. However, the shape of the anode is not limited to the expanded metal. The invention can also be applied to a punched metal having a circular or square hole and a wire mesh. When an expanded metal is used, it is preferable to use a rolled and smoothed shape in order to prevent damage to the ion exchange membrane.

【0019】次に、電極基材の肉厚は可撓性を高め、板
ばねの局所的な弾性変形に追随しやすいように、できる
だけ薄くすることが望ましい。より局所的な接触による
変形に追随させるには、電極基材の肉厚を0.1〜1m
m、好ましくは0.1〜0.7mmの範囲にするのが良
い。
Next, it is desirable that the thickness of the electrode base material be as thin as possible so as to enhance flexibility and easily follow local elastic deformation of the leaf spring. In order to follow the deformation due to more local contact, the thickness of the electrode base material should be 0.1 to 1 m.
m, preferably in the range of 0.1 to 0.7 mm.

【0020】[0020]

【実施例】以下、実施例により本発明の電解槽について
説明する。
EXAMPLES Hereinafter, the electrolytic cell of the present invention will be described with reference to examples.

【0021】実施例1 電解面積が1.2m×2.4mの大きさの電極エレメン
トを製作し電解槽を組み立てた。陽極はチタン製で、ロ
ールで圧延し平滑化したエキスパンドメタルの表面にル
テニウム、イリジウム、チタニウムからなる塗布液を被
覆したものを使用し、チタン製リブ(肉厚1.5mm)
に電気抵抗スポット溶接により、接続固定した。リブの
間隔は95mmになるようにした。陰極はニッケル製
で、ロールで圧延し平滑化した基材肉厚0.5mmのエ
キスパンドメタルに酸化ニッケルを主成分とした粉末を
溶射により被覆した活性陰極を使用した。図3の実施形
態に示すように、陰極と陰極室隔壁をニッケル製の板ば
ね部材で電気抵抗スポット溶接により結合した。板ばね
の肉厚は0.2mmとし、陰極と板ばね結合部から板ば
ね屈曲部までの長さを17mm、該屈曲部から陰極室隔
壁と板ばね結合部までの長さを32mm、即ち板ばね全
長を49mmとし、板ばね屈曲角度は59度とした。板
ばねには、板ばね屈曲部から隔壁と板ばね結合部までの
間に、Φ10mmの孔を50mmピッチで設けた。陽極
室圧力に対し、陰極室圧力を水柱30cm高く保ち、陽
極とイオン交換膜とを密着させた状態とし、陰極とイオ
ン交換膜も密着させ、電極間距離を0mmとした。イオ
ン交換膜は旭化成工業(株)のアシプレックスF420
3を使用した。電解温度を90℃、苛性ソーダ濃度を3
2%とし、電流密度は4.0kA/m2の条件で電解を
行った。14日間の電解を行った結果の電解電圧は、
2.940Vであった。電解終了後、電解槽を分解しイ
オン交換膜を観察した結果、損傷は全く見られなかっ
た。
Example 1 An electrode element having an electrolysis area of 1.2 m × 2.4 m was manufactured and an electrolyzer was assembled. The anode is made of titanium, and a roll of rolled and smoothed expanded metal coated with a coating solution composed of ruthenium, iridium, and titanium is used, and a titanium rib (wall thickness: 1.5 mm) is used.
Was fixed by electrical resistance spot welding. The rib interval was set to 95 mm. The cathode was made of nickel, and an active cathode in which a 0.5 mm-thick expanded metal rolled with a roll and smoothed and coated with a powder mainly containing nickel oxide by thermal spraying was used. As shown in the embodiment of FIG. 3, the cathode and the cathode chamber partition were joined by electric resistance spot welding with a leaf spring member made of nickel. The thickness of the leaf spring is 0.2 mm, the length from the cathode / leaf spring connection to the leaf spring bend is 17 mm, and the length from the bend to the cathode chamber partition / leaf spring connection is 32 mm, ie, the plate The spring total length was 49 mm, and the leaf spring bending angle was 59 degrees. In the leaf spring, holes having a diameter of 10 mm were provided at a pitch of 50 mm between the bent portion of the leaf spring and the joint between the partition and the leaf spring. The pressure in the cathode chamber was maintained 30 cm higher than the pressure in the anode chamber, and the anode and the ion exchange membrane were in close contact with each other. The cathode and the ion exchange membrane were also in close contact with each other, and the distance between the electrodes was 0 mm. Ion exchange membrane is Aciplex F420 of Asahi Kasei Corporation
3 was used. Electrolysis temperature 90 ° C, caustic soda concentration 3
Electrolysis was performed under the conditions of 2% and a current density of 4.0 kA / m 2 . Electrolysis voltage as a result of performing electrolysis for 14 days is
2.940V. After the electrolysis was completed, the electrolytic cell was disassembled and the ion exchange membrane was observed. As a result, no damage was observed.

【0022】比較例1 電極間距離のみを2mmとした以外は、すべて実施例1
と同様の条件にして電解槽を構成した。14日間の電解
を行った結果の電解電圧は2.990Vであり、実施例
1より50mV電圧は高かった。
Comparative Example 1 Example 1 was repeated except that only the distance between the electrodes was 2 mm.
An electrolytic cell was constructed under the same conditions as described above. The electrolysis voltage as a result of performing electrolysis for 14 days was 2.990 V, and the voltage of 50 mV was higher than that in Example 1.

【0023】比較例2 陰極側の構成として板ばねを使用せず、ニッケル製リブ
(肉厚1.5mm)を用いて、陰極とリブ、リブと陰極
室隔壁を電気抵抗スポット溶接により接続固定した。イ
オン交換膜と陰極間の平均距離を0.5mmとし、その
他の条件は実施例1と同様にして電解槽を構成した。電
解開始直後、イオン交換膜にピンホールのあることがわ
かり、電解を中止した。
COMPARATIVE EXAMPLE 2 The cathode and the rib, and the rib and the cathode chamber partition were connected and fixed by electric resistance spot welding using a nickel rib (thickness: 1.5 mm) without using a leaf spring as the cathode side configuration. . The average distance between the ion-exchange membrane and the cathode was 0.5 mm, and the other conditions were the same as in Example 1 to form an electrolytic cell. Immediately after the start of electrolysis, it was found that the ion exchange membrane had a pinhole, and the electrolysis was stopped.

【0024】[0024]

【発明の効果】本発明は、板ばね屈曲部からリブと板ば
ね結合部、若しくは隔壁と板ばね結合部までの長さをL
2、該屈曲部から電極と板ばね結合部までの長さをL1
としたときに、L1/L2の値を0.2〜0.9の範囲
にすることを特徴とする電解槽であり、電極とイオン交
換膜を押し付けた場合でも、イオン交換膜に対する電極
の水平方向の変位を実質的になくせるので、電極とイオ
ン交換膜でのこすれ等によりイオン交換膜へ損傷を与え
ることなく、電極間距離を減少させ、電解電圧を低減さ
せた運転が可能である。
According to the present invention, the length from the bent portion of the leaf spring to the connecting portion between the rib and the leaf spring or between the partition and the leaf spring is L.
2. The length from the bent portion to the electrode and leaf spring connection portion is L1.
The electrolytic cell is characterized in that the value of L1 / L2 is in the range of 0.2 to 0.9 when the electrode is pressed against the ion exchange membrane even when the electrode is pressed against the ion exchange membrane. Since the displacement in the direction can be substantially eliminated, it is possible to reduce the distance between the electrodes and reduce the electrolysis voltage without damaging the ion exchange membrane due to rubbing between the electrodes and the ion exchange membrane.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法によって、電極とリブ間を屈曲し
た板ばね部材で結合した電解槽の電極取り付け部の一部
を切り取った斜視図。
FIG. 1 is a perspective view of a part of an electrode mounting portion of an electrolytic cell in which an electrode and a rib are bent by a leaf spring member bent by the method of the present invention.

【図2】本発明の電解槽の電極取り付け部の一部を切り
取った断面図。
FIG. 2 is a cross-sectional view of a part of an electrode mounting portion of the electrolytic cell of the present invention.

【図3】本発明の電解槽の一実施形態を示す電極取り付
け部の一部を切り取った断面図。
FIG. 3 is a cross-sectional view showing a part of an electrode mounting portion showing one embodiment of the electrolytic cell of the present invention.

【図4】板ばね部材の断面図。FIG. 4 is a sectional view of a leaf spring member.

【図5】本発明の電解槽に使用される板ばね部材の具体
例であり、複数の孔を設けた板ばねの斜視図。
FIG. 5 is a specific example of a leaf spring member used in the electrolytic cell of the present invention, and is a perspective view of a leaf spring provided with a plurality of holes.

【図6】本発明の電解槽に使用される板ばね部材の具体
例であり、エキスパンドメタルによる板ばねの斜視図。
FIG. 6 is a specific example of a leaf spring member used in the electrolytic cell of the present invention, and is a perspective view of a leaf spring made of expanded metal.

【図7】従来のイオン交換法電解槽の説明図。FIG. 7 is an explanatory view of a conventional ion exchange method electrolytic cell.

【符号の説明】[Explanation of symbols]

1:電解槽極室 2:板ばね 3:板ばね屈曲部 4:電極 5:リブ 6:隔壁 7:電極〜板ばね結合部 8:リブ〜板ばね結合部 9:隔壁〜板ばね結合部 10:板ばね屈曲角度 11:イオン交換膜 12:陰極 13:陰極リブ 14:陽極 15:陽極リブ 1: Electrolyte cell pole room 2: Leaf spring 3: Leaf spring bent part 4: Electrode 5: Rib 6: Partition wall 7: Electrode-leaf spring coupling part 8: Rib-leaf spring coupling part 9: Partition-leaf spring coupling part 10 : Leaf spring bending angle 11: ion exchange membrane 12: cathode 13: cathode rib 14: anode 15: anode rib

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極とリブ間、若しくは電極と隔壁間
を、屈曲した板ばね部材で結合する可動性の電極を設け
た電解槽において、板ばね屈曲部からリブと板ばね結合
部、若しくは隔壁と板ばね結合部までの長さをL2、該
屈曲部から電極と板ばね結合部までの長さをL1とした
ときに、L1/L2の値が0.2〜0.9の範囲である
ことを特徴とする電解槽
In an electrolytic cell provided with a movable electrode for connecting between an electrode and a rib or between an electrode and a partition by a bent leaf spring member, a rib and a leaf spring connection portion or a partition are formed from a bent portion of the leaf spring. When the length from the bent portion to the electrode and the leaf spring connecting portion is L1, the value of L1 / L2 is in the range of 0.2 to 0.9. Electrolyzer characterized by that
【請求項2】 平均電極間距離が2mm以下であること
を特徴とする請求項1記載の電解槽。
2. The electrolytic cell according to claim 1, wherein the average distance between the electrodes is 2 mm or less.
JP10320309A 1998-11-11 1998-11-11 Electrolytic cell Pending JP2000144467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320309A JP2000144467A (en) 1998-11-11 1998-11-11 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320309A JP2000144467A (en) 1998-11-11 1998-11-11 Electrolytic cell

Publications (1)

Publication Number Publication Date
JP2000144467A true JP2000144467A (en) 2000-05-26

Family

ID=18120062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320309A Pending JP2000144467A (en) 1998-11-11 1998-11-11 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP2000144467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029531A2 (en) * 2001-09-11 2003-04-10 Ebara Corporation Electrolytic processing apparatus and method
EP1397828A1 (en) * 2001-06-18 2004-03-17 Ebara Corporation Electrolytic processing device and substrate processing apparatus
US7754058B2 (en) 2006-06-05 2010-07-13 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1397828A1 (en) * 2001-06-18 2004-03-17 Ebara Corporation Electrolytic processing device and substrate processing apparatus
EP1397828A4 (en) * 2001-06-18 2007-04-11 Ebara Corp Electrolytic processing device and substrate processing apparatus
WO2003029531A2 (en) * 2001-09-11 2003-04-10 Ebara Corporation Electrolytic processing apparatus and method
WO2003029531A3 (en) * 2001-09-11 2004-04-22 Ebara Corp Electrolytic processing apparatus and method
US7754058B2 (en) 2006-06-05 2010-07-13 Chlorine Engineers Corp., Ltd. Ion exchange membrane electrolyzer

Similar Documents

Publication Publication Date Title
JP4453973B2 (en) Bipolar zero-gap electrolysis cell
WO2012091051A1 (en) Ion-exchange membrane method electrolytic cell
JP2010174346A (en) Electrolytic bath for ion exchange membrane method and method of manufacturing the same
EP0443430B1 (en) Monopolar ion exchange membrane electrolytic cell assembly
CN110684988B (en) Electrode structure, electrolysis cell and electrolytic cell
JP2014037586A (en) Electrolytic cell and electrolytic bath
JP2000192276A (en) Bipolar-type ion exchange membrane electrolytic cell
US3803016A (en) Electrolytic cell having adjustable anode sections
JP2789288B2 (en) Electrode
KR860001501B1 (en) Double l-shaped electrode for brine electrolysis cell
JP3110551B2 (en) Electrolytic cell
JP3501453B2 (en) Ion exchange membrane electrolytic cell
JPS5943885A (en) Electrode device for gas generation electrolytic cell and vertical plate electrode therefor
JPS63140093A (en) Electrode structure for gas forming electrolytic cell
JP2000144467A (en) Electrolytic cell
JPH0432594A (en) Reactivation method of electrode for electrolysis
US7033479B2 (en) Electrolytic cells with renewable electrodes structures and method for substituting the same
KR970027368A (en) Improved electrode for membrane electrolytic cell
JP3002236B2 (en) Reactivation method of electrode for electrolysis
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
JP3608880B2 (en) Method for reactivating active cathode and ion-exchange membrane electrolyzer with reactivated cathode
JP3073819B2 (en) Electrode structure
JP2582133Y2 (en) Electrolysis room
JPH0217014Y2 (en)
JP3204322B2 (en) Electrolysis method of alkali chloride