JP2004300489A - Electric contact made of stainless steel - Google Patents

Electric contact made of stainless steel Download PDF

Info

Publication number
JP2004300489A
JP2004300489A JP2003093239A JP2003093239A JP2004300489A JP 2004300489 A JP2004300489 A JP 2004300489A JP 2003093239 A JP2003093239 A JP 2003093239A JP 2003093239 A JP2003093239 A JP 2003093239A JP 2004300489 A JP2004300489 A JP 2004300489A
Authority
JP
Japan
Prior art keywords
plating
stainless steel
plating layer
contact
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003093239A
Other languages
Japanese (ja)
Inventor
Yoshiharu Iwamizu
義治 岩水
Masayoshi Tadano
政義 多々納
Keiji Izumi
圭二 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003093239A priority Critical patent/JP2004300489A/en
Publication of JP2004300489A publication Critical patent/JP2004300489A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric contact which is excellent in mechanical properties and corrosion resistance, requires a low Au-coating weight, is manufactured through a simple process and therefore contributes to cost reduction. <P>SOLUTION: The electric contact made of stainless steel is formed by forming an Ni-plating layer 6 on a stainless steel substrate 5 and further forming an Au-plating layer 7 on a contact part 12. Here, the Ni-plating layer preferably comprises Ni plating with an increased surface glossiness, and the stainless steel substrate is preferably a stainless spring steel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、自動車用ハーネス端子などに適用できる電気接点に関する。
【0002】
【従来の技術とその問題点】
電気接点用の材料には、それ自身に導電性が要求される他、長期にわたり低接触抵抗を安定に維持できることが要求され、かつ、ばね性,耐食性,耐摩耗性,はんだ性などの特性も要求されている。
一般的に、加工性やばね性などの点から母材に黄銅(Cu−Zn系),リン青銅(Cu−P系),ベリリウム銅等の銅系材料が使用されている。また、接触抵抗安定性や耐食性の点から、銅系材料表面にNiやSnめっきが施され、場合によってはさらなる接触抵抗安定性からAuめっきまで施されている。特公平2−44106号公報では、Auめっき量を低減するためにNiめっきとAuめっきとの間にNi含有Pd合金めっき層を介在させる技術も提案されている。
【0003】
例えば、一般的なハーネス端子は、図1に示したように、銅線との接続部分11と、雄と雌のハーネスプラグがコンタクトする接点部分12から構成されている。そして、特に外観に対する要求がないことから、Niめっき2を施した銅合金基材1に、接続部11では、リフローSnめっき3が施され、エアバックなどの重要回路部品や各種センサーなどの微小電流回路部品、エンジンなどの激しい振動を受ける回路部品のハーネス接点部12では、さらにAuめっき4が施されている。
【0004】
銅線との接続部分は、圧接法や圧着法、はんだ付けなどにより強固に接続できるため、下地Cuとの耐食性と接触抵抗性の観点からリフローSnめっきを施されている。
一方、接点部では安定的な低接触抵抗が必要なため、Auめっきが施されるが、耐食性やAuめっき性,挿抜性などの理由から1〜10μmのNiめっきを介在させている。接触抵抗の観点からでは、Auめっき層の膜厚は0.3μm程度で十分である。しかしながら、Niめっき層にはピンホールが残存しやすいので、ピンホール部からのCuの腐食を防止するためには、Niめっき層そのものの層厚を厚くする必要があるばかりでなく、Auめっき層も厚くする必要がある。そのために、1μmを超えるほどの厚いAuめっきが施されている。
そこで、Auめっき量を減らす目的で上記特公平2−44106号公報の技術を採用しても、コストの大幅減にはいたらない。
【0005】
また一方で、咋今の自動車は搭載部品数が増加しており、各々備品の短小化、軽量化が推し進められている。
ハーネス端子の短小化、軽量化は、母材銅合金基材の薄肉化やめっき層の薄層化に通じる。銅合金基材自体の機械的特性は鉄系材料と比較すると低く、銅合金系ハーネス端子の薄肉化には自ずと限界がある。さらにめっき層厚を薄くしようとすると、耐食性等に不具合を生じ、結果的に信頼性を低下させることになる。
【0006】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、機械的特性や耐食性に優れ、必要とするAuめっき量が少なく、しかも製造工程が簡易でコスト減に資する電気接点を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のステンレス鋼製電気接点は、その目的を達成するため、基材ステンレス鋼5上にNiめっき層6が形成され、その上にさらに部分的にAuめっき層7が形成されていることを特徴とする(図2参照)。Niめっき層としては、表面光沢度を高めたものが好ましい。基材ステンレス鋼としては500N/mm以上の高強度でバネ性を有する鋼種が好ましい。
【0008】
【作用】
本発明者等は、銅合金系素材に代わる電気接点用の素材として、銅合金系材料よりも優れた耐食性と機械的特性を有し、かつある程度の導電率を有する材料であるステンレス鋼の可能性について検討した。
その結果、自動車用のエアバックなどの重要回路部品や各種センサーなどの微小電流回路部品に用いられるハーネス端子では極僅かな電流しか流れないので、ステンレス鋼程度の導電率で十分に使用できることを確認した。
【0009】
ステンレス鋼は、銅合金と比較すると耐食性および機械的特性の点で格段に優れている。しかし、その表面に形成されている不動態皮膜の影響で、はんだ性や接触抵抗の点で問題がある。この問題を解消するために、本発明では基材ステンレス鋼表面にNiめっきを施したものである。
ステンレス鋼は耐食性に優れているため、その上に設けるNiめっき層に生成しやすいピンホール等の欠陥からの腐食を考慮する必要がない。したがって、Niめっき層自身、および接点部12にあってはその上に設けるAuめっき層7厚を接触抵抗性の観点のみから決めることができ、その厚さを薄く、すなわちAuにあってはその使用量を大幅に削減することが可能になる。また、Niめっき層は硬く、後述するように表面光沢を高くすることが可能となるので、銅線との接合部11においてリフローSn層の形成を省略することができ、結果的に工程が簡略化され、コスト低減に繋がることにもなる。
【0010】
本発明ステンレス鋼製電気接点にあっては、基材ステンレス鋼5にNiめっき6が施されて、銅線との接続部11になる。接続部11においては、接触抵抗性とはんだ性が重要となり、表面形態の違いによりそれらの特性は大きく左右される。Niめっき材は、経時により表面にNi酸化物からなる不動態皮膜が形成される。Ni酸化物は導電性がなく、比較的安定なために、厚く成長した場合には接触抵抗の上昇やはんだ性の低下を招くことになる。この経時による劣化を押える方法としては、逢坂哲彌編「湿式法を利用したエレクトロニクス高機能薄膜作成法」((株)広信社・総合工学出版会 1992年)にも記載されているように、従来から光沢めっきを採用することが良いとされている。このことは、すなわち、表面のNiめっき層をより平滑にした方が、酸化皮膜の成長スピードが遅いか、あるいは、凹凸が少ない分、表面積が小さくなるので酸化皮膜付着量が少ないことを意味している。いずれにしても、酸化皮膜の形成という観点からは、光沢がある方が接触抵抗は低く、はんだ性も良いことになる。
【0011】
ところで、光沢度の優れたNiめっき層を得る方法として、めっき浴中に有機成分からなる光沢剤を添加してNiめっきを行う方法もある。しかしこの光沢めっき方法では、Niめっき層に取り込まれた有機物系光沢剤が、大気雰囲気中で特に高温・多湿になると酸化・分解に起因して接触抵抗が高くなるという弊害がある。したがって、少なくともその最表層には光沢剤添加による光沢Niめっきを施すことは得策ではなく、特開2000−282290に記載しているように、無光沢Niめっきで光沢に優れたものを用いるなどの方法が好ましい。
【0012】
Niめっき層の膜厚は、ピンホール部からの腐食を考慮する必要がないので、接触抵抗性,接続信頼性の観点のみから決めることができる。その膜厚範囲としては、0.3〜1.0μmが好ましい。0.3μm未満では、銅線との接続部11において強固に圧着や圧接を行った場合に、Niめっきが削られて接触抵抗が高くなる恐れがあるほか、膜厚が薄いためにはんだ性が低下することがある。一方、1.0μmを超えた場合には、機能は飽和してしまうために、経済的に不利となる。
【0013】
なお、ステンレス鋼板との良好な密着性を得るためには、特開平2000−282290に記載しているように、あらかじめ陰極効率が低いストライクNiめっきを0.02〜0.5μmの膜厚で形成し、その上に陰極効率が高いNiめっきを施すことが好ましい。そして、ストライクNiめっきとNiめっきのトータル膜厚として上記の0.3〜1.0μmにすればよい。ここで、ストライクNiめっきのめっき膜厚が0.02μm未満では、均一なめっきを施すことが困難になり、良好なめっき密着性が得難くなる。また0.5μmを超えた場合、ストライクめっき浴は陰極効率が低いために、Niの析出に時間がかかり経済的に不利になりやすい。
【0014】
Niめっき上にさらに部分的にAuめっきした部位は接点部となる。Auめっきの膜厚は、Niめっきと同様にピンホール部からの腐食を考慮する必要がないので、接触抵抗性の観点のみから決定される。接触抵抗は、金属種と接点部位にかかる荷重(ばね圧)により影響される。Auめっきは、化学的に安定であり酸化皮膜がほとんど形成されないために極めて接触抵抗が低く、SnやNiめっきと比べて、その値は同一接触荷重で約1/10程度である。すなわち、Auめっきの場合、低荷重においても接触抵抗が低いために、ばね圧を低く設計することができるため、その分、摩耗の影響が少ない。
【0015】
SnやNiめっきの場合には、低接触抵抗を維持するためにAuめっきよりもばね圧を高く設計する必要があり、耐摩耗性を考慮して膜厚を0.5〜1.0μmにする必要があった。しかし、Auめっきの場合、上述のように摩耗の影響が少ないので、膜厚は0.3〜0.5μmで十分である。0.3μmに満たないと摩耗により接触抵抗が増大する恐れがあり、0.5μmを超えるような場合には、機能が飽和し、銅合金を母材とした従来のAuめっき材との優位性が薄れてしまう。
なお、ここでいうAuめっきとは、NiやCo,Ptなどの少量が添加された、いわゆる硬質Auめっきと呼ばれるAu合金めっきを含むものであり、接点材料としては、耐摩耗性の観点からこれらのめっきを用いるべきである。
【0016】
【実施の態様】
基材ステンレス鋼として、基材を薄膜化してもばね材料としての使用に十分耐えられるだけの特性を有するものを使用する。現行の電気接点材料として使用されている黄銅やリン青銅よりも機械的強度やばね性を発揮させるために、強度が500N/mm以上で、ばね性を有するものを使用する。強度が500N/mmに満たないと、基材を薄膜化するのに十分なばね性を得ることができない。500N/mm以上の強度が得られる鋼種としては、JIS G4313で規定されるばね用ステンレス鋼であるSUS304,SUS301,SUS631などの1/2H〜H材などの他、SUS410に代表されるマルテンサイト系ステンレス鋼を圧延により硬質化した材料などが挙げられる。
次工程で、光沢度の良好なNiめっき層を得るために、ステンレス鋼めっき原板として表面粗さがRa0.050μm以下のものを使用することが好ましい。表面粗さがこの値以下だと、その上に形成されるNiめっき層の表面に基材表面の凹凸が反映されず、数μm程度の薄い光沢Niめっき層であっても十分な光沢が発現する。
【0017】
上記表面状態のステンレス鋼に施すNiめっきは公知のめっき手段で十分である。しかし、表面の接触抵抗を低くするという観点からは、最表層は光沢度が高められていることが好ましい。この方法として、めっき条件の調整により全体を無光沢めっきで高光沢度を得る方法と、一旦光沢Niめっき層を形成した後、その上に無光沢Niめっき層を形成する方法とある。また、無光沢めっきした後、機械的処理により表面光沢を高める手段もある。機械的処理を介在させると作業工程が複雑化するので、前2者の方法で実施することが好ましい。
なお、本明細書中では、“光沢Niめっき層”は、光沢剤を添加しためっき浴を用いた電気めっきで形成され、鏡のような高い反射率又は解像度を呈するめっき層を意味し、“無光沢Niめっき層”は、光沢剤を含まないめっき浴を用いた電気めっきで形成されるめっき層をいうこととする。
【0018】
全体を無光沢めっきして高光沢の表面層を得る方法としては、まず、ステンレス鋼との密着性を確保するために、オルトケイ酸ソーダーなどのアルカリ電解浴中で電解脱脂した後、希硫酸溶液中に浸漬して酸洗を行い、表1に示す条件で、Niストライクめっきを0.02〜0.5μmの範囲で施すことが好ましい。
次いで、表2に示す条件を用いて所定厚みの無光沢Niめっき層を得ることができる。
【0019】

Figure 2004300489
【0020】
Figure 2004300489
【0021】
一旦光沢Niめっき層を形成した後、その上に無光沢Niめっき層を形成する方法としては、上述した条件でNiストライク層を0.02〜0.5μmで形成した後、上述したワットNi浴に有機成分からなる一次光沢剤と二次光沢剤をそれぞれ数〜数十g/l添加した浴により光沢Niめっきを施した後、さらに、上述した条件を用いて無光沢Niめっきを施し、所定厚みのNiめっき層を得ることができる。ここで、一次光沢剤としては、ベンゼン,トルエン,ナフタレンスルホン酸ナトリウム,サッカリンなどが使用され、二次光沢剤としては、ブタンジオール,クマリン,チオ尿酸などが使用される。
【0022】
Figure 2004300489
【0023】
Niめっき層上に部分的Auめっきを施す方法としては、基板にあらかじめ非Auめっき面(箇所)に保護フィルムやテープでシーリングを施し、希塩酸などで酸洗を行った後、所定膜厚のAuめっきを施すか、基板を酸洗した後にAuめっき箇所のみに穴を開けたマスキングベルトドライブを基板に押し当ててAuめっきを施す。部分Auめっき方法については、公知の方法でよいが、Auめっきの良好な密着性を確保するために、Niめっき後、できるだけ速いタイミングで行うことが好ましい。
Auめっきの例として、硬質Auめっきの浴条件を表4に示す。
【0024】
Figure 2004300489
【0025】
【実施例】
実施例1:
表面粗さがRa0.045μmに調整された板厚0.20mmのSUS3043/4Hステンレス鋼板(引張強度:1050N/mm)をめっき原板として使用し、オルトケイ酸ソーダ50g/l,浴温60℃のアルカリ電解浴にめっき原板を浸漬し、電流密度0.5kA/mで10秒間陰極電解することにより電解脱脂した。次いで、濃度2%硫酸溶液中に10秒間浸漬して酸洗を施した。
この原板を上記表1と同じ条件にてNiストライクめっきを施した後に、次の表5に示す条件で膜厚を変化させて無光沢Niめっきを形成した。またNiストライクめっきの後に、光沢剤による市販の光沢めっき(上村工業株式会社製ウェイトG−1,G−2)を施したもの、さらに、光沢めっき後に無光沢めっきの膜厚を変化させたものを作製した。
【0026】
Figure 2004300489
【0027】
得られた試験片について、180度密着曲げテープ剥離試験を行って密着性を評価した。めっきが剥離しなかったものを○,剥離したものを×として評価した。
良好なめっき密着性が得られた試験片について、接続部としての信頼性が得られるかどうかを判断するために以下の試験を行った。
【0028】
〔耐食性試験〕
耐食性試験は、100mm×50mmに裁断した試験片を用い、塩水噴霧試験(JIS Z2371)48時間を実施した。試験後の表面に赤錆などの明らかな腐食生成物が認められたものを×,認められなかったものを○として評価を行った。
〔接触抵抗性試験〕
接触抵抗は、接触抵抗分布測定器(株式会社山崎精機研究所製)を用い、印加電流10mA,接触荷重100gfの条件下で測定した。促進劣化試験では、温度60℃,相対湿度90%RHの恒温恒湿槽に試験片を40日間放置し、促進劣化試験後の接触抵抗を測定した。
そして、接触抵抗が10mΩ以下のものを◎,10〜50mΩのものを○,50mΩを超えるものを×として評価した。
【0029】
Figure 2004300489
めっき直後の試験片について、レスカー製ソルダーチェッカーSAT−500を使用し、Pbフリーはんだの溶融浴に、サイズ10mm×40mmに裁断したものを浸漬速度2mm/分で深さ2mmまで浸漬し、当該浸漬深さに10秒間保持した。
そして、試験片浸漬から濡れの力がゼロをよぎるまでの時間ゼロクロスタイムが3秒以内のものを◎,3〜5秒のものを○,5秒を超えるものを×で評価した。
得られた評価結果を表6に示す。
【0030】
Figure 2004300489
【0031】
表6の調査結果に見られるように、最表層に無光沢のNiめっき層を、0.3μmを超える膜厚で施したものは、めっき密着性,はんだ性,耐摩耗性とも良好なものが得られている。
最表層のNiめっきが光沢剤を添加した光沢めっきである試験番号6では、促進劣化試験後の接触抵抗が低下していた。また、試験番号7では、Niストライクめっきの膜厚が薄かったためにめっき密着性の点で劣っていた。さらに試験番号8では、トータルのNiめっき膜厚が薄かったために、はんだ性の点で劣っていた。
【0032】
実施例2:
実施例1で用いた表面粗さがRa0.045μmに調整された板厚0.20mmのSUS3043/4Hステンレス鋼板をめっき原板として使用し、実施例1の試験番号3の条件によりNiめっきを施した後、上記表4で示したものと同じ条件により、膜厚を変化させてAuめっきを施した。
また、比較材として、板厚0.3mmの黄銅板(C2600−H)をめっき原板として使用し、Niめっきを0.6μmの膜厚で施した後、Auめっきを0.3μm施したもの、ならびに現行の接点材料として使用されているものと同じ膜厚構成になるように2μmのNiめっきを施した後に1μmのAuめっきを施した材料を作製した。さらに、黄銅板に直接Snめっきを1μmの膜厚で施したものも作製した。
【0033】
得られた試験片を用いて、接点部としての信頼性が得られるかどうかを判断するために、実施例1と同じ耐食性試験と接触抵抗性試験を実施した。
なお、現行の接点材料として使用されている黄銅に2μmのNiめっきを施した後に1μmのAuめっきを施した材料の初期接触抵抗は、荷重10g,100gともに1mΩ未満であった。また、黄銅にSnめっきした材料の初期接触抵抗は、荷重10g時で4mΩ,100gで1mΩであった。そこで、本実施例においては、接触抵抗が1mΩ未満のものを◎,1〜5mΩのものを○,5mΩ以上のものを×で評価した。
【0034】
さらに、以下の方法で耐摩耗性も評価した。
〔耐摩耗性試験〕
試験装置としてスガ試験機株式会社製スガ摩耗試験機NUS−ISO1を使用し、#1200の研磨紙を用いて荷重100gで、JIS H8503に準じて往復運動摩耗試験を行った。
現行の接点材料として使用されている黄銅にSnめっきした材料に比べて、Auめっきした材料では、荷重1/5〜1/10程度でも安定な接触抵抗を示す。すなわち、Auめっき材の場合、1/5〜1/10程度の荷重での耐摩耗性を評価すればよい。黄銅にSnめっき1μmを施した材料を上記試験条件で荷重のみ500gで実施したところ、約100回で素地まで到達した。そこで、この結果を基準として、Auめっき材については1/5の荷重である100gのときに、100回でNiめっき層まで到達したものを×,100回でNiめっき層まで到達しなかったものを○,200回でもNiめっき層まで到達しなかったものを◎で耐摩耗性を評価した。
【0035】
〔経済性〕
現行の接点材料である黄銅にNiめっきを2μm、Auめっきを1μm施した材料のコストを×で、それよりも経済性に優れるものを○として評価した。
その評価結果を表7に示す。
【0036】
Figure 2004300489
【0037】
表7の調査結果に見られるように、試験番号9〜11では、耐食性,接触抵抗性,耐摩耗性ともに現行の接点材料として使用されている試験番号14のものと比べて遜色のない性能を示している。経済性にも優れている。
試験番号12では、Auめっきの膜厚が薄いために、耐摩耗性の点で劣っている。また原板に黄銅を用いた試験番号13では、NiめっきやAuめっきの膜厚を本発明の実施例と同じ程度にしたため、耐食性に劣っている。
【0038】
【発明の効果】
以上に説明したように、本発明による電気接点は、ステンレス鋼を基材とし、その表面にNiめっき層を形成するとともに、接点部にさらにAuめっき層を形成している。したがって、基材の優れた耐食性を活用でき、被覆めっき層を薄くすることができるので、Auめっき付着量を少なくすることができ、コスト低減に寄与することができる。また、ステンレス鋼の優れた機械的特性を活用することができ、自動車用ハーネス端子の薄肉化が可能となり、各部材の導電部材を軽量化及び薄肉化でき、部品の軽薄短小化に寄与することができる。
【図面の簡単な説明】
【図1】従来の電気接点の構造を示す断面図
【図2】本発明の電気接点の構造を示す断面図
【符号の説明】
1:銅合金基材 2:Niめっき層 3:リフローSnめっき層
4:Auめっき層
5:ステンレス鋼基材 6:Niめっき層 7:Auめっき層
11:銅線との接続部 12:接点部[0001]
[Industrial applications]
The present invention relates to an electric contact that can be applied to a harness terminal for an automobile and the like.
[0002]
[Conventional technology and its problems]
Electrical contact materials are required to be conductive in themselves, to be able to maintain low contact resistance stably for a long period of time, and to have properties such as springability, corrosion resistance, wear resistance, and solderability. Is required.
Generally, copper-based materials such as brass (Cu-Zn-based), phosphor bronze (Cu-P-based), and beryllium-copper are used as a base material in terms of workability and spring properties. Further, from the viewpoint of contact resistance stability and corrosion resistance, the surface of the copper-based material is plated with Ni or Sn, and in some cases, further plated from contact resistance stability to Au plating. Japanese Patent Publication No. 2-44106 proposes a technique of interposing a Ni-containing Pd alloy plating layer between Ni plating and Au plating in order to reduce the amount of Au plating.
[0003]
For example, as shown in FIG. 1, a general harness terminal includes a connection portion 11 for connecting to a copper wire and a contact portion 12 for contacting male and female harness plugs. Since there is no particular requirement for the appearance, the connection portion 11 is provided with the reflow Sn plating 3 on the copper alloy base material 1 on which the Ni plating 2 is applied, so that important circuit components such as airbags and minute sensors such as various sensors are provided. Au plating 4 is further applied to the harness contact portion 12 of a circuit component that receives severe vibration such as a current circuit component or an engine.
[0004]
The connection portion with the copper wire can be firmly connected by a pressure welding method, a crimping method, soldering, or the like. Therefore, reflow Sn plating is applied from the viewpoint of corrosion resistance and contact resistance with the underlying Cu.
On the other hand, a stable low contact resistance is required at the contact portion, so that Au plating is applied, but Ni plating of 1 to 10 μm is interposed for reasons such as corrosion resistance, Au plating property, and insertion / extraction property. From the viewpoint of contact resistance, the thickness of the Au plating layer is about 0.3 μm is sufficient. However, since pinholes are likely to remain in the Ni plating layer, it is not only necessary to increase the thickness of the Ni plating layer itself but also to prevent the corrosion of Cu from the pinhole portion. Also need to be thicker. For this purpose, Au plating thicker than 1 μm is applied.
Therefore, even if the technique disclosed in Japanese Patent Publication No. 2-44106 is adopted for the purpose of reducing the amount of Au plating, the cost does not decrease significantly.
[0005]
On the other hand, the number of parts mounted on the current car is increasing, and the equipment is being shortened and lightened.
Shortening and reducing the weight of the harness terminal leads to thinning of the base copper alloy base material and thinning of the plating layer. The mechanical properties of the copper alloy base material itself are lower than those of iron-based materials, and there is naturally a limit in reducing the thickness of the copper alloy-based harness terminal. Further, if the thickness of the plating layer is reduced, a problem occurs in the corrosion resistance and the like, and as a result, the reliability is reduced.
[0006]
[Problems to be solved by the invention]
The present invention has been devised in order to solve such a problem, and has excellent mechanical properties and corrosion resistance, requires a small amount of Au plating, and has a simple manufacturing process, which is an electrical contact that contributes to cost reduction. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the object, the stainless steel electrical contact of the present invention has a Ni plating layer 6 formed on a base stainless steel 5 and an Au plating layer 7 further partially formed thereon. Features (see FIG. 2). As the Ni plating layer, a layer whose surface glossiness is enhanced is preferable. As the base stainless steel, a steel type having a high strength of 500 N / mm 2 or more and having spring properties is preferable.
[0008]
[Action]
The present inventors have proposed that stainless steel, which is a material having higher corrosion resistance and mechanical properties than copper alloy-based materials and having a certain degree of conductivity, can be used as a material for electrical contacts instead of copper alloy-based materials. Sex was examined.
As a result, only a small amount of current flows through the harness terminals used for important circuit components such as airbags for automobiles and micro-current circuit components such as various sensors. did.
[0009]
Stainless steel is much better than copper alloy in terms of corrosion resistance and mechanical properties. However, there is a problem in terms of solderability and contact resistance due to the effect of the passivation film formed on the surface. In order to solve this problem, in the present invention, the surface of the base stainless steel is plated with Ni.
Since stainless steel is excellent in corrosion resistance, there is no need to consider corrosion from defects such as pinholes which are easily generated in the Ni plating layer provided thereon. Therefore, the thickness of the Ni plating layer itself and the thickness of the Au plating layer 7 provided on the contact portion 12 can be determined only from the viewpoint of contact resistance, and the thickness is thin, that is, for Au, the thickness is small. The amount of use can be greatly reduced. In addition, since the Ni plating layer is hard and can increase the surface gloss as described later, the formation of the reflow Sn layer at the joint portion 11 with the copper wire can be omitted, resulting in a simplified process. This leads to cost reduction.
[0010]
In the stainless steel electrical contact of the present invention, Ni plating 6 is applied to the base stainless steel 5 to form a connection portion 11 with a copper wire. In the connection part 11, the contact resistance and the solderability are important, and their characteristics are greatly affected by the difference in the surface form. A passivation film made of a Ni oxide is formed on the surface of the Ni plating material over time. Since Ni oxide has no conductivity and is relatively stable, if it grows thickly, it causes an increase in contact resistance and a decrease in solderability. As a method for suppressing the deterioration due to aging, as described in Tetsuya Osaka, "Method for Making Highly Functional Electronics Thin Films Using Wet Method" (Koshinsha Co., Ltd., Sogo Kogyo Shuppan 1992) It is said that bright plating should be used. This means that the smoother the Ni plating layer on the surface, the slower the growth speed of the oxide film, or the smaller the unevenness, the smaller the surface area. ing. In any case, from the viewpoint of the formation of an oxide film, a glossy film has lower contact resistance and better solderability.
[0011]
Meanwhile, as a method for obtaining a Ni plating layer having excellent glossiness, there is a method in which a brightener composed of an organic component is added to a plating bath to perform Ni plating. However, in this bright plating method, there is a disadvantage that the contact resistance becomes high due to oxidation and decomposition when the organic brightener taken into the Ni plating layer becomes particularly hot and humid in the air atmosphere. Therefore, it is not advisable to apply bright Ni plating by adding a brightening agent to at least the outermost layer, as described in JP-A-2000-282290. The method is preferred.
[0012]
The thickness of the Ni plating layer can be determined only from the viewpoints of contact resistance and connection reliability because it is not necessary to consider corrosion from the pinhole portion. The thickness range is preferably 0.3 to 1.0 μm. If the thickness is less than 0.3 μm, the Ni plating may be cut off and the contact resistance may be increased when the pressure bonding or pressure contact is performed firmly at the connection portion 11 with the copper wire. May drop. On the other hand, if it exceeds 1.0 μm, the function is saturated, which is economically disadvantageous.
[0013]
In order to obtain good adhesion with a stainless steel plate, strike Ni plating having a low cathode efficiency is formed in advance with a thickness of 0.02 to 0.5 μm as described in JP-A-2000-282290. Then, it is preferable to apply Ni plating having high cathode efficiency thereon. Then, the total thickness of the strike Ni plating and the Ni plating may be 0.3 to 1.0 μm as described above. Here, when the plating film thickness of the strike Ni plating is less than 0.02 μm, it is difficult to perform uniform plating, and it is difficult to obtain good plating adhesion. On the other hand, when the thickness exceeds 0.5 μm, the strike plating bath has a low cathode efficiency, so that it takes a long time to deposit Ni, which is disadvantageous economically.
[0014]
The part where Au plating is further partially applied on Ni plating becomes a contact part. The thickness of the Au plating is determined only from the viewpoint of the contact resistance because it is not necessary to consider the corrosion from the pinholes as in the case of the Ni plating. The contact resistance is affected by the metal type and the load (spring pressure) applied to the contact point. Au plating is chemically stable and has very low contact resistance because an oxide film is hardly formed, and its value is about 1/10 of that of Sn or Ni plating under the same contact load. That is, in the case of Au plating, since the contact resistance is low even at a low load, the spring pressure can be designed to be low, so that the influence of wear is reduced accordingly.
[0015]
In the case of Sn or Ni plating, it is necessary to design a higher spring pressure than Au plating in order to maintain low contact resistance, and the film thickness is set to 0.5 to 1.0 μm in consideration of wear resistance. Needed. However, in the case of Au plating, since the influence of wear is small as described above, a film thickness of 0.3 to 0.5 μm is sufficient. If it is less than 0.3 μm, contact resistance may increase due to wear. If it exceeds 0.5 μm, the function is saturated, and it is superior to a conventional Au plating material using a copper alloy as a base material. Will fade.
Here, the Au plating includes an Au alloy plating called a so-called hard Au plating to which a small amount of Ni, Co, Pt, etc. is added. Should be used.
[0016]
Embodiment
As the base stainless steel, a stainless steel having characteristics enough to withstand use as a spring material even when the base material is thinned is used. In order to exhibit more mechanical strength and spring properties than brass and phosphor bronze used as current electrical contact materials, a material having a strength of 500 N / mm 2 or more and having spring properties is used. If the strength is less than 500 N / mm 2 , it is not possible to obtain sufficient resiliency to make the substrate thinner. Examples of a steel type that can provide a strength of 500 N / mm 2 or more include HH to H materials such as SUS304, SUS301, and SUS631, which are stainless steels for springs specified by JIS G4313, and martensite represented by SUS410. A material obtained by hardening a series stainless steel by rolling is exemplified.
In the next step, it is preferable to use a stainless steel plating base plate having a surface roughness of Ra 0.050 μm or less in order to obtain a Ni plating layer having good gloss. If the surface roughness is less than this value, the surface of the Ni plating layer formed thereon does not reflect the unevenness of the substrate surface, and sufficient gloss is exhibited even with a thin gloss Ni plating layer of about several μm. I do.
[0017]
For the Ni plating applied to the stainless steel having the above surface condition, a known plating means is sufficient. However, from the viewpoint of reducing the surface contact resistance, it is preferable that the outermost layer has a higher glossiness. As this method, there are a method of obtaining a high glossiness by matte plating as a whole by adjusting plating conditions, and a method of forming a glossy Ni plating layer once and then forming a matte Ni plating layer thereon. There is also a means for increasing the surface gloss by mechanical treatment after matte plating. Since the work process becomes complicated when mechanical processing is interposed, it is preferable to carry out by the former two methods.
In the present specification, “bright Ni plating layer” means a plating layer formed by electroplating using a plating bath to which a brightener is added, and having a high reflectance or resolution like a mirror, The term “matte Ni plating layer” refers to a plating layer formed by electroplating using a plating bath containing no brightener.
[0018]
As a method of obtaining a high-gloss surface layer by matte plating the entire surface, first, in order to ensure adhesion to stainless steel, electrolytic degreasing in an alkaline electrolytic bath such as sodium orthosilicate, then dilute sulfuric acid solution It is preferable to perform immersion and acid pickling, and to apply Ni strike plating in the range of 0.02 to 0.5 μm under the conditions shown in Table 1.
Next, a matte Ni plating layer having a predetermined thickness can be obtained using the conditions shown in Table 2.
[0019]
Figure 2004300489
[0020]
Figure 2004300489
[0021]
Once a bright Ni plating layer is formed, a matte Ni plating layer is formed thereon by forming a Ni strike layer to a thickness of 0.02 to 0.5 μm under the above-described conditions, and then forming the above-described Watt Ni bath. After performing bright Ni plating in a bath to which several to several tens of g / l of a primary brightener and a secondary brightener each containing an organic component are respectively added, a non-glossy Ni plating is further performed under the above-described conditions. A thick Ni plating layer can be obtained. Here, benzene, toluene, sodium naphthalenesulfonate, saccharin and the like are used as the primary brightener, and butanediol, coumarin, thiouric acid and the like are used as the secondary brightener.
[0022]
Figure 2004300489
[0023]
As a method of applying a partial Au plating on the Ni plating layer, a non-Au plating surface (location) of the substrate is previously sealed with a protective film or tape, pickled with dilute hydrochloric acid or the like, and then Au of a predetermined thickness is formed. After plating or pickling the substrate, Au plating is performed by pressing a masking belt drive having a hole only at the Au plating portion against the substrate. A known method may be used for the partial Au plating method, but it is preferable to perform the plating as quickly as possible after the Ni plating in order to secure good adhesion of the Au plating.
Table 4 shows bath conditions for hard Au plating as examples of Au plating.
[0024]
Figure 2004300489
[0025]
【Example】
Example 1
A SUS3043 / 4H stainless steel plate (tensile strength: 1050 N / mm 2 ) having a surface roughness of adjusted to 0.045 μm and a thickness of 0.20 mm was used as a plating base plate, and sodium orthosilicate 50 g / l and a bath temperature of 60 ° C. The plating base plate was immersed in an alkaline electrolytic bath and subjected to cathodic electrolysis at a current density of 0.5 kA / m 2 for 10 seconds to perform electrolytic degreasing. Next, it was pickled by dipping in a 2% sulfuric acid solution for 10 seconds.
The original plate was subjected to Ni strike plating under the same conditions as in Table 1 above, and then the matte Ni plating was formed by changing the film thickness under the conditions shown in Table 5 below. In addition, after Ni strike plating, commercially available bright plating (weights G-1 and G-2 manufactured by Uemura Kogyo Co., Ltd.) was performed using a brightener, and further, the thickness of the matte plating was changed after bright plating. Was prepared.
[0026]
Figure 2004300489
[0027]
The obtained test piece was subjected to a 180 ° adhesion bending tape peeling test to evaluate the adhesion. When the plating did not peel off, it was evaluated as ○, and when it peeled, it was evaluated as x.
The following test was performed on the test piece from which good plating adhesion was obtained in order to determine whether or not the reliability as a connection portion was obtained.
[0028]
(Corrosion resistance test)
In the corrosion resistance test, a test piece cut to 100 mm x 50 mm was used, and a salt spray test (JIS Z2371) for 48 hours was performed. The test pieces were evaluated as x when a clear corrosion product such as red rust was observed on the surface, and as o when they were not.
(Contact resistance test)
The contact resistance was measured under the conditions of an applied current of 10 mA and a contact load of 100 gf, using a contact resistance distribution measuring device (manufactured by Yamazaki Seiki Laboratory Co., Ltd.). In the accelerated deterioration test, the test piece was left in a thermo-hygrostat at a temperature of 60 ° C. and a relative humidity of 90% RH for 40 days, and the contact resistance after the accelerated deterioration test was measured.
Then, those having a contact resistance of 10 mΩ or less were evaluated as ◎, those having a contact resistance of 10 to 50 mΩ were evaluated as も の, and those exceeding 50 mΩ were evaluated as ×.
[0029]
Figure 2004300489
The test piece immediately after plating was immersed in a Pb-free solder melting bath having a size of 10 mm x 40 mm using a Resker solder checker SAT-500 to a depth of 2 mm at an immersion speed of 2 mm / min. Hold at depth for 10 seconds.
Then, the time from the immersion of the test piece until the wetting force crossed zero was evaluated as ◎ when the zero crossing time was within 3 seconds, ○ when the time was 3 to 5 seconds, and × when the time exceeded 5 seconds.
Table 6 shows the obtained evaluation results.
[0030]
Figure 2004300489
[0031]
As can be seen from the survey results in Table 6, the matte Ni plating layer applied to the outermost layer with a film thickness exceeding 0.3 μm has good plating adhesion, solderability and abrasion resistance. Have been obtained.
In Test No. 6, in which the Ni plating on the outermost layer was bright plating to which a brightener was added, the contact resistance after the accelerated deterioration test was low. Moreover, in Test No. 7, the film thickness of Ni strike plating was thin, so that the plating adhesion was inferior. Test No. 8 was inferior in solderability because the total Ni plating film thickness was small.
[0032]
Example 2:
The SUS3043 / 4H stainless steel sheet having a thickness of 0.20 mm and having a surface roughness adjusted to Ra 0.045 μm used in Example 1 was used as a plating base plate, and was subjected to Ni plating under the conditions of Test No. 3 of Example 1. Thereafter, under the same conditions as those shown in Table 4 above, Au plating was performed while changing the film thickness.
As a comparative material, a 0.3 mm-thick brass plate (C2600-H) was used as a plating base plate, Ni plating was applied to a thickness of 0.6 μm, and then Au plating was applied to 0.3 μm. In addition, a material was prepared in which Ni plating of 2 μm was applied so as to have the same film thickness configuration as that used as a current contact material, and then Au plating of 1 μm was applied. Further, a brass plate was also prepared by directly applying Sn plating to a film thickness of 1 μm.
[0033]
Using the obtained test piece, the same corrosion resistance test and contact resistance test as in Example 1 were performed to determine whether or not the reliability as the contact portion was obtained.
The initial contact resistance of a material in which brass used as a current contact material was plated with 2 μm of Ni and then plated with 1 μm of Au was less than 1 mΩ for both 10 g and 100 g of load. The initial contact resistance of the material plated with Sn on brass was 4 mΩ at a load of 10 g and 1 mΩ at a load of 100 g. Therefore, in the present example, those with a contact resistance of less than 1 mΩ were evaluated as ◎, those with a contact resistance of 1 to 5 mΩ as ○, and those with a contact resistance of 5 mΩ or more as x.
[0034]
Further, the abrasion resistance was evaluated by the following method.
(Wear resistance test)
A reciprocating motion abrasion test was carried out according to JIS H8503 using a suga abrasion tester NUS-ISO1 manufactured by Suga Test Instruments Co., Ltd., using # 1200 abrasive paper and a load of 100 g.
Au-plated material shows a stable contact resistance even with a load of about 1/5 to 1/10, compared to a material in which brass is Sn-plated, which is currently used as a contact material. That is, in the case of an Au plating material, the wear resistance under a load of about 1/5 to 1/10 may be evaluated. When a material obtained by subjecting brass to Sn plating at 1 μm was applied under the above test conditions with only a load of 500 g, the material reached the substrate in about 100 times. Then, based on this result, for the Au plated material, when the load was 1/5, that is, 100 g, those that reached the Ni plating layer 100 times were x, those that did not reach the Ni plating layer 100 times. Was evaluated as ○, and abrasion resistance was evaluated as ◎ for those which did not reach the Ni plating layer even 200 times.
[0035]
[Economic]
The cost of a material obtained by applying a Ni plating of 2 μm and an Au plating of 1 μm to brass, which is the current contact material, was evaluated as “x”, and a material more economical than that was evaluated as “と し て”.
Table 7 shows the evaluation results.
[0036]
Figure 2004300489
[0037]
As can be seen from the survey results in Table 7, in Test Nos. 9 to 11, the corrosion resistance, contact resistance, and abrasion resistance were as good as those of Test No. 14, which is currently used as a contact material. Is shown. It is also economical.
Test No. 12 is inferior in abrasion resistance because the thickness of the Au plating is thin. In Test No. 13 in which brass was used for the original plate, the film thickness of Ni plating or Au plating was about the same as that of the example of the present invention, so that the corrosion resistance was poor.
[0038]
【The invention's effect】
As described above, the electrical contact according to the present invention is made of stainless steel as a base material, has a Ni plating layer formed on the surface thereof, and further has an Au plating layer formed on the contact portion. Therefore, the excellent corrosion resistance of the base material can be utilized, and the thickness of the coating plating layer can be reduced, so that the Au plating adhesion amount can be reduced, which can contribute to cost reduction. In addition, the excellent mechanical properties of stainless steel can be utilized, and the thickness of automotive harness terminals can be reduced, and the weight and thickness of conductive members can be reduced, contributing to the reduction in weight and thickness of components. Can be.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a conventional electric contact. FIG. 2 is a cross-sectional view showing a structure of an electric contact of the present invention.
1: Copper alloy base material 2: Ni plating layer 3: Reflow Sn plating layer 4: Au plating layer 5: Stainless steel base material 6: Ni plating layer 7: Au plating layer 11: Connection portion with copper wire 12: Contact portion

Claims (3)

基材ステンレス鋼上にNiめっき層が形成され、その上にさらに部分的にAuめっき層が形成されていることを特徴とするステンレス鋼製電気接点。A stainless steel electrical contact, wherein a Ni plating layer is formed on a base stainless steel, and an Au plating layer is further formed partially on the Ni plating layer. Niめっき層が、表面光沢度を高めたものである請求項1に記載のステンレス鋼製電気接点。The stainless steel electrical contact according to claim 1, wherein the Ni plating layer has a surface glossiness enhanced. 基材ステンレス鋼が、強度500N/mm以上のバネ性の優れたステンレス鋼である請求項1または2に記載のステンレス鋼製電気接点。The stainless steel electrical contact according to claim 1, wherein the base stainless steel is a stainless steel having a strength of 500 N / mm 2 or more and excellent spring properties.
JP2003093239A 2003-03-31 2003-03-31 Electric contact made of stainless steel Withdrawn JP2004300489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093239A JP2004300489A (en) 2003-03-31 2003-03-31 Electric contact made of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093239A JP2004300489A (en) 2003-03-31 2003-03-31 Electric contact made of stainless steel

Publications (1)

Publication Number Publication Date
JP2004300489A true JP2004300489A (en) 2004-10-28

Family

ID=33406086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093239A Withdrawn JP2004300489A (en) 2003-03-31 2003-03-31 Electric contact made of stainless steel

Country Status (1)

Country Link
JP (1) JP2004300489A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054110A (en) * 2004-08-12 2006-02-23 Nisshin Steel Co Ltd Contact material made of stainless steel
JP2010146926A (en) * 2008-12-19 2010-07-01 Furukawa Electric Co Ltd:The Silver coating material for movable contact component and method of manufacturing the same
US7914926B2 (en) 2005-03-17 2011-03-29 Hitachi Maxell, Ltd. Flat-shaped battery
CN102851714A (en) * 2012-09-14 2013-01-02 北京小米科技有限责任公司 Production method and products of metal exposed terminals
US8885299B1 (en) 2010-05-24 2014-11-11 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US8891206B2 (en) 2012-12-17 2014-11-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
US8896969B1 (en) 2013-05-23 2014-11-25 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US8896968B2 (en) 2012-10-10 2014-11-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8896970B1 (en) 2013-12-31 2014-11-25 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US8941951B2 (en) 2012-11-28 2015-01-27 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
US9001469B2 (en) 2012-03-16 2015-04-07 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (DSA) disk drive head suspension
US9001471B2 (en) 2012-09-14 2015-04-07 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
US9007726B2 (en) 2013-07-15 2015-04-14 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9093117B2 (en) 2012-03-22 2015-07-28 Hutchinson Technology Incorporated Ground feature for disk drive head suspension flexures
US9099131B1 (en) 2010-03-17 2015-08-04 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
WO2015119010A1 (en) * 2014-02-07 2015-08-13 矢崎総業株式会社 Fixed contact
US9230580B1 (en) 2010-06-30 2016-01-05 Western Digital Technologies, Inc. Suspension assembly having a microactuator grounded to a flexure
US9296188B1 (en) 2015-02-17 2016-03-29 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US9431042B2 (en) 2014-01-03 2016-08-30 Hutchinson Technology Incorporated Balanced multi-trace transmission in a hard disk drive flexure
KR20170008256A (en) 2014-05-19 2017-01-23 닛신 세이코 가부시키가이샤 Connecting component material
US9558771B2 (en) 2014-12-16 2017-01-31 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9564154B2 (en) 2014-12-22 2017-02-07 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US9646638B1 (en) 2016-05-12 2017-05-09 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
US9734852B2 (en) 2015-06-30 2017-08-15 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
JP7229779B2 (en) 2018-02-08 2023-02-28 株式会社ダイセル METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054110A (en) * 2004-08-12 2006-02-23 Nisshin Steel Co Ltd Contact material made of stainless steel
JP4522785B2 (en) * 2004-08-12 2010-08-11 日新製鋼株式会社 Stainless steel contact material
US7914926B2 (en) 2005-03-17 2011-03-29 Hitachi Maxell, Ltd. Flat-shaped battery
JP2010146926A (en) * 2008-12-19 2010-07-01 Furukawa Electric Co Ltd:The Silver coating material for movable contact component and method of manufacturing the same
US9099131B1 (en) 2010-03-17 2015-08-04 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
US9472218B2 (en) 2010-03-17 2016-10-18 Western Digital Technologies, Inc. Suspension assembly having a microactuator electrically connected to a gold coating on a stainless steel surface
US9812160B2 (en) 2010-05-24 2017-11-07 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US8885299B1 (en) 2010-05-24 2014-11-11 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US9245555B2 (en) 2010-05-24 2016-01-26 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US20160104503A1 (en) * 2010-05-24 2016-04-14 Hutchinson Technology Incorporated Low resistance ground joints for dual stage actuation disk drive suspensions
US9230580B1 (en) 2010-06-30 2016-01-05 Western Digital Technologies, Inc. Suspension assembly having a microactuator grounded to a flexure
US9001469B2 (en) 2012-03-16 2015-04-07 Hutchinson Technology Incorporated Mid-loadbeam dual stage actuated (DSA) disk drive head suspension
US9093117B2 (en) 2012-03-22 2015-07-28 Hutchinson Technology Incorporated Ground feature for disk drive head suspension flexures
US9001471B2 (en) 2012-09-14 2015-04-07 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions
CN102851714B (en) * 2012-09-14 2016-02-03 小米科技有限责任公司 Production method of the outer drain terminal of a kind of metal and products thereof
CN102851714A (en) * 2012-09-14 2013-01-02 北京小米科技有限责任公司 Production method and products of metal exposed terminals
US8896968B2 (en) 2012-10-10 2014-11-25 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US9240203B2 (en) 2012-10-10 2016-01-19 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with dampers
US8941951B2 (en) 2012-11-28 2015-01-27 Hutchinson Technology Incorporated Head suspension flexure with integrated strain sensor and sputtered traces
US9257139B2 (en) 2012-12-17 2016-02-09 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US8891206B2 (en) 2012-12-17 2014-11-18 Hutchinson Technology Incorporated Co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffener
US8896969B1 (en) 2013-05-23 2014-11-25 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US10629232B2 (en) 2013-05-23 2020-04-21 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US9997183B2 (en) 2013-05-23 2018-06-12 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US9613644B2 (en) 2013-05-23 2017-04-04 Hutchinson Technology Incorporated Two-motor co-located gimbal-based dual stage actuation disk drive suspensions with motor stiffeners
US10002629B2 (en) 2013-07-15 2018-06-19 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9007726B2 (en) 2013-07-15 2015-04-14 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9524739B2 (en) 2013-07-15 2016-12-20 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US9870792B2 (en) 2013-07-15 2018-01-16 Hutchinson Technology Incorporated Disk drive suspension assembly having a partially flangeless load point dimple
US8896970B1 (en) 2013-12-31 2014-11-25 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US9147413B2 (en) 2013-12-31 2015-09-29 Hutchinson Technology Incorporated Balanced co-located gimbal-based dual stage actuation disk drive suspensions
US9431042B2 (en) 2014-01-03 2016-08-30 Hutchinson Technology Incorporated Balanced multi-trace transmission in a hard disk drive flexure
JP2015149218A (en) * 2014-02-07 2015-08-20 矢崎総業株式会社 fixed contact
WO2015119010A1 (en) * 2014-02-07 2015-08-13 矢崎総業株式会社 Fixed contact
US10230180B2 (en) 2014-05-19 2019-03-12 Nisshin Steel Co., Ltd. Connecting component material
KR20170008256A (en) 2014-05-19 2017-01-23 닛신 세이코 가부시키가이샤 Connecting component material
US10002628B2 (en) 2014-12-16 2018-06-19 Hutchinson Technology Incorporated Piezoelectric motors including a stiffener layer
US9715890B2 (en) 2014-12-16 2017-07-25 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9558771B2 (en) 2014-12-16 2017-01-31 Hutchinson Technology Incorporated Piezoelectric disk drive suspension motors having plated stiffeners
US9564154B2 (en) 2014-12-22 2017-02-07 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US10339966B2 (en) 2014-12-22 2019-07-02 Hutchinson Technology Incorporated Multilayer disk drive motors having out-of-plane bending
US9296188B1 (en) 2015-02-17 2016-03-29 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US10147449B2 (en) 2015-02-17 2018-12-04 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US9824704B2 (en) 2015-02-17 2017-11-21 Hutchinson Technology Incorporated Partial curing of a microactuator mounting adhesive in a disk drive suspension
US9734852B2 (en) 2015-06-30 2017-08-15 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10290313B2 (en) 2015-06-30 2019-05-14 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10748566B2 (en) 2015-06-30 2020-08-18 Hutchinson Technology Incorporated Disk drive head suspension structures having improved gold-dielectric joint reliability
US10109305B2 (en) 2016-05-12 2018-10-23 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
US9646638B1 (en) 2016-05-12 2017-05-09 Hutchinson Technology Incorporated Co-located gimbal-based DSA disk drive suspension with traces routed around slider pad
JP7229779B2 (en) 2018-02-08 2023-02-28 株式会社ダイセル METHOD FOR MANUFACTURING PLATING FILM HAVING LOW CONTACT RESISTANCE VALUE

Similar Documents

Publication Publication Date Title
JP2004300489A (en) Electric contact made of stainless steel
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP6304447B2 (en) Tin-plated copper terminal material and terminal and wire terminal structure
TWI489002B (en) Surface treatment plating material and manufacturing method thereof, and electronic parts
US10829862B2 (en) Tin-plated product and method for producing same
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP2003293187A (en) Copper or copper alloy subjected to plating and method for manufacturing the same
TW201812108A (en) Tinned copper terminal material, terminal, and electrical wire end part structure
JP6812852B2 (en) Anti-corrosion terminal material, anti-corrosion terminal, and electric wire terminal structure
TW200844267A (en) Sn-plated copper alloy material for printed board terminal
JP4522970B2 (en) Cu-Zn alloy heat resistant Sn plating strip with reduced whisker
WO2018164127A1 (en) Corrosion-resistant terminal material, corrosion-resistant terminal, and wire end structure
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP6930327B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP7211075B2 (en) Anti-corrosion terminal material, terminal, and wire end structure
JP2011099128A (en) Plated member and method for manufacturing the same
JP6946884B2 (en) Anti-corrosion terminal material and its manufacturing method, anti-corrosion terminal and electric wire terminal structure
JP2005048201A (en) Terminal, and component and product having the same
JP2020056056A (en) Copper terminal material, copper terminal, and manufacturing method of copper terminal material
JP7302364B2 (en) Connector terminal materials and connector terminals
EP3916133A1 (en) Connector terminal material and connector terminal
JP2014084476A (en) Surface treatment plated material and production method of the same, and electronic component
JP6856342B2 (en) Copper or copper alloy plate material and its manufacturing method, and terminals
KR20200083471A (en) Anti-corrosion terminal material and anti-corrosion terminal and wire terminal structure
JP7380448B2 (en) Corrosion-proof terminal material for aluminum core wire and its manufacturing method, corrosion-proof terminal and electric wire terminal structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606