JP4522785B2 - Stainless steel contact material - Google Patents

Stainless steel contact material Download PDF

Info

Publication number
JP4522785B2
JP4522785B2 JP2004235075A JP2004235075A JP4522785B2 JP 4522785 B2 JP4522785 B2 JP 4522785B2 JP 2004235075 A JP2004235075 A JP 2004235075A JP 2004235075 A JP2004235075 A JP 2004235075A JP 4522785 B2 JP4522785 B2 JP 4522785B2
Authority
JP
Japan
Prior art keywords
stainless steel
mass
plating layer
layer
contact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004235075A
Other languages
Japanese (ja)
Other versions
JP2006054110A (en
Inventor
政義 多々納
正一 松尾
雅央 長尾
聡 鈴木
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2004235075A priority Critical patent/JP4522785B2/en
Publication of JP2006054110A publication Critical patent/JP2006054110A/en
Application granted granted Critical
Publication of JP4522785B2 publication Critical patent/JP4522785B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気・電子機器に組み込まれる配線端子,リードフレーム,コネクタ等として好適なステンレス鋼製接点材料に関する。   The present invention relates to a stainless steel contact material suitable as a wiring terminal, lead frame, connector or the like incorporated in an electric / electronic device.

電気・電子機器等に組み込まれ、銅電線を接続するハーネス等の配線端子には、導電性の良好な銅系材料が従来から使用されている。銅系材料のなかでも、内部抵抗が小さくばね性に優れた冷間圧延材が多用されている。軟質で伸びが低い冷間圧延材は、打抜き加工で小型で精密な部品を製造する際、加工面に加わる打抜き荷重が小さく、バリも発生しにくいことからパンチ,ダイの破損や摩耗が少なく、打抜き加工に適した材料である。   Conventionally, copper-based materials with good conductivity have been used for wiring terminals such as harnesses that are incorporated in electric / electronic devices and connect copper wires. Among copper-based materials, cold-rolled materials having low internal resistance and excellent spring properties are frequently used. Cold rolled material that is soft and has low elongation, when manufacturing small and precise parts by punching, has a small punching load applied to the machined surface and is less likely to generate burrs. It is a material suitable for punching.

しかし、銅系材料は、耐食性に劣る。銅系材料から作製された電気配線端子を露出状態で使用すると、表面酸化が進行して表面接触電気抵抗が増加し、電気部品や電子部品の特性が変わることがある。表面酸化による表面接触電気抵抗の増加は、Sn,Ni等のめっきにより抑制できる。しかし、めっき工程を必要とするため製品コストが高くなり、使用環境によっては必要な耐食性を付与できない場合もある。   However, copper-based materials are inferior in corrosion resistance. When an electrical wiring terminal made of a copper-based material is used in an exposed state, surface oxidation proceeds to increase surface contact electrical resistance, which may change the characteristics of electrical and electronic components. An increase in surface contact electrical resistance due to surface oxidation can be suppressed by plating with Sn, Ni or the like. However, since a plating process is required, the product cost increases, and depending on the use environment, the necessary corrosion resistance may not be imparted.

そこで、電気部品や電子部品等に組み込まれる電気接点材料の中で、弱電流が流れる配線端子では接続部品の内部抵抗に起因する発熱を考慮する必要がないことから、耐食性,ばね性に優れたステンレス鋼を配線端子の基材に使用することが検討されている。本出願人も、Cuを主体とする第二相を析出させ、或いはCu濃化層をステンレス鋼表面に形成させることにより、接点材料に要求される低接触抵抗を呈するステンレス鋼を紹介した(特許文献1)。
特開2001-89865号公報
Therefore, among the electrical contact materials incorporated in electrical parts and electronic parts, wiring terminals where weak current flows do not need to consider heat generation due to the internal resistance of the connected parts, so they have excellent corrosion resistance and spring properties. The use of stainless steel as a base material for wiring terminals has been studied. The present applicant also introduced stainless steel exhibiting low contact resistance required for contact materials by precipitating a second phase mainly composed of Cu or forming a Cu concentrated layer on the stainless steel surface (patent) Reference 1).
Japanese Patent Laid-Open No. 2001-89865

Cuを主体とする第二相を析出させたステンレス鋼やCu濃化層を鋼板表面に生成させたステンレス鋼は、通常のステンレス鋼に比較して遥かに低い接触抵抗を示すが、使用環境によっては使用期間が長くなると接触抵抗が上昇する場合がある。そこで、Cuを主体とする第二相,Cu濃化層が接触抵抗の低下に及ぼす影響を更に調査・検討した。その結果、Cuを主体とする第二相,Cu濃化層に加え、極薄いNiめっき層を鋼板表面に形成すると、湿潤環境や腐食性雰囲気で長期間使用した後でも接触抵抗が低位に維持されることを見出した。
本発明は、Cuを主体とする第二相,Cu濃化層と極薄いNiめっき層との共存により低接触抵抗の耐劣化性が改善される知見をベースにし、極薄いNiめっき層を設けることにより、先に紹介したステンレス鋼の特性を更に改良した接点材料を提供することを目的とする。
Stainless steel in which a second phase mainly composed of Cu is precipitated and stainless steel in which a Cu concentrated layer is formed on the surface of the steel sheet show a much lower contact resistance than normal stainless steel, but depending on the use environment In some cases, the contact resistance may increase as the period of use increases. Then, the influence which the 2nd phase and Cu concentrated layer which consist mainly of Cu have on the fall of contact resistance was investigated further. As a result, when a very thin Ni plating layer is formed on the steel plate surface in addition to the Cu-based second phase, Cu enriched layer, the contact resistance is maintained at a low level even after long-term use in a humid environment or corrosive atmosphere. I found out that
The present invention is based on the knowledge that the deterioration resistance of the low contact resistance is improved by the coexistence of the second phase mainly composed of Cu, the Cu enriched layer, and the ultrathin Ni plating layer, and the ultrathin Ni plating layer is provided. Thus, an object of the present invention is to provide a contact material that further improves the characteristics of the stainless steel introduced above.

本発明のステンレス鋼製接点材料は、Cu:1.0質量%以上,Cr:9質量%以上を含むステンレス鋼又はCu:1.0質量%以上,Cr:9質量%以上,Ni:6質量%以上を含むフェライト系又はオーステナイト系ステンレス鋼を基材に使用している。
基材には、Cuを主体とする第二相が0.2体積%以上の割合でマトリックスに分散しており、析出個所で不動態皮膜の生成・成長が抑えられるので基材表面にも第二相が露出する。Cu濃化層は、露点を下げた雰囲気下での光輝焼鈍や大気焼鈍,酸洗の組合せにより基材表面に形成されるが、拡散係数が成分元素ごとに異なることを考慮した成分設計や処理条件によりCu/(Si+Mn)の質量比を0.5以上に調整できる。Cuを主体とする第二相の析出及びCu濃化層の生成を並存させることも可能である。
Stainless steel contact material of the present invention is Cu: 1.0 mass% or more, Cr: stainless steel containing 9 mass% or more, or Cu: 1.0 mass% or more, Cr: 9 mass% or more, Ni: 6 mass Ferritic or austenitic stainless steel containing at least% is used as the base material.
In the base material, the second phase mainly composed of Cu is dispersed in the matrix at a ratio of 0.2% by volume or more, and the formation and growth of the passive film can be suppressed at the deposition site. Two phases are exposed. The Cu enriched layer is formed on the surface of the substrate by a combination of bright annealing, atmospheric annealing, and pickling in an atmosphere with a low dew point, but the component design and processing take into account that the diffusion coefficient differs for each component element. The mass ratio of Cu / (Si + Mn) can be adjusted to 0.5 or more depending on conditions. It is also possible to coexist the precipitation of the second phase mainly composed of Cu and the formation of a Cu concentrated layer.

Cuを主体とする第二相の析出及び/又はCu濃化層の生成に加え、Niめっき層を基材表面に形成している。膜厚:0.05〜0.7μmと極薄くすることにより、Niめっき層が鋼板表面を完全に覆う連続膜でなく、多数個所で基材が露出する部分が生じ、Cuを主体とする第二相やCu濃化層がNiめっき層と共にステンレス鋼表面に共存する状態が得られる。   In addition to the precipitation of the second phase mainly composed of Cu and / or the generation of the Cu concentrated layer, a Ni plating layer is formed on the surface of the substrate. Film thickness: 0.05 to 0.7 μm makes the Ni plating layer not a continuous film that completely covers the surface of the steel sheet, but a portion where the base material is exposed at a number of locations. A state in which a two-phase or Cu concentrated layer coexists on the stainless steel surface together with the Ni plating layer is obtained.

発明の効果及び実施の形態Effects and embodiments of the invention

Cuを主体とする第二相(以下、「Cuリッチ相」という)を析出させ、或いはCu濃化層を形成させたステンレス鋼は、従来のステンレス鋼に比較して格段に低い接触抵抗を示すが、極薄いNiめっき層をステンレス鋼表面に設けることによって、接触抵抗の上昇が抑えられ、湿潤環境や腐食性雰囲気であっても接触抵抗が長期にわたって低位に維持される。極薄いNiめっき層により低接触抵抗の耐劣化性が改善される理由は、次のように推察され、後述の実施例でも支持される。   Stainless steel in which a second phase mainly composed of Cu (hereinafter referred to as “Cu-rich phase”) is precipitated or a Cu concentrated layer is formed exhibits a much lower contact resistance than conventional stainless steel. However, by providing an extremely thin Ni plating layer on the surface of the stainless steel, an increase in contact resistance is suppressed, and the contact resistance is maintained at a low level for a long time even in a wet environment or a corrosive atmosphere. The reason why the deterioration resistance of the low contact resistance is improved by the extremely thin Ni plating layer is presumed as follows, and is supported in the examples described later.

膜厚が0.05〜0.7μmと極薄いNiめっき層は、鋼板全面を完全に被覆することなく、下地鋼の露出部とNiめっき層とが混在した表面を呈する。すなわち、ステンレス鋼1の表面に、マトリックスに析出しているCuリッチ相2,Niめっき層3が共存する(図1)。標準電極電位(25℃)がCuで+0.34V,Niで−0.23Vであることから、Niは、Cuに対して卑な金属となり、湿潤環境下で金属イオンとして溶出しやすい。Niの溶出は、Niめっき層3の表面酸化を防止すると共に、Cuリッチ相2を活性状態に維持する。その結果、酸化膜の成長に起因する接触抵抗の上昇が抑えられ、接触抵抗の低減に有効なCuリッチ相2の作用が持続する。   An extremely thin Ni plating layer having a thickness of 0.05 to 0.7 μm exhibits a surface in which the exposed portion of the base steel and the Ni plating layer are mixed without completely covering the entire surface of the steel plate. That is, the Cu rich phase 2 and the Ni plating layer 3 precipitated in the matrix coexist on the surface of the stainless steel 1 (FIG. 1). Since the standard electrode potential (25 ° C.) is +0.34 V for Cu and −0.23 V for Ni, Ni becomes a base metal with respect to Cu and is easily eluted as metal ions in a humid environment. The elution of Ni prevents surface oxidation of the Ni plating layer 3 and keeps the Cu rich phase 2 in an active state. As a result, an increase in contact resistance due to the growth of the oxide film is suppressed, and the action of the Cu rich phase 2 effective for reducing the contact resistance is sustained.

このようなNiめっき層3の作用・効果は、ステンレス鋼1の全面を覆う程度に厚いNiめっき層3では発現しないことからも、ステンレス鋼1表面に共存するCuリッチ相2,Niめっき層3に由来するものと理解できる。Cuリッチ相2に代えて、Cu濃化層をステンレス鋼1の極表層に形成した場合でも、同様なCu濃化層とNiめっき層3の相互作用によって接触抵抗の上昇が抑えられる。   Such an action / effect of the Ni plating layer 3 is not manifested in the Ni plating layer 3 that is thick enough to cover the entire surface of the stainless steel 1. It can be understood that it comes from. Even when the Cu enriched layer is formed on the extreme surface layer of the stainless steel 1 in place of the Cu rich phase 2, an increase in contact resistance is suppressed by the interaction between the similar Cu enriched layer and the Ni plating layer 3.

基材として使用するステンレス鋼は、0.2体積%以上でCuリッチ相が析出し、或いはCu/(Si+Mn)の質量比:0.5以上のCu濃化層が生成している限り、フェライト系,オーステナイト系の何れでも良い。
フェライト系としては、たとえばC+N:0.1質量%以下,Si:1.0質量%以下,Mn:1.0質量%以下,Cr:9.0〜25.0質量%,Cu:1.0〜3.0質量%を含むステンレス鋼がある。オーステナイト系では、C+N:0.2質量%以下,Si:1.0質量%以下,Mn:2.0質量%以下,Cr:9.0〜25.0質量%,Ni:5.0〜15.0質量%,Cu:1.0〜4.0質量%を含むステンレス鋼がある。フェライト系,オーステナイト系共に、1.0質量%以下のTi及び/又はNbを含むことができる。
As long as the stainless steel used as a base material has a Cu-rich phase precipitated at 0.2% by volume or more, or a Cu-concentrated layer having a Cu / (Si + Mn) mass ratio of 0.5 or more is formed, ferrite Either an austenite or austenite may be used.
For example, C + N: 0.1 mass% or less, Si: 1.0 mass% or less, Mn: 1.0 mass% or less, Cr: 9.0 to 25.0 mass%, Cu: 1.0 There is stainless steel containing ~ 3.0 wt%. In the austenitic system, C + N: 0.2 mass% or less, Si: 1.0 mass% or less, Mn: 2.0 mass% or less, Cr: 9.0 to 25.0 mass%, Ni: 5.0 to 15 There is stainless steel containing 0.0 mass%, Cu: 1.0-4.0 mass%. Both ferrite and austenite can contain 1.0 mass% or less of Ti and / or Nb.

C,Nは、クロム炭化物等の形成によりCuリッチ相の析出を促進させる。しかし、過剰添加は製造性,耐食性に悪影響を及ぼすので、C+Nの上限を0.1質量%とした。
Siは、耐食性改善に有効な成分であるが、過剰添加は製造性を劣化させるので上限を1.0質量%とした。
Mnは、製造性を改善すると共に鋼中のSをMnSとして固定する作用を呈するが、過剰添加は耐食性に悪影響を及ぼすので、フェライト系では1.0質量%,オーステナイト系では2.0質量%をMn含有量の上限とした。
C and N promote the precipitation of a Cu-rich phase by forming chromium carbide or the like. However, excessive addition adversely affects manufacturability and corrosion resistance, so the upper limit of C + N was set to 0.1% by mass.
Si is an effective component for improving the corrosion resistance, but excessive addition deteriorates manufacturability, so the upper limit was made 1.0 mass%.
Mn improves the manufacturability and fixes S in the steel as MnS. However, excessive addition adversely affects the corrosion resistance, so that 1.0% by mass for ferrite and 2.0% by mass for austenitic. Was the upper limit of the Mn content.

Crは、ステンレス鋼の耐食性を確保する上で必須の合金成分であり、9.0質量%以上のCr含有量で効果を奏する。しかし、25.0質量%を超えるCrの過剰添加は、製造性を低下させる。
オーステナイト系ステンレス鋼では、オーステナイト相の安定化にNiが必須成分として添加されるが、Niは耐食性の改善にも有効である。5.0質量%以上でNiの添加効果がみられるが、過剰添加は鋼材コストの上昇を招くので15.0質量%をNi含有量の上限とした。
Cr is an alloy component essential for ensuring the corrosion resistance of stainless steel, and is effective when the Cr content is 9.0% by mass or more. However, excessive addition of Cr exceeding 25.0% by mass decreases manufacturability.
In austenitic stainless steel, Ni is added as an essential component for stabilizing the austenitic phase, but Ni is also effective in improving corrosion resistance. The effect of addition of Ni is seen at 5.0 mass% or more, but excessive addition causes an increase in steel material cost, so 15.0 mass% was made the upper limit of the Ni content.

Cuは、表面の接触抵抗を低下させるCuリッチ相の析出又はCu濃化層の生成に必要な成分であり、1.0質量%以上でCuの添加効果がみられる。しかし、過剰添加は製造性,耐食性の低下を招くので、フェライト系では3.0質量%,オーステナイト系では4.0質量%をCu添加量の上限とした。
必要に応じてTi,Nbを添加することもできる。Ti,Nbは、何れも鋼中のC,Nを炭窒化物として固定し、マトリックスに固溶しているC,Nを低減し製造性,耐食性を改善する。しかし、Ti,Nbの過剰添加は、製造性を却って阻害する原因ともなるので上限を1.0質量%とした。
Cu is a component necessary for the precipitation of a Cu-rich phase that reduces the contact resistance of the surface or the formation of a Cu concentrated layer, and the effect of addition of Cu is observed at 1.0 mass% or more. However, excessive addition causes a decrease in manufacturability and corrosion resistance, so the upper limit of the Cu addition amount was set to 3.0% by mass for the ferrite type and 4.0% by mass for the austenite type.
Ti and Nb can be added as necessary. Ti and Nb both fix C and N in steel as carbonitrides, reduce C and N dissolved in the matrix, and improve manufacturability and corrosion resistance. However, the excessive addition of Ti and Nb also causes a hindrance to the manufacturability, so the upper limit was made 1.0 mass%.

Cuリッチ相:0.2体積%以上
Cuリッチ相は、フェライト系ステンレス鋼板のマトリックスに均一分散し、同じ分布割合で鋼板表面にも分散している。Cuリッチ相と表面接触電気抵抗との関係を調査した結果、0.2体積%以上の割合でCuリッチ相が析出していると、従来のNiめっき材と同程度の表面接触電気抵抗が得られることが判った。
ステンレス鋼板の製造ラインにおける最終焼鈍までの工程でたとえば800℃前後で1時間以上の時効処理を施すことにより、Cuリッチ相が析出する。Cuリッチ相の析出量は、温度,時間等の熱処理条件の他に、Cuリッチ相が析出しやすい状態にステンレス鋼板を調整する圧延条件によっても制御できる。Cuリッチ相の析出に加え不動態皮膜又は基材最表層にCuが濃化していると、1Ω以下の一層低い表面接触電気抵抗が示される。
Cu-rich phase: 0.2% by volume or more The Cu-rich phase is uniformly dispersed in the matrix of the ferritic stainless steel plate, and is also dispersed on the steel plate surface at the same distribution ratio. As a result of investigating the relationship between the Cu-rich phase and the surface contact electrical resistance, when the Cu-rich phase is precipitated at a rate of 0.2% by volume or more, the surface contact electrical resistance comparable to that of the conventional Ni plating material is obtained. It was found that
By performing an aging treatment for about 1 hour or more at around 800 ° C. in the process up to the final annealing in the stainless steel plate production line, a Cu rich phase is precipitated. The amount of precipitation of the Cu-rich phase can be controlled not only by heat treatment conditions such as temperature and time, but also by rolling conditions that adjust the stainless steel sheet so that the Cu-rich phase is likely to precipitate. When Cu is concentrated on the passive film or the outermost surface layer of the substrate in addition to the precipitation of the Cu-rich phase, a lower surface contact electric resistance of 1Ω or less is exhibited.

Cu濃化層:Cu/(Si+Mn)≧0.5
基材の最表層又は不動態皮膜のCu濃度が上昇するほど、表面接触電気抵抗が低下する。従来のNiめっき材と同等の表面接触電気抵抗は、Si,Mnに対するCuの質量比Cu/(Si+Mn)が0.5以上となるCu濃化層の形成によって達成できる。
Cu濃化層の形成には、最終焼鈍として露点−30℃以下の雰囲気中でステンレス鋼板を光輝焼鈍する方法が採用される。焼鈍雰囲気の露点が低くなると酸化反応が抑制され、比電気抵抗の高い金属酸化物の増量が抑えられ、結果として金属Cu又はCuの酸化物が不動態皮膜又は最表層に濃化する。他方、露点が−30℃を超える焼鈍雰囲気では、Si,Mn等の酸化進行に応じて母材内部から表層へのSi,Mn等の拡散が促進され、比電気抵抗の高い金属酸化物を多量に含む不動態皮膜又は最表層が形成される。
Cu concentrated layer: Cu / (Si + Mn) ≧ 0.5
The surface contact electrical resistance decreases as the Cu concentration of the outermost layer of the substrate or the passive film increases. Surface contact electrical resistance equivalent to that of a conventional Ni plating material can be achieved by forming a Cu concentrated layer in which the mass ratio Cu / (Si + Mn) of Cu to Si and Mn is 0.5 or more.
For the formation of the Cu enriched layer, a method of bright annealing a stainless steel plate in an atmosphere having a dew point of −30 ° C. or lower is employed as the final annealing. When the dew point of the annealing atmosphere is lowered, the oxidation reaction is suppressed, and the increase of the metal oxide having a high specific electric resistance is suppressed. As a result, the metal Cu or Cu oxide is concentrated on the passive film or the outermost layer. On the other hand, in an annealing atmosphere with a dew point exceeding −30 ° C., diffusion of Si, Mn, etc. from the inside of the base material to the surface layer is promoted as the oxidation of Si, Mn, etc. proceeds, and a large amount of metal oxide with high specific electric resistance is produced. The passive film or outermost layer contained in is formed.

光輝焼鈍に代え、大気焼鈍,酸洗の組合せによっても必要なCu濃化層が形成される。ステンレス鋼板を大気焼鈍すると、Cr,Fe,Mn,Si,Cu等の酸化物を含むスケールが鋼板表面に形成されるが、酸洗によってスケールが除去された後で不動態皮膜が形成される。フッ酸−硝酸,硫酸−硝酸等の混酸を用いた酸洗では、ステンレス鋼板からCu,Cuリッチ相が優先的に溶出しないので、基材の最表層や酸洗後に生成した不動態皮膜が高Cu濃度に維持される。酸洗に使用する混酸は、酸の種類や濃度に特段の制約が加わるものではないが,一般的に濃度10体積%程度の硫酸,フッ酸と硝酸との混酸が好ましい。   Instead of bright annealing, a necessary Cu concentrated layer is formed by a combination of atmospheric annealing and pickling. When a stainless steel plate is annealed to the atmosphere, a scale containing oxides such as Cr, Fe, Mn, Si, and Cu is formed on the surface of the steel plate, but a passive film is formed after the scale is removed by pickling. In pickling using a mixed acid such as hydrofluoric acid-nitric acid or sulfuric acid-nitric acid, Cu and Cu-rich phases do not elute preferentially from the stainless steel plate. The Cu concentration is maintained. The mixed acid used for the pickling does not impose any particular restrictions on the type and concentration of the acid, but generally a mixed acid of sulfuric acid, hydrofluoric acid and nitric acid having a concentration of about 10% by volume is preferable.

Cuリッチ相が析出し及び/又はCu濃化層が生成したステンレス鋼板を電気めっきすることにより、膜厚:0.05〜0.7μmのNiめっき層をステンレス鋼表面に形成する。Cuリッチ相,Cu濃化層との共存による作用・効果は、膜厚0.05μm以上のNiめっき層でみられるが、0.7μmを超える厚膜ではステンレス鋼表面に対するNiめっき層の被覆率が高くなり、Cuリッチ相,Cu濃化層の作用が損なわれ、従来のNiめっき材と同程度まで特性が劣化する。
膜厚:0.05〜0.7μmのNiめっき層は、極短時間の電気フラッシュめっきで形成できる。たとえば、陰極電流効率:15〜25%の塩化ニッケル,塩酸からなる全塩化物浴を用い、浴温:25〜40℃,電流密度:0.2〜1.5kA/m2の条件下で通電時間を変化させることにより、必要厚みのNiめっき層が形成される。
By electroplating a stainless steel plate on which a Cu-rich phase has precipitated and / or a Cu enriched layer has been formed, a Ni plating layer having a thickness of 0.05 to 0.7 μm is formed on the stainless steel surface. The action and effect of coexistence with the Cu-rich phase and Cu-enriched layer can be seen in the Ni plating layer with a film thickness of 0.05 μm or more, but with a thick film over 0.7 μm, the Ni plating layer coverage on the stainless steel surface , The effects of the Cu rich phase and the Cu concentrated layer are impaired, and the characteristics are deteriorated to the same extent as those of the conventional Ni plating material.
A Ni plating layer having a thickness of 0.05 to 0.7 μm can be formed by an extremely short time electric flash plating. For example, using a total chloride bath composed of nickel chloride and hydrochloric acid with a cathode current efficiency of 15 to 25%, energizing under conditions of bath temperature: 25 to 40 ° C. and current density: 0.2 to 1.5 kA / m 2 By changing the time, a Ni plating layer having a required thickness is formed.

表1の組成をもつオーステナイト系ステンレス鋼A1,A2及びフェライト系ステンレス鋼F1,F2を基材に使用した。最終焼鈍に先立って各ステンレス鋼板に800℃×24時間の析出処理を施し、Cuリッチ相を析出させた。なお、Cuリッチ相の析出量は、最終焼鈍後のステンレス鋼板から採取された試験片を電解研磨し、透過型電子顕微鏡で金属組織を観察してマトリックスに析出しているCuリッチ相の割合から求めた。   Austenitic stainless steels A1 and A2 and ferritic stainless steels F1 and F2 having the composition shown in Table 1 were used as substrates. Prior to final annealing, each stainless steel plate was subjected to a precipitation treatment at 800 ° C. for 24 hours to precipitate a Cu-rich phase. The amount of precipitation of the Cu-rich phase is based on the ratio of the Cu-rich phase deposited on the matrix by electropolishing a specimen collected from the stainless steel plate after the final annealing and observing the metal structure with a transmission electron microscope. Asked.

Figure 0004522785
Figure 0004522785

各ステンレス鋼板を全塩化物浴に浸漬し、表2の条件下でNiフラッシュめっきした。比較のため、Cuリッチ相の析出がないSUS304,SUS430ステンレス鋼を同じ条件下でNiフラッシュめっきした。ステンレス鋼表面に形成されるNiめっき層の膜厚は、めっき時間によって0.02〜0.7μmの範囲で調整した。   Each stainless steel plate was immersed in a total chloride bath and Ni flash plated under the conditions shown in Table 2. For comparison, SUS304 and SUS430 stainless steel with no Cu-rich phase precipitation were Ni flash plated under the same conditions. The film thickness of the Ni plating layer formed on the stainless steel surface was adjusted in the range of 0.02 to 0.7 μm depending on the plating time.

Figure 0004522785
Figure 0004522785

Niめっき直後のステンレス鋼板に純金製の対極及び測定端子を接触させ、測定端子に100gの荷重を負荷した状態で表面接触抵抗(接触抵抗の初期値)を測定した。また、Niめっきしたステンレス鋼を60℃,93%RHの雰囲気に60日間放置した後、同じ条件下で表面接触抵抗(劣化試験後の接触抵抗)を測定した。
劣化試験後の接触抵抗は、表3の調査結果にみられるように、Cuリッチ相が析出しているステンレス鋼に膜厚:0.05〜0.7μmのNiめっき層を形成したものでは、初期値とほぼ同じ値であり、接触抵抗の上昇が抑えられていることが判る。
A pure gold counter electrode and a measurement terminal were brought into contact with the stainless steel plate immediately after Ni plating, and the surface contact resistance (initial value of contact resistance) was measured in a state where a load of 100 g was applied to the measurement terminal. Further, after Ni-plated stainless steel was left in an atmosphere of 60 ° C. and 93% RH for 60 days, surface contact resistance (contact resistance after deterioration test) was measured under the same conditions.
The contact resistance after the deterioration test, as seen in the investigation results in Table 3, was obtained by forming a Ni plating layer having a film thickness of 0.05 to 0.7 μm on the stainless steel on which the Cu-rich phase is precipitated. It is almost the same value as the initial value, and it can be seen that the increase in contact resistance is suppressed.

これに対し、Niめっき層が薄すぎる試験No.7,8では、劣化試験後の接触抵抗が大幅に上昇していた。Cuリッチ相の析出がないSUS304,SUS430ステンレス鋼を基材とした試験No.1〜6では、Niめっき層の膜厚が0.05〜0.7μmの範囲にあっても、劣化試験後の接触抵抗が大幅に上昇していた。
この対比から、Cuリッチ相が0.2体積%以上析出したステンレス鋼を基材とし、膜厚:0.05〜0.7μmのNiめっき層を形成することにより、湿潤雰囲気に曝されても接触抵抗の上昇が抑えられることが確認できる。
On the other hand, in the test Nos. 7 and 8 in which the Ni plating layer was too thin, the contact resistance after the deterioration test was significantly increased. In test Nos. 1 to 6 based on SUS304 and SUS430 stainless steel with no Cu-rich phase precipitation, even after the Ni plating layer was in the range of 0.05 to 0.7 μm, The contact resistance increased significantly.
From this contrast, even when exposed to a moist atmosphere by forming a Ni plating layer having a film thickness of 0.05 to 0.7 μm using stainless steel on which a Cu-rich phase is precipitated in an amount of 0.2% by volume or more as a base material. It can be confirmed that the increase in contact resistance is suppressed.

Cuリッチ相の析出に代え、Cu/(Si+Mn)の質量比:0.5以上のCu濃化層を形成した場合でも、同様に膜厚:0.05〜0.7μmのNiめっき層を形成することにより接触抵抗の上昇が抑えられた。実際、Cu/(Si+Mn)の質量比:0.7で表層にCuが濃化したステンレス鋼に膜厚:0.7μmのNiめっき層を形成した試料をGDS分析したところ、Cu濃化層とNiめっき層の共存状態が確認され(図2)、長期にわたって接触抵抗の上昇抑制に有効な表面状態であった。   Even when a Cu enriched layer having a Cu / (Si + Mn) mass ratio of 0.5 or more is formed in place of the precipitation of the Cu-rich phase, a Ni plating layer having a film thickness of 0.05 to 0.7 μm is similarly formed. As a result, the increase in contact resistance was suppressed. In fact, when a sample in which a Ni plating layer having a film thickness of 0.7 μm was formed on a stainless steel having a Cu / (Si + Mn) mass ratio of 0.7 and Cu concentrated on the surface layer was analyzed by GDS, The coexistence state of the Ni plating layer was confirmed (FIG. 2), and the surface state was effective for suppressing the increase in contact resistance over a long period of time.

Figure 0004522785
Figure 0004522785

劣化試験の経過日数ごとに接触抵抗を測定し、接触抵抗の変化を調査した。膜厚:0.05μmのNiめっき層を設けた鋼種F1のステンレス鋼は、劣化試験60日の後に0.011Ω程度まで接触抵抗が上昇したが、同じ鋼種F1であってもNiめっき層のない場合には接触抵抗の初期値が0.05Ω程度と高く、60日の劣化試験後には0.11Ω程度まで接触抵抗が上昇した(図3)。膜厚:0.3μmのNiめっき層を形成してもCuリッチ相の析出がないSUS430ステンレス鋼では、劣化試験の経過日数に応じて接触抵抗が上昇し、60日の劣化試験後には0.2Ω程度まで上昇した(図4)。   Contact resistance was measured for each elapsed day of the deterioration test, and changes in contact resistance were investigated. Film thickness: Stainless steel of type F1 provided with a 0.05 μm Ni plating layer increased in contact resistance to about 0.011Ω after 60 days of deterioration test, but there was no Ni plating layer even with the same steel type F1 In some cases, the initial value of the contact resistance was as high as about 0.05Ω, and the contact resistance increased to about 0.11Ω after the 60-day deterioration test (FIG. 3). Film thickness: In SUS430 stainless steel that does not precipitate Cu-rich phase even when a 0.3 μm Ni plating layer is formed, the contact resistance increases according to the elapsed days of the deterioration test, and after the 60-day deterioration test, the contact resistance increases. It rose to about 2Ω (Fig. 4).

更に、Niめっき直後及び劣化試験60日後の各ステンレス鋼に接触させる測定端子の荷重を変更し、荷重に応じた接触抵抗を測定した。図5の測定結果からも、Cuリッチ相が析出したステンレス鋼を基材とすることにより、劣化試験後にも接触抵抗が低位に安定維持されていることが判る。他方、Cuリッチ相の析出がないステンレス鋼を基材とする場合、劣化試験後の接触抵抗が大幅に上昇しており、しかも荷重によるバラツキが大きくなっていることから接触抵抗の不安定化が窺われる。   Furthermore, the load of the measurement terminal brought into contact with each stainless steel immediately after Ni plating and 60 days after the deterioration test was changed, and the contact resistance corresponding to the load was measured. Also from the measurement results of FIG. 5, it is found that the contact resistance is stably maintained at a low level even after the deterioration test by using the stainless steel on which the Cu-rich phase is precipitated as the base material. On the other hand, when the base material is stainless steel that does not precipitate Cu-rich phase, the contact resistance after the deterioration test is greatly increased, and the variation due to the load is large, so the contact resistance is unstable. Be redeemed.

以上に説明したように、本発明の接点材料は、Cuリッチ相が析出したステンレス鋼やCu濃化層が極表層にあるステンレス鋼を基材とし、膜厚:0.05〜0.7μmのNiめっき層を形成しているので、湿潤雰囲気においても長期にわたり低接触抵抗を維持する。しかも、耐食性,強度に優れたステンレス鋼を基材としているので、信頼性の高い電気・電子機器用接点材料として使用される。   As described above, the contact material of the present invention is based on stainless steel with a Cu-rich phase precipitated or stainless steel with a Cu concentrated layer on the extreme surface layer, and has a film thickness of 0.05 to 0.7 μm. Since the Ni plating layer is formed, the low contact resistance is maintained for a long time even in a humid atmosphere. Moreover, since the base material is stainless steel having excellent corrosion resistance and strength, it is used as a highly reliable contact material for electrical and electronic equipment.

Cuリッチ相,極薄のNiめっき層が共存することにより低接触抵抗が維持されることを説明する模式図Schematic diagram explaining that low contact resistance is maintained by coexistence of Cu-rich phase and ultra-thin Ni plating layer ステンレス鋼表面にCu濃化層,Niめっき層が共存していることを示すグラフGraph showing that Cu concentrated layer and Ni plating layer coexist on stainless steel surface Cuリッチ相が析出したフェライト系ステンレス鋼の接触抵抗の変化をNiめっき層の有無で比較したグラフGraph comparing the change in contact resistance of ferritic stainless steel with deposited Cu-rich phase with and without Ni plating layer Niめっきしたフェライト系ステンレス鋼の接触抵抗の変化をCuリッチ相の有無で比較したグラフGraph comparing the change in contact resistance of Ni-plated ferritic stainless steel with and without Cu-rich phase 接触抵抗の測定結果を鋼種,Niめっき層の膜厚ごとに対比した図表Chart comparing contact resistance measurement results for each steel grade and Ni plating layer thickness

符号の説明Explanation of symbols

1:ステンレス鋼 2:Cuリッチ相(Cuを主体とする第二相) 3:Niめっき層 1: Stainless steel 2: Cu rich phase (second phase mainly composed of Cu) 3: Ni plating layer

Claims (2)

Cu:1.0質量%以上,Cr:9質量%以上を含み、Cuを主体とする第二相:0.2体積%以上の割合でマトリックスに分散したステンレス鋼を基材とし、膜厚:0.05〜0.7μmのNiめっき層基材表面に形成することにより、前記第二相がNiめっき層と共にステンレス鋼表面に共存する状態としたことを特徴とするステンレス鋼製接点材料。 Cu: 1.0% by mass or more, Cr: 9% by mass or more, second phase mainly composed of Cu: stainless steel dispersed in a matrix at a ratio of 0.2% by volume or more, and a film thickness: A stainless steel contact material characterized in that a Ni plating layer of 0.05 to 0.7 μm is formed on the surface of the base material so that the second phase coexists with the surface of the stainless steel together with the Ni plating layer . Cu:1.0質量%以上,Cr:9質量%以上,Ni:6質量%以上を含むステンレス鋼を基材とし、基材の最表層がCu/(Si+Mn)の質量比が0.5以上のCu濃化層になっており、膜厚:0.05〜0.7μmのNiめっき層基材表面に形成することにより、前記Cu濃化層がNiめっき層と共にステンレス鋼表面に共存する状態としたことを特徴とするステンレス鋼製接点材料。 The base material is a stainless steel containing Cu: 1.0% by mass or more, Cr: 9% by mass or more, Ni: 6% by mass or more, and the outermost layer of the base material has a mass ratio of Cu / (Si + Mn) of 0.5 or more. By forming a Ni plating layer having a film thickness of 0.05 to 0.7 μm on the substrate surface, the Cu concentration layer coexists on the stainless steel surface together with the Ni plating layer. Stainless steel contact material characterized by being in a state .
JP2004235075A 2004-08-12 2004-08-12 Stainless steel contact material Active JP4522785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004235075A JP4522785B2 (en) 2004-08-12 2004-08-12 Stainless steel contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004235075A JP4522785B2 (en) 2004-08-12 2004-08-12 Stainless steel contact material

Publications (2)

Publication Number Publication Date
JP2006054110A JP2006054110A (en) 2006-02-23
JP4522785B2 true JP4522785B2 (en) 2010-08-11

Family

ID=36031448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004235075A Active JP4522785B2 (en) 2004-08-12 2004-08-12 Stainless steel contact material

Country Status (1)

Country Link
JP (1) JP4522785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722294A (en) * 2013-11-29 2014-04-16 西安理工大学 Copper-chromium alloy and stainless steel connecting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342315B2 (en) * 2009-04-24 2013-11-13 パナソニック株式会社 Electric connection terminal device for signal and manufacturing method thereof
JP5772486B2 (en) * 2011-10-18 2015-09-02 新日鐵住金株式会社 Stainless steel and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137193A (en) * 1986-11-28 1988-06-09 Nisshin Steel Co Ltd Stainless steel contact material for electronic parts and its production
JPH01136989A (en) * 1987-11-24 1989-05-30 Nippon Steel Corp Surface treatment of stainless steel sheet
JP2002042547A (en) * 2000-07-25 2002-02-08 Nisshin Steel Co Ltd Stainless steel electric contact member having low surface contact resistance and good solderability
JP2003203534A (en) * 2001-09-20 2003-07-18 Nisshin Steel Co Ltd Stainless steel contact
JP2004043896A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Terminal for electric wiring made of stainless steel
JP2004300489A (en) * 2003-03-31 2004-10-28 Nisshin Steel Co Ltd Electric contact made of stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137193A (en) * 1986-11-28 1988-06-09 Nisshin Steel Co Ltd Stainless steel contact material for electronic parts and its production
JPH01136989A (en) * 1987-11-24 1989-05-30 Nippon Steel Corp Surface treatment of stainless steel sheet
JP2002042547A (en) * 2000-07-25 2002-02-08 Nisshin Steel Co Ltd Stainless steel electric contact member having low surface contact resistance and good solderability
JP2003203534A (en) * 2001-09-20 2003-07-18 Nisshin Steel Co Ltd Stainless steel contact
JP2004043896A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Terminal for electric wiring made of stainless steel
JP2004300489A (en) * 2003-03-31 2004-10-28 Nisshin Steel Co Ltd Electric contact made of stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722294A (en) * 2013-11-29 2014-04-16 西安理工大学 Copper-chromium alloy and stainless steel connecting method
CN103722294B (en) * 2013-11-29 2016-01-27 西安理工大学 A kind of chromiumcopper and stainless method of attachment

Also Published As

Publication number Publication date
JP2006054110A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4091425B2 (en) Surface treatment method for stainless steel for fuel cells
JP6324085B2 (en) Precious metal-coated plate material for electrical contacts and method for producing the same
JP5377613B2 (en) Stainless steel plate for conductive members with excellent surface electrical conductivity
JP2018534416A (en) Stainless steel for fuel cell separator and manufacturing method thereof
JP2008285731A (en) Stainless steel sheet having excellent surface electrical conductivity, and method for producing the same
JP7443737B2 (en) Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof
JP2017534756A (en) Bipolar fuel cell plate
CN109338151A (en) A kind of electronic electric equipment copper alloy and purposes
JP4522785B2 (en) Stainless steel contact material
JP4485387B2 (en) Organic coated stainless steel sheet with low surface electrical resistance
JP3530181B1 (en) Composite wire for wire harness and manufacturing method thereof
JP5772486B2 (en) Stainless steel and its manufacturing method
JP4247256B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP2011236499A (en) Stainless steel and method of manufacturing the same
CN114867879A (en) Ferritic stainless steel material and method for producing same
JP4201540B2 (en) Stainless steel electrical wiring terminals
JP6104011B2 (en) Stainless steel plate with low contact resistance
JP4368985B2 (en) Stainless steel sheet with low contact resistance and method for producing the same
JPS6338547A (en) High strength conductive copper alloy
JP2005310513A (en) Electrical wiring terminal made of stainless steel
CN114729433B (en) Austenitic stainless steel and spring
TWI813701B (en) Austenitic stainless steel excellent in elecctric conductivity and method of manufacturing the same
WO2023167230A1 (en) Copper alloy material and method for manufacturing copper alloy material
JP2001234296A (en) Stainless steel sheet for battery case, and its manufacturing method
JP2023152866A (en) Fe-Cr ALLOY, METHOD OF MANUFACTURING Fe-Cr ALLOY, INTERMEDIATE PRODUCT OF Fe-Cr ALLOY, AND METHOD OF MANUFACTURING INTERMEDIATE PRODUCT OF Fe-Cr ALLOY

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4522785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350