JP2004300010A - Polymer concrete composition - Google Patents

Polymer concrete composition Download PDF

Info

Publication number
JP2004300010A
JP2004300010A JP2003098300A JP2003098300A JP2004300010A JP 2004300010 A JP2004300010 A JP 2004300010A JP 2003098300 A JP2003098300 A JP 2003098300A JP 2003098300 A JP2003098300 A JP 2003098300A JP 2004300010 A JP2004300010 A JP 2004300010A
Authority
JP
Japan
Prior art keywords
polymer concrete
binder
aggregate
concrete composition
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098300A
Other languages
Japanese (ja)
Other versions
JP4554165B2 (en
Inventor
Yoshimitsu Ina
由光 伊奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2003098300A priority Critical patent/JP4554165B2/en
Publication of JP2004300010A publication Critical patent/JP2004300010A/en
Application granted granted Critical
Publication of JP4554165B2 publication Critical patent/JP4554165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer concrete composition which has excellent packing properties. <P>SOLUTION: The polymer concrete composition contains: (A) a binder containing a hardenable resin and a hardener, and whose viscosity at 25°C is 100 to 700 mPa×s; (B) a particulate filler having a circularity of 0.80 to 1.0 and a mean particle diameter of 5 to 50 μm; and (C) aggregate in which the weight fraction of the particles with a particle diameter of ≤45 μm is ≤5%, by specific ratios, respectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマーコンクリート組成物、該組成物から得られる成形体、及び成形体の製造方法に関する。
【0002】
【従来の技術】
ポリマーコンクリートは、セメントを使用せずに、ポリマーからなる結合剤、微粒子無機充填材、骨材を含有するものであり、かかるポリマーコンクリートから得られた成形体は、その優れた強靭性、化学的安定性、防振性等の特性から、各種機械部品、工作機械部品などに利用されている。
【0003】
しかし、ポリマーコンクリートでは、通常、結合剤に対して比較的多量の骨材が配合されることから(特許文献1〜3)、成型時の型への充填性が悪く、強靭性や防振性、外観が不十分となる。
【0004】
そのため、流動性付与剤の添加などの技術が提案され(特許文献4)、ある程度の効果を得ているが、さらなる改善が望まれている。
【0005】
【特許文献1】
特開昭55−160056号公報
【特許文献2】
特開昭61−183159号公報
【特許文献3】
特開昭61−158854号公報
【特許文献4】
特開平7−101762号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、充填性に優れたポリマーコンクリート組成物を提供することである。
【0007】
【課題を解決するための手段】
本発明は、硬化性樹脂と硬化剤を含有する25℃における粘度が100〜700mPa・sの結合剤(A)と、円形度0.80〜1.0で平均粒径5〜50μmの微粒子充填材(B)と、粒径45μm以下の粒子の重量分率が5%以下である骨材(C)とを含有し、結合剤(A)、微粒子充填材(B)、骨材(C)の重量比率が、(A)/(B)/(C)=5〜20/5〜30/90〜50である、ポリマーコンクリート組成物に関する。
【0008】
また、本発明は、上記本発明のポリマーコンクリート組成物を硬化して得られるポリマーコンクリート成形体に関する。
【0009】
また、本発明は、硬化性樹脂と円形度0.80〜1.0で平均粒径5〜50μmの微粒子充填材(B)とを混合後、粒径45μm以下の粒子の重量分率が5%以下である骨材(C)を混合する工程を有するポリマーコンクリート成形体の製造方法であって、前記硬化性樹脂とその硬化剤とを含有する結合剤(A)の25℃における粘度が100〜700mPa・sであるポリマーコンクリート成形体の製造方法に関する。
【0010】
本発明者等は、比較的多量の骨材が互いに接触し緊密に充填された状態となるポリマーコンクリート組成物では、結合剤がその微細な隙間に充填される際の充填抵抗が充填性や流動性の低下の主原因であることを見いだし、その充填抵抗を極力低下させる方法について検討した。
【0011】
その結果、結合剤の粘度が適正である必要があることを見いだした。すなわち、結合剤の粘度が高すぎると充填抵抗が増加し、一方、低すぎると微粒子充填材の沈降等により不均一化したり、低分子量品であることから硬化に時間がかかる。一般には、結合剤と微粒子充填材の配合物の粘度が重要であると考えられるが、予期に反し、充填性との相関は見いだされなかった。これは、充填時、振動を加えるため、2次凝集構造が壊れるためと思われる。
【0012】
また、更に、微粒子充填材の形状が重要であることを見いだした。すなわち、微粒子充填材の円形度は、粒子形状が円に近いものほど微細空間を移動しやすく、骨材間の空隙への充填性がよい。また、充填時、コロの作用により骨材が最密充填構造に移行し易い。ただし、微粒子充填材の平均粒径が大きすぎると充填抵抗が増加し、小さすぎると結合剤との混合が困難かつ増粘につながり、取扱困難となる。また、表面積の増加による結合剤との密着不良による成形体の強靭性低下も生じる。
【0013】
また、更に、骨材中の微粒子分は、表面積が大きいため、結合剤と濡れ性が悪く、大きな充填抵抗となることが判明した。微粒子充填材は微粒子分が多いとはいえ、前もって結合剤と混合できるため影響は小さいと考えられるが、ポリマーコンクリート組成物の施工現場の実態からは、骨材を前もって結合剤と混合することは困難であり、骨材中の微粒子分の比率は重要なポイントとなる。
【0014】
このような観点から、本発明では、ポリマーコンクリート組成物に配合される結合剤、微粒子充填材及び骨材について、それぞれの適正な物性を検討し、具体的に上記の範囲とすることで、優れた充填性を有するポリマーコンクリート組成物を得たものである。以下、本発明の各成分について詳述する。
【0015】
【発明の実施の形態】
結合剤(A)は、硬化性樹脂、硬化剤、要すれば希釈剤などを含有するものであり、本発明のポリマーコンクリート組成物中の固形物を除いた液状組成物である。
【0016】
硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル、不飽和ウレタン樹脂、メタクリル酸エステル樹脂、ポリオールとポリイソシアネートからなるポリウレタン樹脂などがあげられ、硬化性、骨材との密着性の観点からエポキシ樹脂が好ましい。かかる硬化性樹脂は、市販品を適宜使用することができる。
【0017】
エポキシ樹脂としては、ビスフェノールA、ビスフェノールFの如きジフェノール類のジグリシジルエーテルや、前記ジフェノール類とエピクロルヒドリン等の初期縮合物が挙げられ、好ましくは、ビスフェノールA系エポキシ樹脂である。
【0018】
エポキシ樹脂の硬化剤としては、m−キシリレンジアミン、2,3,5−トリ(ジメチルアミノメチル)フェノール等の芳香族ポリアミン、ジエチルアミノプロピルアミン、ジエチレントリアミンなどの脂肪族ポリアミンが挙げられる。かかるポリアミン等を含有する市販硬化剤を適宜用いればよい。硬化剤は、硬化性樹脂100重量部に対して10〜100重量部、好ましくは30〜70重量部の比率で用いられることが好ましい。
【0019】
また、結合剤(A)に使用できる希釈剤としては、芳香族系モノエポキシ化合物、例えばクレゾールグリシジルエーテルなどが硬化物の強度の向上にも繋がり好ましい。添加量は硬化性樹脂100重量部に対し、30重量部以下が好ましい。
【0020】
結合剤(A)は、25℃における粘度が100〜700mPa・s、好ましくは200〜500mPa・s、より好ましくは300〜500mPa・sである。結合剤の粘度は、硬化性樹脂の分子量や希釈剤の配合量などで調整できる。
【0021】
微粒子充填材(B)は、無機充填材が好ましく、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、アルミナ、ムライト、炭化ケイ素、窒化ケイ素、シリカ、ガラス、フライアッシュ等があげられ、これらのうち円形度の高い充填材、具体的には溶融シリカ、ガラスビーズ、フライアッシュが特に好ましい。これらの混合物を使用してもよい。
【0022】
微粒子充填材(B)の円形度は0.80〜1.0であり、充填性の観点から、好ましくは0.90〜1.0、より好ましくは0.95〜0.98である。円形度は、微粒子を研磨や加熱溶融処理、好ましくは加熱溶融処理により調整できる。また、微粒子の表面をシランカッブリング剤などで処理してもよい。
【0023】
円形度は、粒子を走査型電子顕微鏡にて撮影し各粒子の粒子投影図について投影面積と輪郭の長さ(周長)を測定し次式で算出する。
【0024】
円形度=(粒子の投影面積と同じ面積を有する円の周長)/(粒子投影図の輪郭の長さ)
【0025】
また、微粒子充填材(B)の平均粒径は5〜50μmであり、充填性の観点から、好ましくは10〜30μm、より好ましくは10〜25μmである。ここで、粒径は、粒子の長軸長と短軸長の相加平均、すなわち(長軸長+短軸長)/2である(以下同様)。
【0026】
骨材(C)は、砂、砂利、大理石や花崗岩等の天然石、硝子片などが挙げられ、製品に求められる性質(高剛性、低熱膨張率、低コストなど)に応じ選択すればよいが、充填性の点から、大理石、花崗岩が好ましい。また、骨材(C)の形状は、接触骨材が咬合し強度保持の観点より多角形が好ましく、破砕品が好ましい。
【0027】
また、骨材(C)は、充填性の点から、粒径45μm以下の粒子の重量分率が5%以下である。粒径の調整の容易さを加味すれば、当該粒子の重量分率は、1〜5%、特には2〜4%が好ましい。粒径分布の測定は、目開き45μmのJIS標準フルイで行う。骨材(C)中の微粒子分の調整は、前もって篩処理などにより行えばよい。また、骨材(C)の平均粒径は製品の壁厚に応じて適宜決定すればよいが、1〜30mmが好ましく、また最大粒子径は、壁厚の1/2以下が好ましい。
【0028】
本発明において、結合剤(A)、微粒子充填材(B)、骨材(C)の重量比率は、(A)/(B)/(C)=5〜20/5〜30/90〜50、好ましくは5〜15/5〜20/85〜70である。この重量比率では、(A)+(B)+(C)が100となることが好ましい。
【0029】
本発明のポリマーコンクリート組成物には、強度の改善のために繊維、着色剤、流動性向上剤などが添加されていてもよい。
【0030】
本発明のポリマーコンクリート組成物から成形体を製造するには、まず、微粒子充填材(B)を硬化性樹脂、要すれば希釈剤と混合後、骨材(C)と混合する。尚、硬化剤は、本発明の製造方法の何れの工程において添加してもよく、具体的には、(i)硬化性樹脂に予め添加する、(ii)硬化性樹脂と無機充填材(B)の混合時又は混合後に添加する、(iii)硬化性樹脂と微粒子充填材(B)と骨材(C)との混合時又は混合後に添加する、(iv)これらの組み合わせにより添加する等を採用することができるが、硬化性樹脂の安定性の観点からは、当該樹脂と微粒子充填材(B)を十分に混合した後に添加するのが好ましい。すなわち、本発明の製造方法は、硬化性樹脂と微粒子充填材(B)の混合物に硬化剤を添加する工程を有することが好ましい。
【0031】
このようにして得られたポリマーコンクリート組成物を、離型剤を塗布した鉄板、アルミ板、木型、合成樹脂型等の型枠内に充填する。その際、型を激しく振動させることが好ましく、具体的には、0.5〜5mmの振動を360〜3600回/分与えることが好ましい。その間、全体を減圧にすることが出来れば、脱泡が進み、表面平滑性が向上し、より好ましい。
【0032】
【発明の効果】
本発明によれば、充填性に優れたポリマーコンクリート組成物が提供される。本発明のポリマーコンクリート組成物から得られた成形体は、強靭性、化学的安定性、防振性等に優れており、各種機械部品、工作機械部品などとして極めて有用である。
【0033】
【実施例】
実施例1〜5及び比較例1〜4
表1の硬化性樹脂と希釈剤(クレゾールグリシジルエーテル)の混合物に、表1の微粒子充填材を添加混合した後、硬化剤(変性脂肪族ポリアミン等からなる混合物、アミン価440mgKOH/g、粘度100mPa・s/25℃)を表1記載の比率で混合し、最後に骨材として花崗岩破砕物(平均粒径10mm以下)を添加し、ポリマーコンクリート組成物を100g調製した。この組成物を、振動(2mmの振動を2000回/分)をかけながら直径60mmの円筒状の型に充填しその充填性を評価した。充填性は、骨材と結合剤間に隙間が見られず且つ表面が非常にきれいであるものを「◎」、骨材と結合剤間に隙間は見られないが、表面がやや粗いものを「○」、骨材と結合剤間にやや隙間が見られるものを「△」、骨材と結合剤間に多くの隙間が見られるものを「×」とした。結果を表1に示す。
【0034】
また、表1中の結合剤の粘度は、25℃において株式会社東京計器B型粘度計(形式BM型:ローターNo.3で1分後の値を原則とし、目盛りが10〜90を外れる場合はローターを変更)を用いて測定したものである。
【0035】
【表1】

Figure 2004300010
【0036】
(注)表中の記号は以下の意味である。
・樹脂A:ビスフェノールA系エポキシ樹脂(エポキシ当量190g/eq、粘度12200mPa・s/25℃)
・樹脂B:ビスフェノールF系エポキシ樹脂(エポキシ当量170g/eq、粘度3500mPa・s/25℃)
・樹脂C:ビスフェノールF系エポキシ樹脂(分子蒸留品、エポキシ当量160g/eq、粘度1200mPa・s/25℃)
【0037】
実施例1〜5では、いずれも型内に隙間なく充填でき、優れた充填性が得られた。また、平均粒径が同等でも微粒子充填材の形状が丸味を帯びるものほど良好な充填性を示すことがわかる。
【0038】
一方、比較例1のように、角張った形状のシリカ破砕品を用いた場合は、型内の隙間を完全に埋めることはできず、充填性が著しく悪くなる。また、球状の微粒子充填材を用いても、比較例2に示すようにその粒径が大きいと、この結合剤量においては型内の隙間を完全に埋めることはできず、優れた充填性を得ることはできなかった。比較例3及び4では比較例1、2に比べれば多少充填性は向上するが、比較例3では、脱泡が困難で、また、比較例4では、充填途中で混合物が粘度の高い団子状となり、型内の隙間を埋めるために長い時間振動を与える必要があった。
【0039】
実施例6及び比較例5
結合剤(A)、微粒子充填材(B)及び骨材(C)の種類と重量比を表2のように変更し、実施例1等と同様の方法でポリマーコンクリート組成物を調製し、その充填性を実施例1と同様に評価した。結果を表2に示す。
【0040】
【表2】
Figure 2004300010
【0041】
実施例6と比較例5では、微粒子充填材含量を高めたため、結合剤と微粒子充填材の配合物の粘度は大きく上昇したが、結果は実施例2と比較例1の関係と同様であった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer concrete composition, a molded article obtained from the composition, and a method for producing a molded article.
[0002]
[Prior art]
Polymer concrete does not use cement, but contains a binder made of a polymer, a fine particle inorganic filler, and an aggregate.A molded article obtained from such polymer concrete has excellent toughness, It is used for various machine parts, machine tool parts, etc. due to its characteristics such as stability and vibration proof.
[0003]
However, in polymer concrete, since a relatively large amount of aggregate is usually mixed with a binder (Patent Documents 1 to 3), the filling property in a mold at the time of molding is poor, and the toughness and vibration damping property are poor. , Appearance becomes insufficient.
[0004]
Therefore, techniques such as addition of a fluidity-imparting agent have been proposed (Patent Document 4), and some effects have been obtained, but further improvements are desired.
[0005]
[Patent Document 1]
JP-A-55-160056 [Patent Document 2]
JP-A-61-183159 [Patent Document 3]
JP-A-61-158854 [Patent Document 4]
JP-A-7-101762
[Problems to be solved by the invention]
An object of the present invention is to provide a polymer concrete composition having excellent filling properties.
[0007]
[Means for Solving the Problems]
The present invention relates to a binder (A) containing a curable resin and a curing agent and having a viscosity of 100 to 700 mPa · s at 25 ° C., and a fine particle filling having a circularity of 0.80 to 1.0 and an average particle size of 5 to 50 μm. A binder (A), a fine particle filler (B), and an aggregate (C) containing a material (B) and an aggregate (C) in which the weight fraction of particles having a particle size of 45 μm or less is 5% or less. Is a polymer concrete composition having a weight ratio of (A) / (B) / (C) = 5-20 / 5-30 / 90-50.
[0008]
The present invention also relates to a polymer concrete molded product obtained by curing the polymer concrete composition of the present invention.
[0009]
Further, according to the present invention, after the curable resin is mixed with the fine particle filler (B) having a circularity of 0.80 to 1.0 and an average particle size of 5 to 50 μm, the weight fraction of the particles having a particle size of 45 μm or less is 5%. % Of a binder (A) containing the curable resin and the curing agent, the method comprising a step of mixing the aggregate (C) having a viscosity of not more than 100%. The present invention relates to a method for producing a polymer concrete molded product having a pressure of 700 mPa · s.
[0010]
The present inventors have found that, in a polymer concrete composition in which a relatively large amount of aggregate comes into contact with each other and is in a tightly packed state, the filling resistance when the binder is filled into the fine gaps indicates the filling property and the flowability. It was found that this was the main cause of the decrease in the filling property, and a method for reducing the filling resistance as much as possible was examined.
[0011]
As a result, it has been found that the viscosity of the binder needs to be proper. That is, if the viscosity of the binder is too high, the filling resistance increases. On the other hand, if the viscosity is too low, the binder becomes uneven due to sedimentation of the fine particle filler and the like, and it takes a long time to cure because of a low molecular weight product. It is generally believed that the viscosity of the blend of binder and particulate filler is important, but unexpectedly, no correlation with fillability was found. This is presumably because vibration is applied during the filling to break the secondary aggregated structure.
[0012]
Further, they have found that the shape of the fine particle filler is important. That is, the degree of circularity of the fine particle filler is such that the closer the particle shape is to a circle, the easier it is to move in a fine space, and the better the filling of the voids between the aggregates. Further, at the time of filling, the aggregate easily moves to the close-packed structure by the action of the rollers. However, if the average particle size of the fine particle filler is too large, the filling resistance increases, and if the average particle size is too small, mixing with the binder is difficult and leads to thickening, which makes handling difficult. In addition, the toughness of the molded article is reduced due to poor adhesion to the binder due to an increase in surface area.
[0013]
Further, it has been found that the fine particles in the aggregate have a large surface area, so that they have poor wettability with the binder and have high filling resistance. Although the fine particle filler has a large amount of fine particles, it is considered that the effect is small because it can be mixed with the binder in advance, but from the actual situation of the construction site of the polymer concrete composition, it is not possible to mix the aggregate with the binder in advance. It is difficult, and the ratio of fine particles in the aggregate is an important point.
[0014]
From this point of view, in the present invention, the appropriate physical properties of the binder, the fine particle filler, and the aggregate to be blended in the polymer concrete composition are examined, and by specifically setting the above range, it is excellent. Thus, a polymer concrete composition having a filling property was obtained. Hereinafter, each component of the present invention will be described in detail.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The binder (A) contains a curable resin, a curing agent, and, if necessary, a diluent, and is a liquid composition excluding solids in the polymer concrete composition of the present invention.
[0016]
Examples of the curable resin include an epoxy resin, an unsaturated polyester, an unsaturated urethane resin, a methacrylate resin, and a polyurethane resin composed of a polyol and a polyisocyanate. Is preferred. As such a curable resin, a commercially available product can be appropriately used.
[0017]
Examples of the epoxy resin include diglycidyl ethers of diphenols such as bisphenol A and bisphenol F, and initial condensates of the diphenols and epichlorohydrin, and are preferably bisphenol A epoxy resins.
[0018]
Examples of the curing agent for the epoxy resin include aromatic polyamines such as m-xylylenediamine and 2,3,5-tri (dimethylaminomethyl) phenol, and aliphatic polyamines such as diethylaminopropylamine and diethylenetriamine. A commercially available curing agent containing such a polyamine or the like may be appropriately used. The curing agent is preferably used in a ratio of 10 to 100 parts by weight, preferably 30 to 70 parts by weight, based on 100 parts by weight of the curable resin.
[0019]
As a diluent that can be used for the binder (A), an aromatic monoepoxy compound, for example, cresol glycidyl ether, is also preferable because it also leads to an improvement in the strength of the cured product. The addition amount is preferably 30 parts by weight or less based on 100 parts by weight of the curable resin.
[0020]
The binder (A) has a viscosity at 25 ° C. of 100 to 700 mPa · s, preferably 200 to 500 mPa · s, more preferably 300 to 500 mPa · s. The viscosity of the binder can be adjusted by adjusting the molecular weight of the curable resin and the amount of the diluent.
[0021]
The fine particle filler (B) is preferably an inorganic filler, and examples thereof include calcium carbonate, magnesium carbonate, aluminum hydroxide, alumina, mullite, silicon carbide, silicon nitride, silica, glass, and fly ash. Particularly, fillers having a high content, specifically, fused silica, glass beads, and fly ash are particularly preferable. These mixtures may be used.
[0022]
The degree of circularity of the fine particle filler (B) is 0.80 to 1.0, and preferably 0.90 to 1.0, more preferably 0.95 to 0.98, from the viewpoint of filling properties. The circularity can be adjusted by polishing or heating and melting the fine particles, preferably by heating and melting. Further, the surface of the fine particles may be treated with a silane coupling agent or the like.
[0023]
The degree of circularity is calculated by the following equation by taking an image of the particles with a scanning electron microscope, measuring the projection area and the length of the contour (perimeter) of the particle projection view of each particle.
[0024]
Circularity = (perimeter of a circle having the same area as the projected area of a particle) / (length of contour of particle projected view)
[0025]
The average particle size of the fine particle filler (B) is 5 to 50 μm, and preferably 10 to 30 μm, more preferably 10 to 25 μm from the viewpoint of filling properties. Here, the particle size is an arithmetic mean of the major axis length and the minor axis length of the particles, that is, (major axis length + minor axis length) / 2 (the same applies hereinafter).
[0026]
The aggregate (C) includes sand, gravel, natural stones such as marble and granite, glass fragments, and the like, and may be selected according to the properties (high rigidity, low coefficient of thermal expansion, low cost, etc.) required for the product. From the viewpoint of filling properties, marble and granite are preferred. Further, the shape of the aggregate (C) is preferably polygonal from the viewpoint of contact strength with the bite of the contact aggregate, and strength retention, and a crushed product is preferable.
[0027]
In the aggregate (C), the weight fraction of particles having a particle size of 45 μm or less is 5% or less from the viewpoint of filling properties. Taking into account the ease of adjusting the particle size, the weight fraction of the particles is preferably 1 to 5%, particularly preferably 2 to 4%. The particle size distribution is measured using a JIS standard sieve having a mesh size of 45 μm. The fine particles in the aggregate (C) may be adjusted by sieving or the like in advance. The average particle size of the aggregate (C) may be appropriately determined according to the wall thickness of the product, but is preferably 1 to 30 mm, and the maximum particle size is preferably 以下 or less of the wall thickness.
[0028]
In the present invention, the weight ratio of the binder (A), the particulate filler (B), and the aggregate (C) is (A) / (B) / (C) = 5-20 / 5-30 / 90-50. And preferably 5 to 15/5 to 20/85 to 70. In this weight ratio, (A) + (B) + (C) is preferably 100.
[0029]
The polymer concrete composition of the present invention may contain a fiber, a colorant, a fluidity improver and the like for improving the strength.
[0030]
In order to produce a molded article from the polymer concrete composition of the present invention, first, the fine particle filler (B) is mixed with a curable resin, if necessary, a diluent, and then mixed with the aggregate (C). The curing agent may be added in any step of the production method of the present invention. Specifically, (i) the curing resin and the inorganic filler (B) are added in advance to the curing resin. ) Is added at or after mixing, (iii) is added at or after mixing the curable resin, the fine particle filler (B) and the aggregate (C), (iv) is added by a combination thereof, and the like. From the viewpoint of stability of the curable resin, it is preferable to add the resin after sufficiently mixing the resin and the fine particle filler (B). That is, the production method of the present invention preferably includes a step of adding a curing agent to a mixture of the curable resin and the fine particle filler (B).
[0031]
The polymer concrete composition thus obtained is filled into a mold such as an iron plate, an aluminum plate, a wooden mold, or a synthetic resin mold coated with a release agent. At this time, it is preferable to vibrate the mold violently, and specifically, it is preferable to apply 0.5 to 5 mm of vibration to 360 to 3600 times / min. In the meantime, if the whole can be reduced in pressure, defoaming proceeds and surface smoothness is improved, which is more preferable.
[0032]
【The invention's effect】
According to the present invention, a polymer concrete composition having excellent filling properties is provided. The molded product obtained from the polymer concrete composition of the present invention is excellent in toughness, chemical stability, vibration damping properties and the like, and is extremely useful as various machine parts, machine tool parts and the like.
[0033]
【Example】
Examples 1 to 5 and Comparative Examples 1 to 4
After adding and mixing the fine particle filler of Table 1 to the mixture of the curable resin of Table 1 and the diluent (cresol glycidyl ether), a mixture of a curing agent (modified aliphatic polyamine, etc.), an amine value of 440 mgKOH / g, and a viscosity of 100 mPa S / 25 ° C.) in the ratio shown in Table 1, and finally, crushed granite (average particle size of 10 mm or less) was added as an aggregate to prepare 100 g of a polymer concrete composition. The composition was filled in a cylindrical mold having a diameter of 60 mm while applying vibration (2000 mm / minute of 2 mm vibration), and the filling property was evaluated. For the filling property, "◎" indicates that there is no gap between the aggregate and the binder and the surface is very clean, and "G" indicates that there is no gap between the aggregate and the binder but the surface is slightly rough. “○”, “も の” indicates a slight gap between the aggregate and the binder, and “×” indicates a large gap between the aggregate and the binder. Table 1 shows the results.
[0034]
In addition, the viscosity of the binder in Table 1 is a value measured at 25 ° C. by Tokyo Keiki B-type viscometer (type BM: rotor No. 3 after 1 minute in principle, when the scale is out of 10 to 90). Is measured using a modified rotor.
[0035]
[Table 1]
Figure 2004300010
[0036]
(Note) The symbols in the table have the following meanings.
-Resin A: bisphenol A epoxy resin (epoxy equivalent 190 g / eq, viscosity 12200 mPa-s / 25 ° C)
-Resin B: bisphenol F-based epoxy resin (epoxy equivalent 170 g / eq, viscosity 3500 mPa · s / 25 ° C)
-Resin C: bisphenol F-based epoxy resin (molecular distilled product, epoxy equivalent: 160 g / eq, viscosity: 1200 mPa · s / 25 ° C)
[0037]
In Examples 1 to 5, all of the molds could be filled without gaps, and excellent filling properties were obtained. In addition, even if the average particle diameters are the same, it can be seen that the more round the shape of the fine particle filler, the better the filling property.
[0038]
On the other hand, when a crushed silica product having a square shape is used as in Comparative Example 1, the gap in the mold cannot be completely filled, and the filling property is significantly deteriorated. Further, even if a spherical fine particle filler is used, if the particle size is large as shown in Comparative Example 2, the gap in the mold cannot be completely filled with this amount of the binder, and excellent filling properties are obtained. I couldn't get it. In Comparative Examples 3 and 4, the filling property is slightly improved as compared with Comparative Examples 1 and 2, but in Comparative Example 3, defoaming is difficult. Therefore, it was necessary to apply vibration for a long time to fill the gap in the mold.
[0039]
Example 6 and Comparative Example 5
The types and weight ratios of the binder (A), the particulate filler (B) and the aggregate (C) were changed as shown in Table 2, and a polymer concrete composition was prepared in the same manner as in Example 1 and the like. The filling property was evaluated in the same manner as in Example 1. Table 2 shows the results.
[0040]
[Table 2]
Figure 2004300010
[0041]
In Example 6 and Comparative Example 5, the viscosity of the blend of the binder and the fine particle filler was significantly increased due to the increase in the content of the fine particle filler, but the results were similar to the relationship between Example 2 and Comparative Example 1. .

Claims (5)

硬化性樹脂と硬化剤を含有する25℃における粘度が100〜700mPa・sの結合剤(A)と、円形度0.80〜1.0で平均粒径5〜50μmの微粒子充填材(B)と、粒径45μm以下の粒子の重量分率が5%以下である骨材(C)とを含有し、結合剤(A)、微粒子充填材(B)、骨材(C)の重量比率が、(A)/(B)/(C)=5〜20/5〜30/90〜50である、ポリマーコンクリート組成物。A binder (A) having a viscosity of 100 to 700 mPa · s at 25 ° C. containing a curable resin and a curing agent, and a fine particle filler (B) having a circularity of 0.80 to 1.0 and an average particle size of 5 to 50 μm. And an aggregate (C) in which the weight fraction of particles having a particle size of 45 μm or less is 5% or less, and the weight ratio of the binder (A), the fine particle filler (B), and the aggregate (C) is , (A) / (B) / (C) = 5-20 / 5-30 / 90-50. 硬化性樹脂がエポキシ樹脂である請求項1記載のポリマーコンクリート組成物。The polymer concrete composition according to claim 1, wherein the curable resin is an epoxy resin. 微粒子充填材(B)が、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、アルミナ、ムライト、炭化ケイ素、窒化ケイ素、シリカ、フライアッシュ及びガラスから選ばれる1種以上からなる請求項1又は2記載のポリマーコンクリート組成物。3. The polymer according to claim 1, wherein the fine particle filler (B) is at least one selected from calcium carbonate, magnesium carbonate, aluminum hydroxide, alumina, mullite, silicon carbide, silicon nitride, silica, fly ash and glass. Concrete composition. 請求項1〜3の何れか1項記載のポリマーコンクリート組成物を硬化して得られるポリマーコンクリート成形体。A polymer concrete molded product obtained by curing the polymer concrete composition according to claim 1. 硬化性樹脂と円形度0.80〜1.0で平均粒径5〜50μmの微粒子充填材(B)とを混合後、粒径45μm以下の粒子の重量分率が5%以下である骨材(C)を混合する工程を有するポリマーコンクリート成形体の製造方法であって、前記硬化性樹脂とその硬化剤とを含有する結合剤(A)の25℃における粘度が100〜700mPa・sであるポリマーコンクリート成形体の製造方法。After mixing the curable resin with the fine particle filler (B) having a circularity of 0.80 to 1.0 and an average particle size of 5 to 50 μm, an aggregate having a weight fraction of particles having a particle size of 45 μm or less of 5% or less is used. A method for producing a polymer concrete molded article having a step of mixing (C), wherein the binder (A) containing the curable resin and the curing agent has a viscosity at 25 ° C of 100 to 700 mPa · s. A method for producing a polymer concrete molded product.
JP2003098300A 2003-04-01 2003-04-01 Polymer concrete composition Expired - Fee Related JP4554165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098300A JP4554165B2 (en) 2003-04-01 2003-04-01 Polymer concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098300A JP4554165B2 (en) 2003-04-01 2003-04-01 Polymer concrete composition

Publications (2)

Publication Number Publication Date
JP2004300010A true JP2004300010A (en) 2004-10-28
JP4554165B2 JP4554165B2 (en) 2010-09-29

Family

ID=33409867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098300A Expired - Fee Related JP4554165B2 (en) 2003-04-01 2003-04-01 Polymer concrete composition

Country Status (1)

Country Link
JP (1) JP4554165B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084982A (en) * 2006-09-26 2008-04-10 Yoshida Foundry:Kk Substrate supporting stage
JP2008542172A (en) * 2005-05-31 2008-11-27 周衛 Artificial granite, marble machine parts and preparation method thereof
JP2011140828A (en) * 2010-01-08 2011-07-21 Hajime Watanabe High-strength resin paste, high-strength resin consolidated material, and method for constructing road surface using the same
JP2013508200A (en) * 2010-01-21 2013-03-07 エルジー・ハウシス・リミテッド Artificial stone manufacturing method and manufacturing apparatus
US8980149B2 (en) 2009-01-21 2015-03-17 Lg Hausys, Ltd. Method and device for manufacturing artificial stone
JP2016041639A (en) * 2014-08-19 2016-03-31 日米レジン株式会社 Resin mortar
JP2018193263A (en) * 2017-05-15 2018-12-06 アイカ工業株式会社 Hydraulic polymer cement composition
KR20220051573A (en) * 2020-10-19 2022-04-26 롯데건설 주식회사 Vibration Isolation Structure of the Machinery Room
CN117303802A (en) * 2023-09-04 2023-12-29 陕西庄臣环保科技有限公司 Ultrahigh-strength composite material and preparation process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160056A (en) * 1979-05-29 1980-12-12 Studer Ag Fritz Forming or injection forming composition and its manufacture
JPS61183159A (en) * 1985-02-05 1986-08-15 フリツツ シユテユーダー アクチエンゲゼルシヤフト Method of forming products, particularly mechanical parts from polymer concrete and mechanical parts formed therefrom
JPH06305801A (en) * 1993-04-16 1994-11-01 Mitsui Sekika Sanshi Kk Artificial stone, its production and concrete secondary products
JPH07101762A (en) * 1993-10-01 1995-04-18 Takemoto Oil & Fat Co Ltd Fluidity imparting method to polymer mortar or polymer concrete
JPH09110500A (en) * 1995-10-18 1997-04-28 Hitachi Chem Co Ltd Execution method for resin mortar
JP2001064062A (en) * 1999-08-26 2001-03-13 Matsushita Electric Works Ltd Composition of artificial marble

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160056A (en) * 1979-05-29 1980-12-12 Studer Ag Fritz Forming or injection forming composition and its manufacture
JPS61183159A (en) * 1985-02-05 1986-08-15 フリツツ シユテユーダー アクチエンゲゼルシヤフト Method of forming products, particularly mechanical parts from polymer concrete and mechanical parts formed therefrom
JPH06305801A (en) * 1993-04-16 1994-11-01 Mitsui Sekika Sanshi Kk Artificial stone, its production and concrete secondary products
JPH07101762A (en) * 1993-10-01 1995-04-18 Takemoto Oil & Fat Co Ltd Fluidity imparting method to polymer mortar or polymer concrete
JPH09110500A (en) * 1995-10-18 1997-04-28 Hitachi Chem Co Ltd Execution method for resin mortar
JP2001064062A (en) * 1999-08-26 2001-03-13 Matsushita Electric Works Ltd Composition of artificial marble

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008542172A (en) * 2005-05-31 2008-11-27 周衛 Artificial granite, marble machine parts and preparation method thereof
JP2008084982A (en) * 2006-09-26 2008-04-10 Yoshida Foundry:Kk Substrate supporting stage
US8980149B2 (en) 2009-01-21 2015-03-17 Lg Hausys, Ltd. Method and device for manufacturing artificial stone
JP2011140828A (en) * 2010-01-08 2011-07-21 Hajime Watanabe High-strength resin paste, high-strength resin consolidated material, and method for constructing road surface using the same
JP2013508200A (en) * 2010-01-21 2013-03-07 エルジー・ハウシス・リミテッド Artificial stone manufacturing method and manufacturing apparatus
JP2016041639A (en) * 2014-08-19 2016-03-31 日米レジン株式会社 Resin mortar
JP2018193263A (en) * 2017-05-15 2018-12-06 アイカ工業株式会社 Hydraulic polymer cement composition
KR20220051573A (en) * 2020-10-19 2022-04-26 롯데건설 주식회사 Vibration Isolation Structure of the Machinery Room
KR102436683B1 (en) 2020-10-19 2022-08-29 롯데건설 주식회사 Vibration Isolation Structure of the Machinery Room
CN117303802A (en) * 2023-09-04 2023-12-29 陕西庄臣环保科技有限公司 Ultrahigh-strength composite material and preparation process thereof

Also Published As

Publication number Publication date
JP4554165B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
CN109574548B (en) Low-temperature quick-maintenance pit repairing material and preparation method thereof
KR20150003373A (en) Epoxy adhesive composition
JP2004300010A (en) Polymer concrete composition
JPH0577690B2 (en)
CN101531821A (en) Glass fiber reinforced polyester mineral composite material and preparation method thereof
JP2006219624A (en) Two-component putty epoxy resin composition
JPH04110343A (en) Polymer concrete composition for repair and top coating of cement road on wet surface and dry surface
KR100818456B1 (en) Structure for machine base and method of making thereof
KR101859645B1 (en) Guss Asphalt Concrete Composition Comprising Crum Rubber Modifier and Constructing Methods Using Thereof
JP4557202B2 (en) Polymer concrete composition for audio equipment
CN105084814A (en) Self-expansion sand-free ceramic tile gap filling treatment material and preparation method thereof
JP3661358B2 (en) Liquid epoxy resin composition and method for repairing and reinforcing concrete structures
US10702886B2 (en) Composition for producing fillers and method for producing and processing the fillers
JPH02239139A (en) Self-leveling device
JPS6158304B2 (en)
EP2627456B1 (en) Lightweight terrazzo surface composition
JP2007197543A (en) Epoxy resin adhesive for ceramic and ceramic accessory
JPH04178235A (en) Resin composition for wear resistant pattern for sand mold casting
JPS63168428A (en) Composite material having mechanical properties
KR102392363B1 (en) Epoxy modified rapid set cement mortar composite and method for repaing concrete structures using the same
JP2678557B2 (en) Epoxy resin coating material and method for preparing the same
JP2004204144A (en) Epoxy-based curable resin composition for repair
JPH1016326A (en) Filler for platen core material
JP2000007956A (en) Resin composition for repair or reinforcement and repairing or reinforcing therewith
JPH05339554A (en) Epoxy adhesive containing aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees