KR102436683B1 - Vibration Isolation Structure of the Machinery Room - Google Patents

Vibration Isolation Structure of the Machinery Room Download PDF

Info

Publication number
KR102436683B1
KR102436683B1 KR1020200135143A KR20200135143A KR102436683B1 KR 102436683 B1 KR102436683 B1 KR 102436683B1 KR 1020200135143 A KR1020200135143 A KR 1020200135143A KR 20200135143 A KR20200135143 A KR 20200135143A KR 102436683 B1 KR102436683 B1 KR 102436683B1
Authority
KR
South Korea
Prior art keywords
concrete
machine room
vibration
building
mechanical equipment
Prior art date
Application number
KR1020200135143A
Other languages
Korean (ko)
Other versions
KR20220051573A (en
Inventor
석원균
김정진
위준우
최경석
안상기
Original Assignee
롯데건설 주식회사
(주) 엔브이시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데건설 주식회사, (주) 엔브이시스 filed Critical 롯데건설 주식회사
Priority to KR1020200135143A priority Critical patent/KR102436683B1/en
Publication of KR20220051573A publication Critical patent/KR20220051573A/en
Application granted granted Critical
Publication of KR102436683B1 publication Critical patent/KR102436683B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M1/00Frames or casings of engines, machines or apparatus; Frames serving as machinery beds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

본 발명은 콘크리트슬래브 위에 기계설비가 정착 설치되는 건물의 기계실에 관한 것으로, 기계설비의 작동에 따른 진동이 콘크리트슬래브를 통해 건물 다른 공간으로 전달되는 것을 억제하여 방진성능을 향상시킨 건물 기계실의 방진구조에 관한 것이다.
본 발명에 따른 건물 기계실의 방진구조는, 바닥 콘크리트슬래브 위에 기계설비가 설치되는 건물의 기계실에서, 기계실 바닥의 콘크리트슬래브 위의 기계설비 설치위치에 폴리머콘크리트가 소정 두께로 시공되고, 폴리머콘크리트 위에 시멘트콘크리트가 시공되고, 기계설비가 상기 시멘트콘크리트에 정착 설치되는 것을 특징으로 한다.
The present invention relates to a machine room of a building in which mechanical equipment is fixedly installed on a concrete slab. The vibration-proof structure of a building machine room has improved vibration-proof performance by suppressing the transmission of vibrations caused by the operation of mechanical equipment to other spaces of the building through the concrete slab. is about
In the vibration-proof structure of a building machine room according to the present invention, in a machine room of a building where mechanical facilities are installed on a floor concrete slab, polymer concrete is constructed to a predetermined thickness at a mechanical facility installation location on a concrete slab on the floor of the machine room, and cement is placed on the polymer concrete. Concrete is constructed, and mechanical equipment is fixed and installed in the cement concrete.

Description

건물 기계실의 방진구조{Vibration Isolation Structure of the Machinery Room}Vibration Isolation Structure of the Machinery Room

본 발명은 콘크리트슬래브 위에 기계설비가 정착 설치되는 건물의 기계실에 관한 것으로, 기계설비의 작동에 따른 진동이 콘크리트슬래브를 통해 건물 다른 공간으로 전달되는 것을 억제하여 방진성능을 향상시킨 건물 기계실의 방진구조에 관한 것이다.The present invention relates to a machine room of a building in which mechanical equipment is fixedly installed on a concrete slab. The vibration-proof structure of a building machine room has improved vibration-proof performance by suppressing the transmission of vibrations caused by the operation of mechanical equipment to other spaces of the building through the concrete slab. is about

건물에는 냉난방, 공조, 엘리베이터 등 각종 기계설비가 설치되는데, 건물 내부에는 각종 기계설비가 설치되는 기계실이 설계되기 마련이다. 보통 냉난방, 공조 등의 기계설비는 보통 건물 지하에 별도 마련된 기계실에 설치되고, 엘리베이터의 권상기는 엘리베이터실 상부에 마련된 기계실에 설치된다. Various mechanical facilities such as air conditioning, air conditioning, and elevator are installed in buildings, and a machine room in which various mechanical facilities are installed is usually designed inside the building. Usually, mechanical equipment such as air conditioning, air conditioning, etc. are usually installed in a machine room provided separately in the basement of a building, and the hoisting machine of the elevator is installed in a machine room provided in the upper part of the elevator room.

도 1은 종래 건물 지하의 기계실을 보여준다. 보는 바와 같이 종래에는 기계실은 기계설비 설치위치에 바닥 콘크리트슬래브 위로 소정 두께의 베이스콘크리트를 시공하고 베이스콘크리트에 기계설비를 정착시키면서 고정 설치했다. 이때 베이스콘크리트는 시멘트 기반의 시멘트콘크리트(20)로 시공했다. 경우에 따라서는 베이스콘크리트를 생략하고 바닥 콘크리트슬래브 위에 바로 기계설비를 설치하기도 했는데, 엘리베이터의 기계실이 대표적이다.1 shows a machine room in the basement of a conventional building. As can be seen, in the conventional machine room, the base concrete of a predetermined thickness was installed on the floor concrete slab at the location where the machinery was installed, and the equipment was fixed to the base concrete while fixing the equipment. At this time, the base concrete was constructed with cement-based cement concrete (20). In some cases, the base concrete was omitted and mechanical equipment was installed directly on the floor concrete slab, but the machine room of the elevator is a representative example.

도 2는 도 1와 같은 기계실의 진동 전달 현상을 도시한다. 기계설비(10)가 작동하면 기계설비(10)에 구조적 진동이 발생하고, 이때의 진동은 앵커를 통해 기계실 바닥의 콘크리트슬래브(S)로 전달되고 다시 건물 골조를 통해 건물의 다른 공간으로 전달되면서 진동소음으로 유발된다. 이러한 진동소음 억제하는 방법으로는 도 3과 같이 시멘트콘크리트(20)와 콘크리트슬래브(S) 사이에 방진패드(21), 방진마운트 등을 더 설치하는 방법이 대표적이다. 그러나 방진패드(21)를 더 설치하는 방법은 방진패드 상부의 시멘트콘크리트(20) 및 기계설비(10)의 하중변화에 따라 방진패드(21)에 변형이 발생할 우려가 있고, 또한 방진패드와 기계설비의 진동 패턴(고유진동수 Hz)과의 차이가 발생하여 진동저감 성능이 크게 떨어지거나 고유진동수(Hz) 대역에 변화가 생겨 진동소음 억제에 큰 효과가 없다.Figure 2 shows the vibration transmission phenomenon of the same machine room as in Figure 1. When the mechanical equipment 10 operates, structural vibration occurs in the mechanical equipment 10, and the vibration at this time is transmitted to the concrete slab (S) on the floor of the machine room through the anchor, and again through the building frame to another space of the building. caused by vibration noise. As a method of suppressing such vibration noise, a method of further installing a vibration-proof pad 21 and a vibration-proof mount between the cement concrete 20 and the concrete slab S as shown in FIG. 3 is representative. However, in the method of further installing the anti-vibration pad 21, there is a risk of deformation of the anti-vibration pad 21 according to the load change of the cement concrete 20 and the mechanical equipment 10 on the upper part of the anti-vibration pad. A difference from the vibration pattern (natural frequency Hz) of the equipment significantly lowers the vibration reduction performance, or there is a change in the natural frequency (Hz) band, which has no significant effect in suppressing vibration and noise.

KR 20-1999-0035947 UKR 20-1999-0035947 U KR 10-0538817 B1KR 10-0538817 B1

본 발명은 기계실에서 기계설비의 작동에 따른 진동의 전달을 억제할 수 있는 새로운 방진구조를 제안하기 위해 개발된 것으로, 폴리머콘크리트의 진동감쇠 특성을 적용하여 방진성능을 향상시킨 건물 기계실의 방진구조를 제공하는데 기술적 과제가 있다.The present invention was developed to propose a new vibration-proof structure that can suppress the transmission of vibrations according to the operation of mechanical equipment in a machine room. There are technical challenges to providing.

상기한 기술적 과제를 해결하기 위해 본 발명은, 바닥 콘크리트슬래브 위에 기계설비가 설치되는 건물의 기계실에서, 기계실 바닥의 콘크리트슬래브 위의 기계설비 설치위치에 폴리머콘크리트가 소정 두께로 시공되고, 폴리머콘크리트 위에 시멘트콘크리트가 시공되고, 기계설비가 시멘트콘크리트에 정착 설치되는 것을 특징으로 하는 건물 기계실의 방진구조를 제공한다.In order to solve the above technical problem, the present invention is, in a machine room of a building in which mechanical equipment is installed on a floor concrete slab, a polymer concrete is constructed to a predetermined thickness at a mechanical equipment installation location on a concrete slab on the floor of the machine room, and on the polymer concrete It provides a vibration-proof structure of a building machine room, characterized in that cement concrete is constructed, and mechanical equipment is fixedly installed on the cement concrete.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 건물의 기계실에서 기계설비가 정착 설치되는 시멘트콘크리트 받침 부분 아래에 폴리머콘크리트를 시공하기 때문에, 기계설비의 작동으로 발생하는 진동이 시멘트콘크리트를 통해 기계실 바닥의 콘크리트슬래브로 전달될 때 폴리머콘크리트에 의한 감쇠가 가능해져 기계실의 방진성능을 향상시킬 수 있다.First, since the polymer concrete is installed under the cement concrete support part where the mechanical equipment is fixed and installed in the machine room of the building, when the vibration generated by the operation of the mechanical equipment is transmitted through the cement concrete to the concrete slab on the floor of the machine room, the polymer concrete The damping by

둘째, 기존 기계실의 설계를 크게 변경하지 않아도 되기 때문에 적용성이 우수하고, 시멘트콘크리트와의 부착력이 우수한 폴리머콘크리트를 이용하기 때문에 시공품질도 우수하다.Second, it is excellent in applicability because it does not need to significantly change the design of the existing machine room, and the construction quality is also excellent because polymer concrete with excellent adhesion to cement concrete is used.

도 1은 일반적인 건물 기계실에서 기계설비 설치 사진이다.
도 2는 기계실에서 기계설비를 통한 진동 전달 현상에 대한 개요도이다.
도 3은 종래 방진패드에 의한 건물 기계실의 방진구조에 대한 개요도이다.
도 4는 본 발명에 따른 건물 기계실의 방진구조에 대한 개요도이다.
도 5는 본 발명에 따른 건물 기계실의 방진구조에 대한 시험예에서 시험체의 개요도이다.
1 is a photograph of installation of mechanical equipment in a general building machine room.
Figure 2 is a schematic diagram of the vibration transmission phenomenon through the machine room in the machine room.
3 is a schematic diagram of a vibration-proof structure of a building machine room by a conventional anti-vibration pad.
4 is a schematic diagram of a vibration-proof structure of a building machine room according to the present invention.
5 is a schematic diagram of a test body in a test example for a vibration-proof structure of a building machine room according to the present invention.

이하 첨부한 도면 및 바람직한 실시예에 따라 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

도 4는 본 발명에 따른 건물 기계실의 방진구조에 대한 개요도이다. 본 발명은 바닥 콘크리트슬래브 위에 기계설비가 설치되는 건물의 기계실에서, 기계설비의 작동에 따라 발생하는 진동이 기계실의 콘크리트슬래브(S)로 전달되는 것을 억제하기 위해 기계실의 콘크리트슬래브(S)와 기계설비(10) 사이에 폴리머콘크리트(20)를 시공한다는데 특징이 있다. 구체적으로 본 발명은 기계실에서 기계설비(10)가 기계실의 콘크리트슬래브(S)에 정착 설치될 때, 기계실 바닥의 콘크리트슬래브(W) 위의 기계설비(10) 설치위치에 폴리머콘크리트(20)가 소정 두께로 시공되고, 폴리머콘크리트(20) 위에 시멘트콘크리트(30)가 시공되고, 기계설비(10)가 시멘트콘크리트(10)에 정착되도록 설치된다. 이로써 기계설비의 작동에 따른 기계설비의 진동이 앵커 등의 정착구(11)를 통해 전달될 때, 정착구(11)가 정착된 시멘트콘크리트 아래에 진동감쇠 성능이 우수한 폴리머콘크리트(20)가 적층됨으로써 폴리머콘크리트(10)에 의한 진동감쇠가 구현된다. 4 is a schematic diagram of a vibration-proof structure of a building machine room according to the present invention. The present invention relates to a concrete slab (S) and a machine in a machine room in order to suppress the transmission of vibrations generated according to the operation of mechanical equipment to the concrete slab (S) of the machine room in the machine room of a building where the mechanical equipment is installed on the floor concrete slab. It is characterized in that the polymer concrete 20 is constructed between the facilities 10 . Specifically, in the present invention, when the mechanical equipment 10 is fixed and installed on the concrete slab (S) of the machine room in the machine room, the polymer concrete 20 is installed on the concrete slab (W) on the floor of the machine room. It is constructed to a predetermined thickness, the cement concrete 30 is constructed on the polymer concrete 20 , and the mechanical equipment 10 is installed to be fixed to the cement concrete 10 . As a result, when the vibration of mechanical equipment according to the operation of the mechanical equipment is transmitted through the anchorage 11 such as an anchor, the polymer concrete 20 having excellent vibration damping performance is laminated under the cement concrete in which the anchorage 11 is fixed. Vibration damping by the concrete 10 is implemented.

본 발명에서 폴리머콘크리트(10)는 폴리머 수지(주제+경화제)와 잔골재만으로 조성하여 적용하는 것이 진동감쇠에 유리하며, 폴리머 수지는 에폭시 수지, 페놀 수지, 아크릴 수지, 메틸메타크릴레이트 수지, 불포화폴리에스테르 수지 중에서 하나 이상 적절히 선택하여 적용하면 적당하다. 특히 폴리머콘크리트(20)는 폴리머 수지 15~25중량% 및 잔골재 75~85중량%로 조성하는 것이 강도 확보, 경제성, 작업성 등을 고려할 때 바람직하고, 더불어 잔골재는 0.85~1.2mm의 규사 30~40중량%와 0.25~0.6mm 규사 60~70중량%로 조성된 혼합골재로 적용하는 것이 치밀한 단면 형성을 위해 바람직하다. 이러한 폴리머콘크리트(20)는 강도뿐만 아니라 내구성, 내후성면에서 우수한 성능을 나타내고, 특히 댐핑성능은 일반 시멘트콘크리트는 물론 방진패드에 높은 것으로 확인되었다(시험예 참고). In the present invention, it is advantageous for the polymer concrete 10 to be applied with only a polymer resin (subject + hardener) and fine aggregate for vibration damping, and the polymer resin is epoxy resin, phenol resin, acrylic resin, methyl methacrylate resin, unsaturated poly It is suitable if one or more of the ester resins are appropriately selected and applied. In particular, the polymer concrete 20 is preferably composed of 15 to 25% by weight of polymer resin and 75 to 85% by weight of fine aggregates in consideration of securing strength, economical efficiency, workability, etc. It is preferable to apply a mixed aggregate composed of 40% by weight and 0.25 to 0.6mm silica sand 60 to 70% by weight to form a dense cross-section. This polymer concrete 20 exhibits excellent performance in terms of durability and weather resistance as well as strength, and in particular, it has been confirmed that the damping performance is high not only for general cement concrete but also for anti-vibration pads (see Test Example).

본 발명에 따른 건물 기계실의 방진구조는, 건물 기계실 바닥의 콘크리트슬래브(W) 위에서 기계설비(10) 설치위치에 폴리머콘크리트(20)를 소정 두께로 도포하여 경화시키는 제1단계; 폴리머콘크리트(20) 위에 소정 두께로 시멘트콘크리트(30)를 도포하여 경화시키는 제2단계; 시멘트콘크리트에 기계설비(10)를 정착 설치하는 제3단계;를 통해 시공할 수 있다.The vibration-proof structure of a building machine room according to the present invention comprises: a first step of hardening by applying a polymer concrete 20 to a predetermined thickness on a concrete slab (W) on the floor of the building machine room at the installation location of the machine equipment 10; a second step of hardening by applying the cement concrete 30 to a predetermined thickness on the polymer concrete 20; It can be constructed through the third step of fixing and installing the mechanical equipment 10 on the cement concrete.

[시험예][Test Example]

1. 시험체 제작1. Specimen production

아래 [표 1과 같은 재료를 사용하여 도 5과 같이 시험체를 제작하였다.A test specimen was manufactured as shown in FIG. 5 using the materials shown in Table 1 below.

시험재료test material 구분division 시멘트cement 에폭시 수지epoxy resin 골재aggregate WaterWater 모래sand 규사(#4)Silica (#4) 규사(#6)Silica (#6) 시멘트콘크리트cement concrete 200200 -- 600600 -- -- 130130 폴리머콘크리트polymer concrete -- 125125 -- 150150 300300 -- - 시멘트: 분말도 3,318cm2/g, 밀도 3.15 g/cm3
- 에폭시 수지: 밀도 1.03 g/cm3, 부착강도 3.7 N/mm2, 압축강도 4.1N/mm2
- 모래: 강모래, 밀도 2.60 g/cm3, 크기 5mm, 흡수율 0.8%, F.M 3.09
- 규사(#4): 밀도 2.64 g/cm3, 크기 0.85~1.2mm, 흡수율 0.4%, F.M 3.48
- 규사(#6): 밀도 2.60 g/cm3, 크기 0.25~0.6mm, 흡수율 0.5%, F.M 1.71
- Cement: fineness 3,318 cm 2 /g, density 3.15 g/cm 3
- Epoxy resin: Density 1.03 g/cm 3 , Adhesive strength 3.7 N/mm 2 , Compressive strength 4.1N/mm 2
- Sand: river sand, density 2.60 g/cm 3 , size 5mm, absorption rate 0.8%, FM 3.09
- Silica sand (#4): density 2.64 g/cm 3 , size 0.85-1.2mm, water absorption 0.4%, FM 3.48
- Silica sand (#6): density 2.60 g/cm 3 , size 0.25-0.6mm, water absorption 0.5%, FM 1.71
방진패드anti-vibration pad 밀도 2.00 g/cm3, 탄성계수 1.0e7PaDensity 2.00 g/cm 3 , Modulus of elasticity 1.0e7Pa

2. 진동저감 성능 평가2. Vibration reduction performance evaluation

도 5와 같이 제작한 시험체에 대해 진동저감 성능을 평가하였다. 진동저감 성능 평가는 시험체의 한쪽 끝단에서 300mm 정도 위치에 임팩트 해머(Impact Hammer)를 이용하여 진동을 인가하고, 14, 15번 가속도계 위치의 데이터를 기반으로 측정하는 방법으로 실시했다. 구체적으로 임팩트 해머의 신호와 가속도계 센서의 신호를 동시에 기록하고, 임팩트 해머의 신호가 처음 나타나는 부분의 데이터와 동일한 시간 지점을 시작점으로 하여, 센서의 신호를 커팅(cutting)하고 각각 시편들의 응답신호를 기반으로 감쇠되는 정도의 추세를 비교하였다. 그 결과는 아래 [표 2]와 같이 나타냈다.Vibration reduction performance was evaluated for the specimen prepared as shown in FIG. 5 . Vibration reduction performance evaluation was conducted by applying vibration using an impact hammer at a position about 300 mm from one end of the specimen, and measuring based on the data at the positions of the 14 and 15 accelerometers. Specifically, the signal of the impact hammer and the signal of the accelerometer sensor are recorded simultaneously, and the signal of the sensor is cut at the same time point as the data of the part where the signal of the impact hammer first appears as the starting point, and the response signal of each specimen is recorded. The trend of the degree of attenuation was compared based on the The results are shown in [Table 2] below.

진동저감 성능Vibration reduction performance 구분division 공진주파수(Hz)Resonant frequency (Hz) 응답함수(m/s2/N)Response function (m/s 2 /N) 감쇠비(%)Damping ratio (%) 시험체1Specimen 1 483.5483.5 16.216.2 2.992.99 시험체2Specimen 2 350.3350.3 9.49.4 7.257.25 시험체3Specimen 3 474.6474.6 5.65.6 10.4010.40

위의 [표 2]와 같이 시멘트콘크리트 단독으로 이루어진 시험체1에 비해 시멘트콘크리트 아래에 폴리머콘크리트가 적층된 시험체3은 비슷한 대역의 고유주파수을 나타내면서도 응답함수는 1/3수준, 감쇠비(댐핑성능)는 3배 이상 수준을 나타냈다. As shown in [Table 2] above, compared to specimen 1 made of cement concrete alone, specimen 3, in which polymer concrete is laminated under cement concrete, exhibited a natural frequency in a similar band, but the response function was 1/3, and the damping ratio (damping performance) was lower. more than three times the level.

한편 시멘트콘크리트 아래에 방진패드가 적층된 시험체2는 시험체1,2와 비교할 때 낮은 고유주파수 대역을 나타냈는데 이는 방진패드의 강성이 매우 낮은 것 때문으로 파악된다. 보통 기계실의 기계설비에서 발생하는 진동이 저주파 대역인 것을 감안하면, 시험체2의 낮은 고유주파수 대역은 시험체1,2에 비해 진동에 취약하다고 할 수 있다. 시험체2의 공진수파수 대역을 시험체1,3 수준으로 높이기 위해서는 방진패드의 강성을 높이거나 두께를 키워야 하므로 경제성 문제가 뒤따른다.On the other hand, Specimen 2, in which the anti-vibration pad was laminated under the cement concrete, showed a lower natural frequency band compared to Specimens 1 and 2, which is thought to be due to the very low stiffness of the anti-vibration pad. Considering that the vibrations occurring in the machinery of the machine room are usually in the low frequency band, it can be said that the low natural frequency band of Specimen 2 is more vulnerable to vibration than Specimens 1 and 2. In order to raise the resonant frequency band of specimen 2 to the level of specimens 1 and 3, it is necessary to increase the rigidity or thickness of the anti-vibration pad, so economical problems follow.

이상에서 본 발명은 구체적인 실시예와 시험예를 참조하여 상세히 설명되었으나, 실시예와 시험예는 본 발명을 예시하기 위한 것일 뿐이므로, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환, 부가 및 변형된 실시 형태들 역시 아래에 첨부한 청구범위에 의하여 정하여지는 본 발명의 보호범위에 속한다고 할 것이다.In the above, the present invention has been described in detail with reference to specific examples and test examples, but since the examples and test examples are only for illustrating the present invention, substitutions, additions and modifications within the scope not departing from the technical spirit of the present invention The described embodiments will also fall within the protection scope of the present invention as defined by the appended claims below.

10: 기계설비
11: 정착구
20: 시멘트콘크리트(베이스콘크리트)
21: 방진패드
30: 폴리머콘크리트
S: 슬래브
10: Hardware
11: Settlement
20: cement concrete (base concrete)
21: anti-vibration pad
30: polymer concrete
S: slab

Claims (3)

바닥 콘크리트슬래브 위에 기계설비가 설치되는 건물의 기계실에서,
기계실 바닥의 콘크리트슬래브(S) 위의 기계설비 설치위치에 폴리머콘크리트가 시공되고, 폴리머콘크리트(30) 위에 시멘트콘크리트(20)가 시공되고, 기계설비(10)가 상기 시멘트콘크리트(20)에 정착 설치되되,
상기 폴리머콘크리트(30)는, 에폭시 수지, 페놀 수지, 아크릴 수지, 메틸메타크릴레이트 수지, 불포화폴리에스테르 수지 중 어느 하나 이상에 의한 폴리머 수지 15~25중량%와 잔골재 75~85중량%로 조성된 폴리머콘크리트이며,
상기 잔골재는, 0.85~1.2mm의 규사 30~40중량%와 0.25~0.6mm 규사 60~70중량%로 조성된 혼합골재인 것임을 특징으로 하는 건물 기계실의 방진구조.
In the machine room of a building where mechanical equipment is installed on the floor concrete slab,
Polymer concrete is installed on the concrete slab (S) on the floor of the machine room where the mechanical equipment is installed, the cement concrete 20 is installed on the polymer concrete 30, and the mechanical equipment 10 is fixed to the cement concrete 20 installed,
The polymer concrete 30 is composed of 15 to 25% by weight of a polymer resin and 75 to 85% by weight of fine aggregates by any one or more of an epoxy resin, a phenol resin, an acrylic resin, a methyl methacrylate resin, and an unsaturated polyester resin. polymer concrete,
The fine aggregate is a vibration-proof structure of a building machine room, characterized in that it is a mixed aggregate composed of 30-40% by weight of 0.85-1.2mm silica sand and 60-70% by weight of 0.25-0.6mm silica sand.
삭제delete 삭제delete
KR1020200135143A 2020-10-19 2020-10-19 Vibration Isolation Structure of the Machinery Room KR102436683B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200135143A KR102436683B1 (en) 2020-10-19 2020-10-19 Vibration Isolation Structure of the Machinery Room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200135143A KR102436683B1 (en) 2020-10-19 2020-10-19 Vibration Isolation Structure of the Machinery Room

Publications (2)

Publication Number Publication Date
KR20220051573A KR20220051573A (en) 2022-04-26
KR102436683B1 true KR102436683B1 (en) 2022-08-29

Family

ID=81391522

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200135143A KR102436683B1 (en) 2020-10-19 2020-10-19 Vibration Isolation Structure of the Machinery Room

Country Status (1)

Country Link
KR (1) KR102436683B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300010A (en) 2003-04-01 2004-10-28 Kao Corp Polymer concrete composition
KR101786165B1 (en) * 2014-08-29 2017-11-16 단국대학교 산학협력단 Floor with High Absorption Capability of Interfloor Impact Noise of Building

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177093A (en) * 1995-12-22 1997-07-08 Fujita Corp Installation vibration proofing structure for large heavy body
KR970074705A (en) * 1996-05-10 1997-12-10 이광표 Curable polymer concrete composition
KR19990035947U (en) 1998-02-11 1999-09-15 이종수 Machine room of elevator
KR100538817B1 (en) 2005-05-02 2005-12-26 유노빅스이엔씨(주) High efficient vibration isolator for building floor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300010A (en) 2003-04-01 2004-10-28 Kao Corp Polymer concrete composition
KR101786165B1 (en) * 2014-08-29 2017-11-16 단국대학교 산학협력단 Floor with High Absorption Capability of Interfloor Impact Noise of Building

Also Published As

Publication number Publication date
KR20220051573A (en) 2022-04-26

Similar Documents

Publication Publication Date Title
KR20120007999A (en) Complex floor structure for damping and isolation of floor impact sound
KR101269110B1 (en) A method for manufacturing and execution of works with a panel for absorbing and cutting off impact noise
CN202148611U (en) Damping soundproof board
CN211228585U (en) Passive vibration isolation platform of laboratory instrument
KR102436683B1 (en) Vibration Isolation Structure of the Machinery Room
JP2006037503A (en) Vibration control heat insulating material for floating floor and floor structure using this material
KR100920200B1 (en) Plywood panel type floating floor system using damping plywood
KR101245107B1 (en) Anti vibration device for construction
KR100831998B1 (en) High strength concrete with high heat insulation capacity and floor stuructue for insulating muti-level impact sound using the same
KR102251018B1 (en) Vibration Isolation Structure of the Elevator Room and Construction Method Thereof
KR200374808Y1 (en) Floating floor structure for reducing floor a crashing sound in apartment house
KR101786165B1 (en) Floor with High Absorption Capability of Interfloor Impact Noise of Building
CN219671799U (en) Sound insulation and shock absorption floor slab
TWI640677B (en) Energy-dissipating and sound-isolating device and manufacturing method thereof
KR102546523B1 (en) Floor structure for construction to reduce inter-floor noise
KR20160027468A (en) Floor with High Thermal Isolation and Absorption Capability of Interfloor Noise of Building
KR20210047101A (en) Noise Absorption Structure Of Slab Concrete
KR101985571B1 (en) noise and vibration reduction type steel reinforcement system
KR200201314Y1 (en) Interior finish insulated sound and heat for a floor of an appartment using cast-in-place concreat
JP3194554U (en) Floor structure
KR100420826B1 (en) A floor impact noise reduce structure of building slab
KR20160107840A (en) Construction process and structure for impact-noise reduction
Grootenhuis 9 Structural elastomeric bearings and resilient seatings
JP6470923B2 (en) Dry double floor
KR200247174Y1 (en) A floor impact noise reduce structure of building slab

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant