JP2004298962A - Solder joining material and power module substrate utilizing the same - Google Patents

Solder joining material and power module substrate utilizing the same Download PDF

Info

Publication number
JP2004298962A
JP2004298962A JP2004073777A JP2004073777A JP2004298962A JP 2004298962 A JP2004298962 A JP 2004298962A JP 2004073777 A JP2004073777 A JP 2004073777A JP 2004073777 A JP2004073777 A JP 2004073777A JP 2004298962 A JP2004298962 A JP 2004298962A
Authority
JP
Japan
Prior art keywords
solder
metal material
thermal conductivity
foamed metal
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073777A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nagatomo
義幸 長友
Toshiyuki Nagase
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004073777A priority Critical patent/JP2004298962A/en
Publication of JP2004298962A publication Critical patent/JP2004298962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a thermal cycle lifetime of a solder joining material and improve a thermal conductivity. <P>SOLUTION: A solder joining material 11 comprises a foaming metallic material and a solder material. The foaming metallic material is formed in three-dimensional net like porous quality with a metallic material having a higher melting point than the solder material and having solder wettability. The solder material is impregnated into the foaming metallic material and coats the surface of a foaming metallic material. The foaming metallic material is composed of Cu, Ni, Ag or Fe. An average diameter of pores of foaming metallic material is 10-1,000 μm. A porosity of the foaming metallic material is 20-95 %. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回路及び放熱板の積層接着や、めっき層及び回路の積層接着に適したはんだ接合材と、このはんだ接合材を用いたパワーモジュール基板に関するものである。   The present invention relates to a solder bonding material suitable for lamination bonding of a circuit and a heat sink, and lamination bonding of a plating layer and a circuit, and a power module substrate using the solder bonding material.

従来、ベース金属板上の少なくとも一主面上に絶縁層を形成することにより金属ベース絶縁基板が形成され、この金属ベース絶縁基板上に回路又は少なくとも一層以上の回路基板が積層された金属ベース回路基板が開示されている(例えば、特許文献1参照)。この金属ベース回路基板では、ベース金属板はアルミニウムやアルミニウム合金等により形成され、絶縁層は各種セラミック、無機粉体又は無機繊維を含有する高分子樹脂又は耐熱性高分子樹脂により形成され、回路は銅やアルミニウム等により形成される。また金属ベース絶縁板上に、回路を直接積層し、或いは回路基板を接着剤層を介して積層した状態で、120℃で7時間加熱した後の重量減少率は絶縁材料単位体積に対して、9.0×10-3g/cm3以下である。
このように構成された金属ベース回路基板では、はんだリフロー前に120℃で7時間加熱し、かつその加熱後の重量減少率が絶縁材料単位体積に対して、9.0×10-3g/cm3以下であったので、はんだリフロー時に金属ベース回路基板に高温の熱衝撃が作用しても、絶縁層と回路との界面や、接着剤層と回路基板との界面に、膨れや剥がれが発生しない。
特開平8−64920号公報(請求項1、段落[0009]〜段落[0011]、段落[0025])
Conventionally, a metal-based insulating substrate is formed by forming an insulating layer on at least one main surface of a base metal plate, and a circuit or a metal-based circuit in which at least one or more circuit boards are stacked on the metal-based insulating substrate A substrate is disclosed (for example, see Patent Document 1). In this metal-based circuit board, the base metal plate is formed of aluminum, an aluminum alloy, or the like, the insulating layer is formed of a polymer resin or a heat-resistant polymer resin containing various ceramics, inorganic powders or inorganic fibers, and the circuit is It is formed of copper, aluminum, or the like. In addition, on a metal base insulating plate, a circuit is directly laminated, or a circuit board is laminated via an adhesive layer, and after heating at 120 ° C. for 7 hours, a weight reduction rate is based on an insulating material unit volume. It is 9.0 × 10 −3 g / cm 3 or less.
The metal-based circuit board thus configured is heated at 120 ° C. for 7 hours before solder reflow, and the rate of weight loss after the heating is 9.0 × 10 −3 g / unit volume of the insulating material. because cm 3 was less, also act high temperature thermal shock to the metal base circuit board during solder reflow, and the interface between the insulating layer and the circuit, the interface between the adhesive layer and the circuit board, blistering or peeling Does not occur.
JP-A-8-64920 (Claim 1, paragraphs [0009] to [0011], paragraph [0025])

しかし、上記従来の特許文献1に示された金属ベース回路基板では、回路にはんだ層を介して半導体素子裏面のめっき層を積層接着した場合、回路や半導体素子への通電及びその停止を繰返すことにより金属ベース回路基板に温度サイクルが作用するため、上記はんだ層に歪みがたまり、はんだ層にクラックが発生するおそれがあった。
また、上記従来の特許文献1に示された金属ベース回路基板では、はんだ層の熱伝導率が回路やめっき層と比較して低く、はんだ層が熱抵抗となって半導体素子から回路への熱伝導率が低下する問題点もあった。
更に、上記従来の特許文献1に示された金属ベース回路基板では、厚いベース金属板を熱膨張係数の大きなアルミニウムにより形成し、かつ薄い回路上に熱膨張係数の小さい大型の半導体素子をはんだ層を介して積層接着すると、温度サイクル後に上記ベース金属板及び半導体素子の熱膨張係数の差に起因して、はんだ層にクラックが発生するおそれもあった。
本発明の目的は、熱サイクル寿命を延すことができ、熱伝導率を向上できる、はんだ接合材及びこれを用いたパワーモジュール基板を提供することにある。
However, in the conventional metal-based circuit board disclosed in Patent Document 1, when a plating layer on the back surface of a semiconductor element is laminated and adhered to a circuit via a solder layer, the energization and stop of the circuit and the semiconductor element are repeated. As a result, a temperature cycle acts on the metal base circuit board, so that the solder layer is distorted and cracks may occur in the solder layer.
Further, in the metal-based circuit board disclosed in the above-mentioned conventional patent document 1, the thermal conductivity of the solder layer is lower than that of the circuit or the plating layer, and the solder layer becomes a thermal resistance, and the heat from the semiconductor element to the circuit is reduced. There is also a problem that the conductivity is reduced.
Further, in the metal base circuit board disclosed in the above-mentioned conventional patent document 1, a thick base metal plate is formed of aluminum having a large thermal expansion coefficient, and a large semiconductor element having a small thermal expansion coefficient is formed on a thin circuit by a solder layer. When lamination and bonding are performed through the above, cracks may occur in the solder layer due to the difference in the coefficient of thermal expansion between the base metal plate and the semiconductor element after the temperature cycle.
An object of the present invention is to provide a solder joint material and a power module substrate using the same, which can extend the thermal cycle life and improve the thermal conductivity.

請求項1に係る発明は、図1及び図2に示すように、はんだより融点が高くかつはんだ濡れ性のある金属材料により三次元網状多孔質に形成された発泡金属材12と、この発泡金属材12に含浸されるとともに発泡金属材12表面を被覆するはんだ材とを備えたはんだ接合材である。
この請求項1に記載されたはんだ接合材では、はんだ接合材11の両面に接合部材をそれぞれ接合した状態で温度サイクルが作用しても、三次元網状多孔質構造を有する発泡金属材12の機械的強度が高いため、発泡金属材12に含浸されたはんだ材に歪みがたまらず、はんだ材にクラックが発生することはない。また発泡金属材12に含浸されたはんだ材の熱伝導率は低いけれども、三次元網状多孔質構造の発泡金属材12の熱伝導率が高いため、はんだ接合材11の一方の面の熱は上記発泡金属材12を通ってはんだ接合材11の他方の面にスムーズに伝わる。
As shown in FIGS. 1 and 2, the invention according to claim 1 comprises a three-dimensional mesh-like porous metal material 12 made of a metal material having a melting point higher than that of solder and having solder wettability. And a solder material impregnated in the material 12 and covering the surface of the foamed metal material 12.
In the solder bonding material according to the first aspect, even when a temperature cycle is applied in a state where the bonding members are bonded to both surfaces of the solder bonding material 11, the machine of the foamed metal material 12 having the three-dimensional net-like porous structure is used. Due to the high mechanical strength, the solder material impregnated in the foamed metal material 12 does not accumulate strain, and the solder material does not crack. Although the thermal conductivity of the solder material impregnated in the foamed metal material 12 is low, the thermal conductivity of the foamed metal material 12 having a three-dimensional net-like porous structure is high. It is transmitted smoothly to the other surface of the solder joint material 11 through the foam metal material 12.

請求項4に係る発明は、図1に示すように、請求項1ないし3いずれか1項に記載のはんだ接合材11を用いたパワーモジュール基板である。
この請求項4に記載されたパワーモジュール基板では、上記はんだ接合材を用いているので、パワーモジュール基板自体の熱サイクル寿命を延すことができるとともに、パワーモジュール基板自体の熱伝導率を向上できる。
The invention according to claim 4 is a power module substrate using the solder bonding material 11 according to any one of claims 1 to 3, as shown in FIG.
In the power module substrate according to the fourth aspect, since the solder bonding material is used, the thermal cycle life of the power module substrate itself can be extended, and the thermal conductivity of the power module substrate itself can be improved. .

以上述べたように、本発明によれば、発泡金属材をはんだより融点が高くかつはんだ濡れ性のある金属材料により三次元網状多孔質に形成し、はんだ材を上記発泡金属材に含浸するとともに発泡金属材表面を被覆したので、はんだ接合材の両面に接合部材をそれぞれ接合した状態で温度サイクルが作用しても、機械的強度が高い三次元網状多孔質構造を有する発泡金属材により、発泡金属材に含浸されたはんだ材への歪みの蓄積が阻止される。この結果、上記はんだ材にクラックが発生しないので、はんだ接合材の熱サイクル寿命を延すことができる。
また発泡金属材に含浸されたはんだ材の熱伝導率は低いけれども、三次元網状多孔質構造の発泡金属材の熱伝導率が高いため、はんだ接合材の一方の面の熱は上記発泡金属材を通ってはんだ接合材の他方の面にスムーズに伝わる。この結果、本発明のはんだ接合材は従来のはんだ層より熱伝導率が向上する。
更に上記はんだ接合材を用いたパワーモジュール基板では、はんだ接合材の熱サイクル寿命が延びかつ熱伝導率が向上するので、パワーモジュール基板自体の熱サイクル寿命をも延ばすことができるとともに、パワーモジュール基板自体の熱伝導率をも向上できる。この結果、半導体素子の過熱を防止できる。
As described above, according to the present invention, a foamed metal material is formed into a three-dimensional net-like porous material using a metal material having a higher melting point than solder and a solder wettability, and impregnating the solder material into the foamed metal material. Since the surface of the foamed metal material is covered, even if a temperature cycle is applied in a state where the joining members are joined to both surfaces of the solder joining material, the foamed metal material having a three-dimensional net-like porous structure with high mechanical strength is used to form the foam. Accumulation of strain in the solder material impregnated in the metal material is prevented. As a result, cracks do not occur in the solder material, and the thermal cycle life of the solder joint material can be extended.
Although the thermal conductivity of the solder material impregnated in the foamed metal material is low, the thermal conductivity of the foamed metal material having a three-dimensional net-like porous structure is high, so that the heat on one side of the solder joint material is reduced to the above-mentioned foamed metal material. Through to the other side of the solder joint material. As a result, the thermal conductivity of the solder joint material of the present invention is higher than that of the conventional solder layer.
Further, in the power module substrate using the above solder bonding material, the thermal cycle life of the solder bonding material is extended and the thermal conductivity is improved, so that the thermal cycle life of the power module substrate itself can be extended and the power module substrate can be extended. The thermal conductivity of itself can also be improved. As a result, overheating of the semiconductor element can be prevented.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1及び図2に示すように、はんだ接合材11は発泡金属材12及びはんだ材を備える。発泡金属材12は、はんだより融点が高くかつはんだ濡れ性のある金属材料により、三次元網状多孔質に形成される(図2)。はんだ材は発泡金属材に含浸されるとともに、発泡金属材表面を被覆する。また発泡金属材12はCu、Ni、Ag又はFe等により形成されることが好ましい。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the solder bonding material 11 includes a foamed metal material 12 and a solder material. The foamed metal material 12 is formed into a three-dimensional net-like porous material made of a metal material having a higher melting point than solder and having solder wettability (FIG. 2). The solder material is impregnated into the foam metal material and covers the surface of the foam metal material. Further, the foam metal material 12 is preferably formed of Cu, Ni, Ag, Fe, or the like.

発泡金属材12の互いに連なる気孔12a(図2)の平均直径は10〜1000μm、好ましくは50〜500μmであり、発泡金属材12の気孔率は20〜95%、好ましくは40〜90%である。気孔12aの平均直径を10〜1000μmに限定したのは、10μm未満でははんだ接合材11の熱伝導率が低下し、1000μmを超えるとはんだ接合材11の機械的強度が低下するためである。また気孔率を20〜95%に限定したのは、20%を超えるとはんだ接合材11の機械的強度が低下し、95%未満でははんだ接合材11の熱伝導率が低下するためである。更にはんだ材としては、Pb−Sn系、Sn−Ag−Cu系、Sn−Ag−Cu−Bi系又はSn−Zn系等のはんだを用いることが好ましい。   The average diameter of the interconnected pores 12a (FIG. 2) of the metal foam 12 is 10 to 1000 μm, preferably 50 to 500 μm, and the porosity of the metal foam 12 is 20 to 95%, preferably 40 to 90%. . The reason why the average diameter of the pores 12a is limited to 10 to 1000 μm is that if it is less than 10 μm, the thermal conductivity of the solder bonding material 11 decreases, and if it exceeds 1000 μm, the mechanical strength of the solder bonding material 11 decreases. The reason why the porosity is limited to 20 to 95% is that when the porosity exceeds 20%, the mechanical strength of the solder bonding material 11 decreases, and when the porosity is less than 95%, the thermal conductivity of the solder bonding material 11 decreases. Further, as the solder material, it is preferable to use a Pb-Sn-based, Sn-Ag-Cu-based, Sn-Ag-Cu-Bi-based or Sn-Zn-based solder.

上記はんだ接合材11には、Al、Al合金、Cu、Cu合金、Au等の金属により形成された接合部材や、AlSiC、Al−C、Cu−C等の複合材により形成された接合部材が、発泡金属材12を被覆するはんだ材により積層接着される。これらの接合部材の具体例としては、図1に詳しく示すように、Al、Al合金、Cu、Cu合金、AlSiC等により形成された放熱板13や、絶縁基板14の両面に積層接着されかつAl、Al合金、Cu、Cu合金等により形成された第1及び第2回路21,22や、半導体素子16の裏面に形成されたAuめっき等のめっき層16aが挙げられる。なお、図1に示す基板20はパワーモジュール基板であるが、本発明のはんだ接合材11はパワーモジュール基板20のみならず、金属ベース基板、厚膜基板等の積層接着に用いることができる。また図1の符号17,17はAl−Si系等のろう材層である。   Examples of the solder bonding material 11 include a bonding member formed of a metal such as Al, Al alloy, Cu, Cu alloy, and Au, and a bonding member formed of a composite material such as AlSiC, Al-C, and Cu-C. , And are laminated and adhered by a solder material covering the metal foam 12. Specific examples of these joining members include, as shown in detail in FIG. 1, a heat radiating plate 13 made of Al, Al alloy, Cu, Cu alloy, AlSiC, or the like, , Al alloy, Cu, Cu alloy, etc., the first and second circuits 21 and 22, and the plating layer 16a such as Au plating formed on the back surface of the semiconductor element 16. Although the substrate 20 shown in FIG. 1 is a power module substrate, the solder bonding material 11 of the present invention can be used not only for the power module substrate 20 but also for laminating and bonding a metal base substrate, a thick film substrate and the like. Reference numerals 17 in FIG. 1 denote brazing material layers made of Al-Si or the like.

このように構成されたはんだ接合材11の製造法を説明する。
先ず原料粉末(セラミック粉末等)と水溶性樹脂結合剤とを含有する通常のシート成形用の水系スラリーを調製する。上記原料粉末としては、Cu、Ni、Ag又はFeの粉末が用いられ、その原料粉末の平均粒径は10〜1000μmの範囲が好ましく、より好ましくは50〜500μmである。次いで上記水系スラリーに、水より蒸気圧が大きい非水溶性有機溶剤,界面活性剤,水溶性樹脂結合剤,可塑剤及び水を混合して、非水溶性有機溶剤含有スラリーを調製する。このスラリーは気泡剤となる非水溶性有機溶剤を含有している点を除けば、通常のシート成形法に用いる水系スラリーと同じである。非水溶性有機溶剤は蒸気圧が水より大きければ特に制限されないが、好ましいのは炭素数5〜8の炭化水素系溶剤である。その具体例としては、ネオペンタン,ヘキサン,イソヘキサン,ヘプタン,イソヘプタン,オクタン,ベンゼン,トルエン等が挙げられる。
A method of manufacturing the solder bonding material 11 configured as described above will be described.
First, an ordinary aqueous slurry for sheet molding containing a raw material powder (such as a ceramic powder) and a water-soluble resin binder is prepared. As the raw material powder, a powder of Cu, Ni, Ag or Fe is used, and the average particle size of the raw material powder is preferably in the range of 10 to 1000 µm, more preferably 50 to 500 µm. Next, a water-insoluble organic solvent having a higher vapor pressure than water, a surfactant, a water-soluble resin binder, a plasticizer, and water are mixed with the aqueous slurry to prepare a slurry containing a water-insoluble organic solvent. This slurry is the same as an aqueous slurry used in a normal sheet forming method except that it contains a non-water-soluble organic solvent serving as a foaming agent. The water-insoluble organic solvent is not particularly limited as long as the vapor pressure is higher than that of water, but is preferably a hydrocarbon solvent having 5 to 8 carbon atoms. Specific examples include neopentane, hexane, isohexane, heptane, isoheptane, octane, benzene, toluene and the like.

界面活性剤は特に制限されず、食器洗い用の中性洗剤でもよい。水溶性樹脂結合剤の例としては、メチルセルロース,ヒドロキシプロピルメチルセルロース,ヒドロキシエチルメチルセルロース,カルボキシメチルセルロースアンモニウム,エチルセルロース,ポリビニルアルコール等がある。可塑剤は必要に応じて使用すればよく、多価アルコール,油脂,エーテル,エステルから選ぶことができる。具体例としては、ポリエチレングリコール,オリーブ油,石油エーテル,フタル酸ジノルマルブチル,ソルビタンモノオレート,グリセリン等がある。上記各成分の配合割合は、原料粉末が5〜80重量%、非水溶性有機溶剤が0.05〜10重量%、水溶性樹脂結合剤が0.5〜20重量%、界面活性剤が0.05〜10重量%、可塑剤が15重量%以下(ゼロでもよい。)、残りが水となることが好ましい。   The surfactant is not particularly limited, and may be a neutral detergent for dishwashing. Examples of the water-soluble resin binder include methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose ammonium, ethylcellulose, polyvinyl alcohol and the like. The plasticizer may be used as needed, and can be selected from polyhydric alcohols, oils and fats, ethers and esters. Specific examples include polyethylene glycol, olive oil, petroleum ether, di-n-butyl phthalate, sorbitan monooleate, and glycerin. The mixing ratio of each component is 5 to 80% by weight of the raw material powder, 0.05 to 10% by weight of the water-insoluble organic solvent, 0.5 to 20% by weight of the water-soluble resin binder, and 0 to 20% by weight of the surfactant. It is preferable that 0.05 to 10% by weight, the plasticizer be 15% by weight or less (or zero), and the remainder be water.

上記非水溶性有機溶剤含有スラリーをよく混合して、公知のドクタブレード法やスリップキャスティング法等のシート成形法によりシート状の成形体を作製する。この成形体を大気中5〜40℃で30〜180分間保持すると、水が蒸発するより先に、水より蒸気圧が大きい非水溶性有機溶剤が気化して蒸発する。例えば、非水溶性有機溶剤が上記の炭化水素系溶剤である場合には、5℃以上の温度でこの有機溶剤の蒸発が起こる。上記保持温度は、水の蒸発が急激に起こらないように、比較的低温、例えば40℃以下であることが好ましい。蒸発する溶剤はスラリー中に分散して閉じ込められていたため、これが気化する際の体積膨張により溶剤蒸発後には成形体に大きな気孔が残る。水も蒸発させて乾燥が終了すると、大きな気孔が多数形成された三次元網状多孔質構造体が得られる。この大きな気孔は原料粉末の粒径より著しく大きいが、大きさは比較的よく揃っている。この構造体は樹脂結合剤と可塑剤を含むため、気孔率が大きくても、ハンドリング可能な強度を有する。   The slurry containing the water-insoluble organic solvent is mixed well, and a sheet-like molded body is produced by a sheet molding method such as a known doctor blade method or slip casting method. When this molded body is kept in the atmosphere at 5 to 40 ° C. for 30 to 180 minutes, a water-insoluble organic solvent having a higher vapor pressure than water evaporates and evaporates before water evaporates. For example, when the water-insoluble organic solvent is the above-mentioned hydrocarbon solvent, the organic solvent evaporates at a temperature of 5 ° C. or higher. The holding temperature is preferably a relatively low temperature, for example, 40 ° C. or less, so that evaporation of water does not occur rapidly. Since the solvent to be evaporated is dispersed and confined in the slurry, large pores remain in the molded body after the solvent is evaporated due to volume expansion when the solvent is evaporated. When the water is evaporated and the drying is completed, a three-dimensional net-like porous structure having a large number of large pores is obtained. These large pores are significantly larger than the particle size of the raw material powder, but are relatively well-sized. Since this structure contains a resin binder and a plasticizer, it has handleable strength even if it has a high porosity.

この構造体を乾燥した後に、還元雰囲気中で焼成すると、焼成後も三次元網状多孔質構造が保持される。なお焼成前に、焼成温度より低温に加熱してシートから有機物(例えば、結合剤,可塑剤,界面活性剤)を除去する脱脂を行ってもよい。焼成後に得られた発泡金属材12(図2)は骨格を形成している原料粉末の粒径より著しく大きな気孔(大径気孔群)が多数存在し、三次元網状多孔質構造になっている。この大径気孔群に加えて、骨格自体が原料粉末の焼成により形成された多孔質体であるため小さい気孔(小径気孔群)が多数存在する。更に上記発泡金属材12をPb−Sn系、Sn−Ag−Cu系、Sn−Ag−Cu−Bi系又はSn−Zn系等のはんだの溶融したはんだ溶融槽に浸漬する。これにより発泡金属材12の多数の気孔12aにはんだ材が侵入するとともに、発泡金属材12の表面がはんだ材により被覆され、はんだ接合材11(図1)が得られる。   When this structure is dried and fired in a reducing atmosphere, the three-dimensional network porous structure is maintained even after firing. Before firing, degreasing may be performed by heating the sheet to a temperature lower than the firing temperature to remove organic substances (for example, a binder, a plasticizer, and a surfactant) from the sheet. The foamed metal material 12 (FIG. 2) obtained after the firing has a large number of pores (large pore group) significantly larger than the particle diameter of the raw material powder forming the skeleton, and has a three-dimensional network porous structure. . In addition to the large pore group, there are many small pores (small pore group) because the skeleton itself is a porous body formed by firing the raw material powder. Further, the foamed metal material 12 is immersed in a solder melting bath in which a Pb-Sn-based, Sn-Ag-Cu-based, Sn-Ag-Cu-Bi-based or Sn-Zn-based solder is melted. As a result, the solder material enters the many pores 12a of the foam metal material 12, and the surface of the foam metal material 12 is covered with the solder material, so that the solder bonding material 11 (FIG. 1) is obtained.

なお、焼成前の三次元網状多孔質構造体をホットプレスにより加熱温度及び圧力をパラメータとして厚さ方向に加熱圧縮すると、構造体の嵩密度を任意に制御するとができる。
また、ポアフォーマ添加法等の非発泡シート成形法により上記構造体の気孔より小径の気孔を有する多孔質シートを形成し、この多孔質シートを上記構造体に加熱圧着して積層体を形成し、更にこの積層体を焼成してもよい。ポアフォーマ添加法とは、セラミック粉末に予め粒子状又はビーズ状のポアフォーマと呼ばれる有機物を添加して成形した後に、この有機物を除去する脱脂を行い焼成することにより、気孔を形成する方法をいう。このポアフォーマ添加法で作製された多孔質シートは気孔が50μm以下と小さいため、上記三次元網状多孔質構造体より表面粗さが小さい。
The bulk density of the structure can be arbitrarily controlled by heating and compressing the three-dimensional reticulated porous structure before firing in a thickness direction by using a heating press and a heating temperature and pressure as parameters.
Further, a porous sheet having pores smaller in diameter than the pores of the structure is formed by a non-foamed sheet molding method such as a pore former addition method, and the porous sheet is heat-pressed to the structure to form a laminate, Further, the laminate may be fired. The pore former addition method refers to a method in which an organic substance called a pore former in the form of particles or beads is added to a ceramic powder in advance, molded, degreased to remove the organic substance, and fired to form pores. Since the porous sheet produced by this pore former addition method has pores as small as 50 μm or less, the surface roughness is smaller than that of the three-dimensional network porous structure.

このように製造されたはんだ接合材11では、半導体素子16や第1及び第2回路21,22への通電及びその停止を繰返すことにより、パワーモジュール基板20に温度サイクルが作用しても、三次元網状多孔質構造を有する発泡金属材12の機械的強度が高いため、発泡金属材12に含浸されたはんだ材に歪みがたまることはない。この結果、はんだ材にクラックが発生しないので、はんだ接合材11の熱サイクル寿命を延すことができる。
また発泡金属材12に含浸されたはんだ材の熱伝導率は低いけれども、三次元網状多孔質構造の発泡金属材12の熱伝導率が高いため、半導体素子16で発生した熱は上側のはんだ接合材11の発泡金属材12を通って第1回路21にスムーズに伝わり、更に絶縁基板14、第2回路22及び下側のはんだ接合材11の発泡金属材12を通って放熱板13にスムーズに伝わる。この結果、半導体素子16の過熱を防止できる。
In the solder bonding material 11 manufactured in this manner, the power supply to the semiconductor element 16 and the first and second circuits 21 and 22 is repeatedly performed and the power supply to the semiconductor circuit 16 is stopped. Since the mechanical strength of the foamed metal material 12 having the original reticulated porous structure is high, distortion does not accumulate in the solder material impregnated in the foamed metal material 12. As a result, cracks do not occur in the solder material, so that the thermal cycle life of the solder bonding material 11 can be extended.
Further, although the thermal conductivity of the solder material impregnated in the foamed metal material 12 is low, the heat generated in the semiconductor element 16 is not affected by the heat generated by the semiconductor element 16 due to the high thermal conductivity of the foamed metal material 12 having the three-dimensional network porous structure. Smoothly transmitted to the first circuit 21 through the foam metal material 12 of the material 11, and further smoothly to the heat sink 13 through the insulating substrate 14, the second circuit 22, and the foam metal material 12 of the lower solder bonding material 11. Transmitted. As a result, overheating of the semiconductor element 16 can be prevented.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず原料粉末として80重量%のCu粉末と、非水溶性有機溶剤として2重量%のヘキサンと、界面活性剤として2重量%の中性洗剤と、水溶性樹脂結合剤として10重量%のメチルセルロースと、可塑剤として3重量%のグリセリンと、3重量%の水とを混合して、非水溶性有機溶剤を含有する水系スラリーを調製し、ドクタブレード法により厚さ0.2mmの成形体を形成した。
次に上記成形体を30℃の温度で2時間保持した。この間に成形体中の非水溶性有機溶剤であるヘキサンが気化してガスとなり、成形体中に微細でかつ寸法の揃った気孔が多数形成され、厚さが0.1mmの三次元網状多孔質構造体を得た。この構造体を乾燥した後、ホットプレスにより気孔率が40%になるように加熱圧縮した後、還元雰囲気中800℃で3時間焼成して、三次元網状多孔質構造を有する発泡金属材を作製した。更にこの発泡金属材をPb−5Snはんだ(熱伝導率:36W/m/K)の溶融したはんだ溶融槽に浸漬し、発泡金属材の多数の気孔にはんだ材を侵入させるとともに、発泡金属材の表面をはんだ材により被覆することにより、厚さ0.15mmのはんだ接合材を得た。このはんだ接合材を実施例1とした。なお、上記発泡金属材の気孔の平均直径は50μmであり、気孔率は30.0%であった。また上記はんだ接合材を走査型電子顕微鏡で撮影した写真を図2に示す。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 80% by weight of Cu powder as a raw material powder, 2% by weight of hexane as a water-insoluble organic solvent, 2% by weight of a neutral detergent as a surfactant, and 10% by weight of methylcellulose as a water-soluble resin binder. A water-based slurry containing a water-insoluble organic solvent is prepared by mixing 3% by weight of glycerin as a plasticizer and 3% by weight of water, and a molded body having a thickness of 0.2 mm is formed by a doctor blade method. did.
Next, the molded body was kept at a temperature of 30 ° C. for 2 hours. During this time, hexane, which is a water-insoluble organic solvent in the molded body, is vaporized to form a gas, and a number of fine and uniform pores are formed in the molded body, and a three-dimensional net-like porous material having a thickness of 0.1 mm is formed. A structure was obtained. After drying this structure, it is heated and compressed by a hot press so that the porosity becomes 40%, and then calcined at 800 ° C. for 3 hours in a reducing atmosphere to produce a foamed metal material having a three-dimensional network porous structure. did. Further, this foamed metal material is immersed in a solder melting bath in which Pb-5Sn solder (thermal conductivity: 36 W / m / K) is melted, so that the solder material penetrates into many pores of the foamed metal material. By coating the surface with a solder material, a solder joining material having a thickness of 0.15 mm was obtained. This solder bonding material was used as Example 1. The average diameter of the pores of the foamed metal material was 50 μm, and the porosity was 30.0%. FIG. 2 shows a photograph of the solder bonding material taken with a scanning electron microscope.

<実施例2>
はんだ材としてPb−63Snはんだ(熱伝導率:51W/m/K)を用い、発泡金属材の気孔の平均直径が70μmであり、気孔率が50.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を実施例2とした。
<実施例3>
はんだ材としてSn−Ag−Cuはんだ(熱伝導率:36W/m/K)を用い、発泡金属材の気孔の平均直径が200μmであり、気孔率が90.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を実施例3とした。
<実施例4>
発泡金属材の出発原料として80重量%のNi粉末を用い、はんだ材としてPb−5Snはんだ(熱伝導率:36W/m/K)を用い、発泡金属材の気孔の平均直径が80μmであり、気孔率が50.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を実施例4とした。
<Example 2>
Pb-63Sn solder (thermal conductivity: 51 W / m / K) was used as the solder material, and the foamed metal material had an average diameter of pores of 70 μm and a porosity of 50.0%. A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1. This solder bonding material was used as Example 2.
<Example 3>
Except that Sn-Ag-Cu solder (thermal conductivity: 36 W / m / K) was used as the solder material, the average diameter of the pores of the foamed metal material was 200 μm, and the porosity was 90.0%. Then, a solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1. This solder bonding material was used as Example 3.
<Example 4>
80% by weight of Ni powder is used as a starting material of the foamed metal material, Pb-5Sn solder (thermal conductivity: 36 W / m / K) is used as a solder material, and the average diameter of pores of the foamed metal material is 80 μm; A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1 except that the porosity was 50.0%. This solder bonding material was used as Example 4.

<実施例5>
発泡金属材の出発原料として80重量%のNi粉末を用い、はんだ材としてPb−63Snはんだ(熱伝導率:51W/m/K)を用い、発泡金属材の気孔の平均直径が150μmであり、気孔率が70.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を実施例5とした。
<実施例6>
発泡金属材の出発原料として80重量%のNi粉末を用い、はんだ材としてSn−Ag−Cuはんだ(熱伝導率:36W/m/K)を用い、発泡金属材の気孔の平均直径が210μmであり、気孔率が95.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を実施例6とした。
<Example 5>
80% by weight of Ni powder is used as a starting material of the foamed metal material, Pb-63Sn solder (thermal conductivity: 51 W / m / K) is used as a solder material, and the average diameter of pores of the foamed metal material is 150 μm; A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1 except that the porosity was 70.0%. This solder bonding material was used as Example 5.
<Example 6>
80% by weight of Ni powder was used as a starting material of the foamed metal material, Sn-Ag-Cu solder (thermal conductivity: 36 W / m / K) was used as a solder material, and the average diameter of pores of the foamed metal material was 210 μm. Except that the porosity was 95.0%, a solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1. This solder bonding material was used as Example 6.

<比較例1>
発泡金属材の気孔の平均直径が20μmであり、気孔率が10.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例1とした。
<比較例2>
発泡金属材の気孔の平均直径が10μmであり、気孔率が5.0%であったことを除いて、実施例1と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例2とした。
<Comparative Example 1>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1, except that the average diameter of the pores of the foamed metal material was 20 μm and the porosity was 10.0%. This solder joining material was used as Comparative Example 1.
<Comparative Example 2>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 1, except that the average diameter of the pores of the foamed metal material was 10 μm and the porosity was 5.0%. This solder bonding material was used as Comparative Example 2.

<比較例3>
発泡金属材の気孔の平均直径が20μmであり、気孔率が10.0%であったことを除いて、実施例2と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例3とした。
<比較例4>
発泡金属材の気孔の平均直径が15μmであり、気孔率が8.5%であったことを除いて、実施例3と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例4とした。
<Comparative Example 3>
A solder joining material having a thickness of 0.15 mm was prepared in the same manner as in Example 2 except that the average diameter of the pores of the foamed metal material was 20 μm and the porosity was 10.0%. This solder bonding material was used as Comparative Example 3.
<Comparative Example 4>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 3, except that the average diameter of the pores of the foamed metal material was 15 μm and the porosity was 8.5%. This solder bonding material was used as Comparative Example 4.

<比較例5>
発泡金属材の気孔の平均直径が15μmであり、気孔率が8.5%であったことを除いて、実施例4と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例5とした。
<比較例6>
発泡金属材の気孔の平均直径が10μmであり、気孔率が4.5%であったことを除いて、実施例4と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例6とした。
<Comparative Example 5>
Except that the average diameter of the pores of the foamed metal material was 15 μm and the porosity was 8.5%, a solder joint material having a thickness of 0.15 mm was produced in the same manner as in Example 4. This solder bonding material was used as Comparative Example 5.
<Comparative Example 6>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 4, except that the average diameter of the pores of the foamed metal material was 10 μm and the porosity was 4.5%. This solder joining material was used as Comparative Example 6.

<比較例7>
発泡金属材の気孔の平均直径が15μmであり、気孔率が8.5%であったことを除いて、実施例5と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例7とした。
<比較例8>
発泡金属材の気孔の平均直径が20μmであり、気孔率が10.0%であったことを除いて、実施例6と同様にして厚さ0.15mmのはんだ接合材を作製した。このはんだ接合材を比較例8とした。
<Comparative Example 7>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 5, except that the average diameter of the pores of the foamed metal material was 15 μm and the porosity was 8.5%. This solder bonding material was used as Comparative Example 7.
<Comparative Example 8>
A solder joining material having a thickness of 0.15 mm was produced in the same manner as in Example 6, except that the average diameter of the pores of the foamed metal material was 20 μm and the porosity was 10.0%. This solder joining material was used as Comparative Example 8.

<比較試験及び評価>
実施例1〜6及び比較例1〜8のはんだ接合材の熱伝導率をレーザフラッシュ法により測定した。具体的には、先ず実施例1〜6及び比較例1〜8のはんだ接合材の表面をパルスレーザで加熱し、このときのはんだ接合材の裏面での温度応答を赤外線検出器によりそれぞれ検出した。次にこの赤外線検出器にて検出された温度応答の曲線を解析することにより、はんだ接合材の熱伝導率を導出した。このはんだ接合材の熱伝導率を、発泡金属材の材質、気孔の平均直径、気孔率、はんだ材の材質、はんだ材の熱伝導率とともに表1に示す。
<Comparison test and evaluation>
The thermal conductivity of the solder joints of Examples 1 to 6 and Comparative Examples 1 to 8 was measured by a laser flash method. Specifically, first, the front surfaces of the solder joining materials of Examples 1 to 6 and Comparative Examples 1 to 8 were heated with a pulse laser, and the temperature response on the back surface of the solder joining material at this time was detected by an infrared detector, respectively. . Next, the thermal conductivity of the solder joint material was derived by analyzing the curve of the temperature response detected by the infrared detector. Table 1 shows the thermal conductivity of the solder joint material together with the material of the foamed metal material, the average diameter of the pores, the porosity, the material of the solder material, and the thermal conductivity of the solder material.

Figure 2004298962
Figure 2004298962

表1から明らかなように、発泡金属材としてCuを用い、かつはんだ材としてPb−5Snを用いた場合、即ち比較例1及び2のはんだ接合材の熱伝導率はそれぞれ151.2W/m/K及び40.5W/m/Kと低かったのに対し、実施例1のはんだ接合材の熱伝導率は286.6W/m/Kと高くなった。また発泡金属材としてCuを用い、かつはんだ材としてPb−63Snを用いた場合、即ち比較例3のはんだ接合材の熱伝導率は163.1W/m/Kと低かったのに対し、実施例2のはんだ接合材の熱伝導率は222.5W/m/Kと高くなった。更に発泡金属材としてCuを用い、かつはんだ材としてSn−Ag−Cuを用いた場合、即ち比較例4のはんだ接合材の熱伝導率は60.2W/m/Kと低かったのに対し、実施例3のはんだ接合材の熱伝導率は71.8W/m/Kと高くなった。   As is clear from Table 1, when Cu is used as the foamed metal material and Pb-5Sn is used as the solder material, that is, the thermal conductivity of the solder bonding materials of Comparative Examples 1 and 2 is 151.2 W / m / m respectively. K and 40.5 W / m / K were low, whereas the thermal conductivity of the solder joint material of Example 1 was high at 286.6 W / m / K. Further, when Cu was used as the foam metal material and Pb-63Sn was used as the solder material, that is, the thermal conductivity of the solder joint material of Comparative Example 3 was as low as 163.1 W / m / K, while The thermal conductivity of the solder joint material No. 2 was as high as 222.5 W / m / K. Further, when Cu was used as the foam metal material and Sn-Ag-Cu was used as the solder material, that is, the thermal conductivity of the solder bonding material of Comparative Example 4 was as low as 60.2 W / m / K, The thermal conductivity of the solder joint material of Example 3 was as high as 71.8 W / m / K.

一方、発泡金属材としてNiを用い、かつはんだ材としてPb−5Snを用いた場合、即ち比較例5及び6のはんだ接合材の熱伝導率はそれぞれ60.1W/m/K及び37.4W/m/Kと低かったのに対し、実施例4のはんだ接合材の熱伝導率は64.1W/m/Kと高くなった。また発泡金属材としてNiを用い、かつはんだ材としてPb−63Snを用いた場合、即ち比較例7のはんだ接合材の熱伝導率は40.3W/m/Kと低かったのに対し、実施例5のはんだ接合材の熱伝導率は63.4W/m/Kと高くなった。更に発泡金属材としてNiを用い、かつはんだ材としてSn−Ag−Cuを用いた場合、即ち比較例8のはんだ接合材の熱伝導率は30.2W/m/Kと低かったのに対し、実施例6のはんだ接合材の熱伝導率は38.8W/m/Kと高くなった。この結果、気孔の平均直径及び気孔率が大きいほど熱伝導率が向上することが分かった。   On the other hand, when Ni was used as the foamed metal material and Pb-5Sn was used as the solder material, that is, the thermal conductivity of the solder joint materials of Comparative Examples 5 and 6 was 60.1 W / m / K and 37.4 W /, respectively. The thermal conductivity of the solder joint material of Example 4 was as high as 64.1 W / m / K, while the thermal conductivity was as low as m / K. In the case where Ni was used as the foam metal material and Pb-63Sn was used as the solder material, that is, the thermal conductivity of the solder joining material of Comparative Example 7 was as low as 40.3 W / m / K, whereas The thermal conductivity of the solder joint material No. 5 was as high as 63.4 W / m / K. Further, when Ni was used as the foam metal material and Sn-Ag-Cu was used as the solder material, that is, the thermal conductivity of the solder bonding material of Comparative Example 8 was as low as 30.2 W / m / K, The thermal conductivity of the solder joint material of Example 6 was as high as 38.8 W / m / K. As a result, it was found that the larger the average diameter and the porosity of the pores, the higher the thermal conductivity.

本発明実施形態のはんだ接合材を含むパワーモジュール基板の断面図である。It is sectional drawing of the power module board | substrate containing the solder joining material of this embodiment. はんだ接合材の発泡金属材の走査型電子顕微鏡写真図である。It is a scanning electron microscope photograph figure of the foam metal material of a solder joint material.

符号の説明Explanation of reference numerals

11 はんだ接合材
12 発泡金属材
20 パワーモジュール基板
DESCRIPTION OF SYMBOLS 11 Solder joining material 12 Foam metal material 20 Power module board

Claims (4)

はんだより融点が高くかつはんだ濡れ性のある金属材料により三次元網状多孔質に形成された発泡金属材(12)と、
前記発泡金属材(12)に含浸されるとともに前記発泡金属材(12)表面を被覆するはんだ材と
を備えたはんだ接合材。
A foamed metal material (12) formed into a three-dimensional net-like porous material by a metal material having a higher melting point than solder and a solder wettability,
A solder material impregnated in the foamed metal material (12) and covering the surface of the foamed metal material (12).
発泡金属材(12)がCu、Ni、Ag又はFeである請求項1記載のはんだ接合材。   The solder joint material according to claim 1, wherein the foam metal material (12) is Cu, Ni, Ag, or Fe. 発泡金属材(12)の気孔の平均直径が10〜1000μmであり、前記発泡金属材の気孔率が20〜95%である請求項1記載のはんだ接合材。   The solder joint material according to claim 1, wherein the average diameter of the pores of the foamed metal material (12) is 10 to 1000 m, and the porosity of the foamed metal material is 20 to 95%. 請求項1ないし3いずれか1項に記載のはんだ接合材(11)を用いたパワーモジュール基板。   A power module substrate using the solder bonding material (11) according to any one of claims 1 to 3.
JP2004073777A 2003-03-17 2004-03-16 Solder joining material and power module substrate utilizing the same Pending JP2004298962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073777A JP2004298962A (en) 2003-03-17 2004-03-16 Solder joining material and power module substrate utilizing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003071217 2003-03-17
JP2004073777A JP2004298962A (en) 2003-03-17 2004-03-16 Solder joining material and power module substrate utilizing the same

Publications (1)

Publication Number Publication Date
JP2004298962A true JP2004298962A (en) 2004-10-28

Family

ID=33421723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073777A Pending JP2004298962A (en) 2003-03-17 2004-03-16 Solder joining material and power module substrate utilizing the same

Country Status (1)

Country Link
JP (1) JP2004298962A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344500A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous foaming metal layer and metal layer
JP2007194442A (en) * 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd Semiconductor device
JP2008042041A (en) * 2006-08-09 2008-02-21 Fuji Electric Holdings Co Ltd Semiconductor device
JP2008103557A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Electronic component
JP2008200728A (en) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp Solder joining material, its manufacturing method, and power module substrate utilizing the solder joining material
JP2009515711A (en) * 2005-12-30 2009-04-16 インテル・コーポレーション Solder foam, nanoporous solder, foam solder bump of chip package, assembly method thereof, and system including the same
JP2009158816A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Semiconductor apparatus
JP2009267374A (en) * 2008-03-31 2009-11-12 Hitachi Ltd Semiconductor device, and bonding material
JP2010047787A (en) * 2008-08-19 2010-03-04 Mitsubishi Materials Corp Method for producing solder-impregnated sheet material and production device therefor
WO2010089647A1 (en) 2009-02-05 2010-08-12 Toyota Jidosha Kabushiki Kaisha Junction body, semiconductor module, and manufacturing method for junction body
WO2012018046A1 (en) * 2010-08-05 2012-02-09 千住金属工業株式会社 Semiconductor device bonding material
JP2012513683A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical or electronic composite component and method for manufacturing electrical or electronic composite component
JP2012513682A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical composite component or electronic composite component, and method for manufacturing electrical composite component or electronic composite component
CN102646650A (en) * 2011-02-22 2012-08-22 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2013087034A (en) * 2011-10-20 2013-05-13 Noritake Co Ltd Method for producing ceramic bonded body
JP2014146739A (en) * 2013-01-30 2014-08-14 Kyocera Corp Package for housing electronic component and electronic device using the same
CN104201160A (en) * 2014-09-09 2014-12-10 东南大学 Enhanced boiling heat exchange structure with porous foam metal
US20150262723A1 (en) * 2012-10-03 2015-09-17 Amc Holding Powder and paste for improving the conductivity of electrical connections
EP2775515A4 (en) * 2011-11-04 2015-10-14 Panasonic Ip Man Co Ltd Semiconductor device and manufacturing method thereof
CN106247302A (en) * 2016-08-12 2016-12-21 东南大学 A kind of dry saturated steam generating means of fractal structure
JPWO2015060346A1 (en) * 2013-10-23 2017-03-09 日立化成株式会社 Die bond sheet and semiconductor device manufacturing method
JPWO2015105161A1 (en) * 2014-01-10 2017-03-23 日立化成株式会社 Thermal conduction member and electronic component
JP2017117813A (en) * 2015-12-21 2017-06-29 株式会社日立製作所 Semiconductor device, mobile body, and method of manufacturing semiconductor device
DE102016202229A1 (en) * 2016-02-15 2017-08-17 Robert Bosch Gmbh Method for forming a solder joint and use of the method
WO2018042890A1 (en) * 2016-08-31 2018-03-08 三菱電機株式会社 Bonded body and semiconductor device using same
WO2018116813A1 (en) * 2016-12-21 2018-06-28 古河電気工業株式会社 Bonding film and tape for wafer processing
KR101905574B1 (en) 2016-10-31 2018-10-08 한국생산기술연구원 Joint structure of semiconductor device and bonding method
DE102017206925A1 (en) * 2017-04-25 2018-10-25 Siemens Aktiengesellschaft Method of producing a diffusion solder joint
CN109755208A (en) * 2018-12-28 2019-05-14 西安华为技术有限公司 A kind of grafting material, semiconductor device and its manufacturing method
WO2022145310A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Method for manufacturing semiconductor device, method for manufacturing substrate for semiconductor device, semiconductor device, and power conversion device
WO2023232816A1 (en) * 2022-05-30 2023-12-07 Tokamak Energy Ltd Joint and method of joining
US20240145336A1 (en) * 2022-10-27 2024-05-02 Dalian University Of Technology Interface interconnect structure for efficient heat dissipation of power electronic device and preparation method therefor

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344500A (en) * 2005-06-09 2006-12-21 Mitsubishi Materials Corp Manufacturing method of complex plate consisting of porous foaming metal layer and metal layer
JP2009515711A (en) * 2005-12-30 2009-04-16 インテル・コーポレーション Solder foam, nanoporous solder, foam solder bump of chip package, assembly method thereof, and system including the same
JP2007194442A (en) * 2006-01-20 2007-08-02 Fuji Electric Holdings Co Ltd Semiconductor device
JP2008042041A (en) * 2006-08-09 2008-02-21 Fuji Electric Holdings Co Ltd Semiconductor device
JP2008103557A (en) * 2006-10-19 2008-05-01 Toyota Motor Corp Electronic component
JP2008200728A (en) * 2007-02-21 2008-09-04 Mitsubishi Materials Corp Solder joining material, its manufacturing method, and power module substrate utilizing the solder joining material
JP2009158816A (en) * 2007-12-27 2009-07-16 Rohm Co Ltd Semiconductor apparatus
JP2009267374A (en) * 2008-03-31 2009-11-12 Hitachi Ltd Semiconductor device, and bonding material
JP2010047787A (en) * 2008-08-19 2010-03-04 Mitsubishi Materials Corp Method for producing solder-impregnated sheet material and production device therefor
JP2012513682A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical composite component or electronic composite component, and method for manufacturing electrical composite component or electronic composite component
JP2012513683A (en) * 2008-12-23 2012-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electrical or electronic composite component and method for manufacturing electrical or electronic composite component
JP2010179336A (en) * 2009-02-05 2010-08-19 Toyota Central R&D Labs Inc Joint product, semiconductor module, and method for manufacturing the joint product
WO2010089647A1 (en) 2009-02-05 2010-08-12 Toyota Jidosha Kabushiki Kaisha Junction body, semiconductor module, and manufacturing method for junction body
US8471386B2 (en) 2009-02-05 2013-06-25 Toyota Jidosha Kabushiki Kaisha Junction body, semiconductor module, and manufacturing method for junction body
CN103153527A (en) * 2010-08-05 2013-06-12 千住金属工业株式会社 Semiconductor device bonding material
CN103153527B (en) * 2010-08-05 2015-12-09 千住金属工业株式会社 Semiconductor device grafting material
JP2012035291A (en) * 2010-08-05 2012-02-23 Denso Corp Semiconductor device bonding material
US8896119B2 (en) 2010-08-05 2014-11-25 Senju Metal Industry Co., Ltd. Bonding material for semiconductor devices
WO2012018046A1 (en) * 2010-08-05 2012-02-09 千住金属工業株式会社 Semiconductor device bonding material
KR101496592B1 (en) * 2010-08-05 2015-02-26 센주긴조쿠고교 가부시키가이샤 Semiconductor device bonding material
CN102646650A (en) * 2011-02-22 2012-08-22 富士通株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2012174927A (en) * 2011-02-22 2012-09-10 Fujitsu Ltd Semiconductor device and manufacturing method of the same
JP2013087034A (en) * 2011-10-20 2013-05-13 Noritake Co Ltd Method for producing ceramic bonded body
EP2775515A4 (en) * 2011-11-04 2015-10-14 Panasonic Ip Man Co Ltd Semiconductor device and manufacturing method thereof
US20150262723A1 (en) * 2012-10-03 2015-09-17 Amc Holding Powder and paste for improving the conductivity of electrical connections
US9748014B2 (en) * 2012-10-03 2017-08-29 Amc Powder and paste for improving the conductivity of electrical connections
JP2014146739A (en) * 2013-01-30 2014-08-14 Kyocera Corp Package for housing electronic component and electronic device using the same
JPWO2015060346A1 (en) * 2013-10-23 2017-03-09 日立化成株式会社 Die bond sheet and semiconductor device manufacturing method
JPWO2015105161A1 (en) * 2014-01-10 2017-03-23 日立化成株式会社 Thermal conduction member and electronic component
CN104201160A (en) * 2014-09-09 2014-12-10 东南大学 Enhanced boiling heat exchange structure with porous foam metal
JP2017117813A (en) * 2015-12-21 2017-06-29 株式会社日立製作所 Semiconductor device, mobile body, and method of manufacturing semiconductor device
DE102016202229A1 (en) * 2016-02-15 2017-08-17 Robert Bosch Gmbh Method for forming a solder joint and use of the method
CN106247302A (en) * 2016-08-12 2016-12-21 东南大学 A kind of dry saturated steam generating means of fractal structure
CN106247302B (en) * 2016-08-12 2018-06-22 东南大学 A kind of dry saturated steam generating means of fractal structure
WO2018042890A1 (en) * 2016-08-31 2018-03-08 三菱電機株式会社 Bonded body and semiconductor device using same
JPWO2018042890A1 (en) * 2016-08-31 2018-09-06 三菱電機株式会社 Bonded body and semiconductor device using the same
KR101905574B1 (en) 2016-10-31 2018-10-08 한국생산기술연구원 Joint structure of semiconductor device and bonding method
CN109642123B (en) * 2016-12-21 2021-07-02 古河电气工业株式会社 Bonding film and wafer processing tape
JPWO2018116813A1 (en) * 2016-12-21 2018-12-20 古河電気工業株式会社 Bonding film and wafer processing tape
CN109642123A (en) * 2016-12-21 2019-04-16 古河电气工业株式会社 Band is used in junction film and wafer processing
WO2018116813A1 (en) * 2016-12-21 2018-06-28 古河電気工業株式会社 Bonding film and tape for wafer processing
DE102017206925A1 (en) * 2017-04-25 2018-10-25 Siemens Aktiengesellschaft Method of producing a diffusion solder joint
CN109755208A (en) * 2018-12-28 2019-05-14 西安华为技术有限公司 A kind of grafting material, semiconductor device and its manufacturing method
WO2022145310A1 (en) * 2020-12-29 2022-07-07 三菱電機株式会社 Method for manufacturing semiconductor device, method for manufacturing substrate for semiconductor device, semiconductor device, and power conversion device
JP7450769B2 (en) 2020-12-29 2024-03-15 三菱電機株式会社 Method of manufacturing a semiconductor device, method of manufacturing a substrate for a semiconductor device, semiconductor device and power conversion device
WO2023232816A1 (en) * 2022-05-30 2023-12-07 Tokamak Energy Ltd Joint and method of joining
US20240145336A1 (en) * 2022-10-27 2024-05-02 Dalian University Of Technology Interface interconnect structure for efficient heat dissipation of power electronic device and preparation method therefor

Similar Documents

Publication Publication Date Title
JP2004298962A (en) Solder joining material and power module substrate utilizing the same
JP2008200728A (en) Solder joining material, its manufacturing method, and power module substrate utilizing the solder joining material
TWI695823B (en) Metal sintering film compositions
JP5733678B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP6096094B2 (en) Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
JP3180622B2 (en) Power module substrate and method of manufacturing the same
JP4104253B2 (en) Board integrated structure
JP5764506B2 (en) Ceramic porous body-metal heat insulating material and manufacturing method thereof
JP2017171526A (en) Joined body and method for producing the joined body
JP6658400B2 (en) Method for producing ceramic / Al-SiC composite material joined body and method for producing substrate for power module with heat sink
JP6142584B2 (en) Metal composite, circuit board, semiconductor device, and method for manufacturing metal composite
JPH0936277A (en) Substrate for power module and its manufacture
CN108029201B (en) Assembly method of non-pressure silver sintering
JP3180621B2 (en) Power module substrate
TW201843783A (en) Manufacturing method of bonded body, insulated circuit substrate, and insulated circuit substrate with heat sink
JPS59137373A (en) Ceramic bonding method
JP6790945B2 (en) Manufacturing method of insulated circuit board and manufacturing method of insulated circuit board with heat sink
JP2001192274A (en) Setter for debindering/sintering and manufacturing process for the same
WO2021075463A1 (en) Joining material, production method for joining material, and joined body
JPH0951060A (en) Terminal structure of board for power module
JP3166819B2 (en) Power module circuit board and method of manufacturing the same
JP5732814B2 (en) Joining method of ceramic and metal materials
JPH0477369A (en) Production of metal-ceramic laminated substrate
JPH0624880A (en) Metal-ceramic material and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Effective date: 20070515

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821