JP2004296799A - Solar battery element - Google Patents

Solar battery element Download PDF

Info

Publication number
JP2004296799A
JP2004296799A JP2003087433A JP2003087433A JP2004296799A JP 2004296799 A JP2004296799 A JP 2004296799A JP 2003087433 A JP2003087433 A JP 2003087433A JP 2003087433 A JP2003087433 A JP 2003087433A JP 2004296799 A JP2004296799 A JP 2004296799A
Authority
JP
Japan
Prior art keywords
electrode
solder
semiconductor substrate
solar cell
surface electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003087433A
Other languages
Japanese (ja)
Inventor
Yuko Fukawa
祐子 府川
Shuichi Fujii
修一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003087433A priority Critical patent/JP2004296799A/en
Priority to DE102004013833A priority patent/DE102004013833B4/en
Priority to US10/801,987 priority patent/US20040200522A1/en
Publication of JP2004296799A publication Critical patent/JP2004296799A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar battery element on which solder is stuck to electrodes more firmly. <P>SOLUTION: A semiconductor board 1 having a diffusion layer 2 of inverse conductivity and a reflection preventive film 3 is provided with a front surface electrode 5 on the front surface of the board 1, and with a back surface electrode 6 on the back surface. The electrodes 5, 6 are coated with solder layers 8, 9. The front surface electrode 5 and the solder layer 8 coating it contain a plurality of identical elements, such as Ag, Ti, P, or one or more kinds of compounds composed of these elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池素子に関し、特に半田によって電極を被覆した太陽電池素子に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来の一般的な太陽電池素子の構造を図2に示す。図2において、11は半導体基板、12は拡散層、13は反射防止膜、14はBSF層、15は表面電極、16は裏面銀電極、17は裏面アルミニウム電極、18は表面半田層、19は裏面半田層を示す。
【0003】
例えばP型半導体基板11の表面近傍の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層12を設け、半導体基板11の表面に窒化シリコン膜などから成る反射防止膜13を設け、表面に表面電極15を設けるとともに、裏面に裏面アルミニウム電極17と裏面銀電極16とで構成される裏面電極16、17を設けている。また、半導体基板11の裏面には高濃度のP型拡散層であるBSF層14が形成される。また、表面電極15と裏面銀電極16の表面にはそれぞれ表面半田層18と裏面半田層19が形成される。
【0004】
この太陽電池素子の表面電極14は反射防止膜13の上に表面電極材料を塗布して焼成することによって電極材料の下の反射防止膜13を溶融させて半導体基板11と直接接触させるいわゆるファイヤースルー法によって形成される。
【0005】
また、この太陽電池素子の裏面電極16、17を形成するには、アルミニウムを主成分とするペーストを半導体基板11の裏面の一部を除いた大部分に塗布して乾燥した後に、このペーストを塗布しなかった部分とその周縁部を覆うように銀を主成分とするペーストを塗布して乾燥し、最後に半導体基板11の表面側に銀を主成分とするペーストを塗布して乾燥して同時に焼成する方法、すなわち同時焼成法が用いられている(例えば特許文献1参照)。
【0006】
しかし、この方法によれば安定したオーミック接触が得られず、電極強度もモジュール化に充分耐えうるものは得られなかった。
【0007】
この問題を回避するために、反射防止膜13の上に焼き付ける電極材料にTi、Bi、Co、Zn、Zr、Fe、Cr粉末またはその酸化物粉末のいずれか一種または複数種を含有させる方法がある(例えば特許文献1参照)。このようにすることによって反射防止膜13の上から電極材料を塗布して焼成しても良好なオーミック接触を得ることができ、またモジュール化に耐えうる充分な電極強度を得ることができる。
【0008】
また、反射防止膜13の上に焼き付ける電極材料にリン化合物を含有させる方法もある(例えば特許文献2参照)。代表的なリン化合物としてはP、Pなどの酸化リン、AgPOやピロリン酸銀などが用いられる。このようにすることによって接触抵抗を低減することができる。
【0009】
しかし、これらの方法によって電極材料に添加物を含有させると、電極自体がもろくなったり電極と半田との密着性が低下したり半田が濡れないといった問題を発生することがあった。
【0010】
電極材料に添加物を含有させない従来の太陽電池素子では、この問題を解決するために、半田中にAgを添加する方法がある(例えば特許文献3参照)。この方法によれば、電極のAgが半田に溶け込むいわゆる銀食われを防止するとともに、半田と電極に同一の元素が含まれていることから、半田と電極の密着性を向上させることができる。
【0011】
しかし、電極材料に添加物を含有させた太陽電池素子はもともと電極材料に添加物を含有させない太陽電池素子よりも電極と半田との密着性が劣るため、この方法によっても問題を完全には解決することができなかった。
【0012】
本発明はこのような問題に鑑みてなされたものであり、電極と半田との密着性の高い太陽電池素子を提供することを目的とする。
【0013】
〔特許文献1〕
特開2001−313400号公報
〔特許文献2〕
特開平11−163377号公報
〔特許文献3〕
特開2001−274426号公報
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子によれば、逆導電型の拡散層と反射防止膜を有する半導体基板の表面側に表面電極を設けるとともに裏面側に裏面電極を設け、これら電極を半田で被覆した太陽電池素子において、前記表面電極とそれを被覆する半田に複数の同一元素が含まれていることを特徴とする。
【0015】
前記複数の同一元素のうち一種類はAgであるとともに、他の同一元素はTi、P、あるいはこれらの化合物のうちのいずれか1種以上であったほうがよい。
【0016】
また、前記他の同一元素は前記半田中に10〜100ppm含有されていたほうがよい。
【0017】
さらに、前記他の同一元素は前記表面電極中に0.05〜5重量%含有されていたほうがよい。
【0018】
【発明の実施の形態】
以下、本発明を添付図面に基づき詳細に説明する。図1は本発明の太陽電池素子の構造を示す断面図である。図1において、1は半導体基板、2は拡散層、3は反射防止膜、4はBSF層、5は表面電極、6は裏面銀電極、7は裏面アルミニウム電極、8は表面半田層、9は裏面半田層を示す。
【0019】
まず、半導体基板1を用意する。この半導体基板1は単結晶又は多結晶シリコンなどから成る。この半導体基板1はボロン(B)などの一導電型半導体不純物を1×1016〜1018atoms/cm程度含有し、比抵抗1.5Ωcm程度の基板である。単結晶シリコンの場合は引き上げ法などで形成され、多結晶シリコンの場合は鋳造法などで形成される。多結晶シリコンは大量生産が可能で製造コスト面で単結晶シリコンよりも有利である。引き上げ法や鋳造法で形成されたインゴットを300μm程度の厚みにスライスして15cm×15cm程度の大きさに切断して半導体基板とする。
【0020】
次に、基板の切断面を清浄化するために表面をフッ酸やフッ硝酸などでごく微量エッチングする。
【0021】
次に、半導体基板1を拡散炉中に配置してオキシ塩化リン(POCl)などの中で加熱することによって半導体基板1の表面部分にリン原子を拡散させてシート抵抗が30〜300Ω/□の他の導電型を呈する拡散層2を形成する。
【0022】
次に、半導体基板1の表面側のみを残して他の部分を除去した後、純水で洗浄する。この半導体基板1の表面側以外の除去は、半導体基板1の表面側にレジスト膜を塗布し、フッ酸と硝酸の混合液を用いてエッチング除去した後、レジスト膜を除去することよって行なう。
【0023】
次に、半導体基板1の表面側に反射防止膜3を形成する。この反射防止膜3は例えば窒化シリコン膜などから成り、例えばシラン(SiH)とアンモニア(NH)との混合ガスをグロー放電分解してプラズマ化させて堆積させるプラズマCVD法などで形成される。この反射防止膜3は半導体基板1との屈折率差などを考慮して屈折率が1.8〜2.3程度になるように形成され、厚み500〜1000Å程度の厚みに形成される。この窒化シリコン膜3は形成する際にパッシベート効果があり、反射防止の機能と併せて太陽電池の電気特性を向上させる効果がある。
【0024】
そして、裏面にアルミニウムを主成分とするペーストを塗布して焼き付けることによって裏面アルミニウム電極7が形成されるともに、半導体基板1中にアルミニウムが拡散してP型高濃度層であるBSF層4が形成される。また、表裏面に銀からなる電極材料を塗布して焼き付けることよって表面電極5および裏面銀電極6を形成する。この電極材料は銀と有機ビヒクルとガラスフリットを銀100重量%に対してそれぞれ10〜30重量%、0.1〜5重量%を添加してぺースト状にしたもので、これをスクリーン印刷法で印刷して600〜800℃で1〜30分程度焼成することよって焼き付けられる。
【0025】
この際に用いられる有機ビヒクルは粉末状のものをペースト状にするために用いられる樹脂であり、例えばセルロース系やアクリル系のものがある。これらは400℃程度で分解して揮散するため、焼成後の電極5、6にはその成分は残らない。また、ガラスフリットは焼き付けた電極5、6に強度を持たすために用いられる。ガラスフリットは、鉛、ホウ素、珪素等の酸化物を含み、300〜600℃程度の種々の軟化点をもつものがあるが、焼成後に一部は電極5、6中に残り、一部はシリコンと溶着するために電極5、6と半導体基板1とを接着する機能を持つ。
【0026】
本発明においては、この表面電極材料には粒径0.1〜5μm程度のTi、P、あるいはこれらの化合物、例えば酸化物のうちのいずれか1種または複数種を含有する。Ti、P、あるいはこれらの化合物の粒径は0.1〜5μmであることが望ましい。0.1μm以下の場合は電極材料中での分散性が悪くなって十分な電極強度が得られず望ましくない。粒径が5μm以上の場合にはスクリーン印刷性(線切れ、線幅の均一性)が悪くなって十分な電極強度が得られず望ましくない。また、含有量は0.05〜5重量%であることが望ましい。0.05重量%以下では十分な電極強度が得られず望ましくない。また、含有量が5重量%以上では電極材料の線抵抗が増大して望ましくない。
【0027】
Ti、P、あるいはこれらの化合物のうちのいずれか1種または複数種を電極材料に含有させることにより、反射防止膜3上から電極材料を塗布してもオーミックコンンタクト性がよく電極強度の強い太陽電池素子が得られる。これはこれらの材料が電極材料中に含まれるガラスフリット成分へ作用して反射防止膜3とガラスフリットの反応を促進させるからである。このようにすることにより、ファイヤースルー法で形成された表面電極5でも充分なオーミックコンタクトと接着強度を得ることができる。
【0028】
表面電極5と裏面電極6の表面には、長期信頼性の確保および後工程で太陽電池素子同士を接続するためのインナーリード(不図示)を接続するために、半田8、9を被覆する。
【0029】
本発明では、表面電極5を被覆する半田8に表面電極5に含まれている複数の元素と同一の元素が含まれていることを特徴とする。このようにすることにより、従来Agのみが半田と電極に含まれていた場合よりも電極と半田の濡れ性が増して密着強度が向上する。
【0030】
このとき、複数の同一元素のうち一種類はAgであるとともに、他の同一元素はTi、P、あるいはこれらの化合物、例えば酸化物のうちの1種以上であったほうがよい。このようにすることによって半田に添加してもその性質に悪影響を及ぼすことはなく、半田に求められる長期信頼性を確保することができる。
【0031】
Ti、P、あるいはこれらの化合物のうちの1種以上は半田中に10〜100ppm含有されていたほうがよい。10ppm以下であれば電極と半田の濡れ性を増して密着強度を向上させるという本来の目的を果たすことが困難になる。また、100ppm以上であれば半田の脆性が増して脆くなってしまうので長期信頼性を確保することが困難になったり、後工程でインナーリードと接続し難くなるという問題が発生するからである。
【0032】
なお、本発明は上記実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば上記半田は表面電極5上に使用したときに特に有効にその効果を発揮するが、裏面電極6上に使用することも可能である。
【0033】
【発明の効果】
以上のように、本発明に係る太陽電池素子によれば、表面電極とそれを被覆する半田に複数の同一元素が含まれていることから、電極と半田の濡れ性が増して密着強度が向上する。
【0034】
このとき、複数の同一元素のうち一種類がAgであるとともに、他の同一元素はTi、P、あるいはこれらの化合物のうちの1種以上であると、反射防止膜の上から直接電極材料を塗布して焼き付けることによって反射防止膜を溶融させて半導体基板と表面電極を直接接触させるいわゆるファイヤースルー法であっても良好なオーミック接触を得ることができるとともに、モジュール化に耐えうる表面電極の充分な密着強度を得ることができる。また、半田に添加してもその性質に悪影響を及ぼすことはなく、半田に求められる長期信頼性を確保することができる。
【0035】
このとき、Ti、P、あるいはこれらの化合物のうちの1種以上が半田中に10〜100ppm含有されていると、電極と半田の濡れ性が増して密着強度を向上させることができるとともに、半田の脆性も小さく長期信頼性を確保することができるので、後工程でインナーリードと良好に接続することができる。
【0036】
さらに、Ti、P、あるいはこれらの化合物のうちのいずれか1種以上が表面電極中に0.05〜5重量%含有されていると、十分な強度が得られ、かつ電極材料の線抵抗も小さく抑えることができ、反射防止膜の上から直接塗布して焼きつけるいわゆるファイヤースルー法であっても良好なオーミック接触を得ることができるとともに、モジュール化に耐えうる表面電極の充分な密着強度を得ることができる。
【0037】
また、本発明はSn−Pb系の半田に使用できるだけでなく、半田種を問わず、各種の半田に対し有効にその効果を発揮する。特に電極と半田の濡れ性や密着性に問題が発生しやすいSn−Ag系、Sn−Ag−Bi系、Sn−Ag−Cu系などのいわゆる鉛フリー半田に使用すれば電極と半田の濡れ性が増して密着強度が向上する。また表面電極をファイヤースルー以外の方法で形成したときにも、半田の濡れ性が増して半田と電極の密着強度を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子の一実施形態を示す図である。
【図2】従来の太陽電池素子を示す図である。
【符号の説明】
1:半導体基板、2:拡散層、3:反射防止膜、4:BSF層、5:表面電極、6:裏面銀電極、7:裏面アルミニウム電極、8:表面半田層、9:裏面半田層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell element, and more particularly to a solar cell element having electrodes coated with solder.
[0002]
2. Description of the Related Art
FIG. 2 shows a structure of a conventional general solar cell element. In FIG. 2, 11 is a semiconductor substrate, 12 is a diffusion layer, 13 is an antireflection film, 14 is a BSF layer, 15 is a front surface electrode, 16 is a back silver electrode, 17 is a back aluminum electrode, 18 is a front solder layer, and 19 is a front solder layer. 3 shows a backside solder layer.
[0003]
For example, an N-type impurity is diffused to a predetermined depth over the entire surface near the surface of the P-type semiconductor substrate 11 to provide an N-type diffusion layer 12, and an anti-reflection film 13 made of a silicon nitride film or the like is provided on the surface of the semiconductor substrate 11. In addition, the front surface electrode 15 is provided on the front surface, and the back surface electrodes 16 and 17 composed of the back surface aluminum electrode 17 and the back surface silver electrode 16 are provided on the back surface. On the back surface of the semiconductor substrate 11, a BSF layer 14, which is a high-concentration P-type diffusion layer, is formed. A front surface solder layer 18 and a back surface solder layer 19 are formed on the surfaces of the front surface electrode 15 and the back surface silver electrode 16, respectively.
[0004]
The surface electrode 14 of this solar cell element is a so-called fire-through in which the surface electrode material is applied on the antireflection film 13 and baked to melt the antireflection film 13 under the electrode material and directly contact the semiconductor substrate 11. Formed by the method.
[0005]
To form the back electrodes 16 and 17 of the solar cell element, a paste containing aluminum as a main component is applied to most of the semiconductor substrate 11 except for a part of the back surface and dried, and then the paste is applied. A paste containing silver as a main component is applied so as to cover the uncoated portion and the periphery thereof, and dried. Finally, a paste containing silver as a main component is applied to the surface side of the semiconductor substrate 11 and dried. A simultaneous firing method, that is, a simultaneous firing method is used (for example, see Patent Document 1).
[0006]
However, according to this method, a stable ohmic contact was not obtained, and an electrode strength that could sufficiently withstand modularization was not obtained.
[0007]
In order to avoid this problem, there is a method in which one or more of Ti, Bi, Co, Zn, Zr, Fe, Cr powder or oxide powder thereof is contained in an electrode material to be baked on the antireflection film 13. (For example, see Patent Document 1). By doing so, good ohmic contact can be obtained even if an electrode material is applied from above the antireflection film 13 and fired, and sufficient electrode strength that can withstand modularization can be obtained.
[0008]
Further, there is a method in which a phosphorus compound is contained in an electrode material to be baked on the antireflection film 13 (for example, see Patent Document 2). As typical phosphorus compounds, phosphorus oxides such as P 2 O 5 and P 2 O 4 , Ag 3 PO 4 and silver pyrophosphate are used. By doing so, the contact resistance can be reduced.
[0009]
However, when an additive is added to the electrode material by these methods, there have been problems in that the electrode itself becomes brittle, the adhesion between the electrode and the solder is reduced, and the solder does not wet.
[0010]
In a conventional solar cell element in which an additive is not contained in an electrode material, there is a method of adding Ag to solder to solve this problem (for example, see Patent Document 3). According to this method, it is possible to prevent so-called silver erosion in which Ag of the electrode melts into the solder, and to improve the adhesion between the solder and the electrode since the same element is included in the solder and the electrode.
[0011]
However, solar cells with additives in the electrode material have poorer adhesion between the electrode and solder than solar cells without additives in the electrode material, so this method completely solves the problem. I couldn't.
[0012]
The present invention has been made in view of such a problem, and has as its object to provide a solar cell element having high adhesion between an electrode and solder.
[0013]
[Patent Document 1]
JP 2001-313400 A [Patent Document 2]
JP-A-11-163377 [Patent Document 3]
JP 2001-274426 A
[Means for Solving the Problems]
In order to achieve the above object, according to the solar cell element of the first aspect, a front surface electrode is provided on the front surface side of the semiconductor substrate having the reverse conductivity type diffusion layer and the antireflection film, and a back surface electrode is provided on the rear surface side. A solar cell element in which these electrodes are covered with solder is characterized in that the surface electrode and the solder covering the same contain a plurality of the same elements.
[0015]
One of the plurality of identical elements is preferably Ag, and the other identical element is preferably Ti, P, or one or more of these compounds.
[0016]
It is preferable that the other same element is contained in the solder in an amount of 10 to 100 ppm.
[0017]
Further, it is preferable that the other same element is contained in the surface electrode in an amount of 0.05 to 5% by weight.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing the structure of the solar cell element of the present invention. In FIG. 1, 1 is a semiconductor substrate, 2 is a diffusion layer, 3 is an anti-reflection film, 4 is a BSF layer, 5 is a front electrode, 6 is a back silver electrode, 7 is a back aluminum electrode, 8 is a front solder layer, 9 is 3 shows a backside solder layer.
[0019]
First, the semiconductor substrate 1 is prepared. This semiconductor substrate 1 is made of single crystal or polycrystalline silicon. This semiconductor substrate 1 is a substrate containing about 1 × 10 16 to 10 18 atoms / cm 3 of one conductivity type semiconductor impurity such as boron (B) and having a specific resistance of about 1.5 Ωcm. In the case of single crystal silicon, it is formed by a pulling method or the like, and in the case of polycrystalline silicon, it is formed by a casting method or the like. Polycrystalline silicon can be mass-produced and is more advantageous than monocrystalline silicon in terms of manufacturing cost. An ingot formed by a pulling method or a casting method is sliced into a thickness of about 300 μm and cut into a size of about 15 cm × 15 cm to obtain a semiconductor substrate.
[0020]
Next, in order to clean the cut surface of the substrate, a very small amount of the surface is etched with hydrofluoric acid, hydrofluoric acid, or the like.
[0021]
Next, the semiconductor substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) to diffuse phosphorus atoms into the surface portion of the semiconductor substrate 1 so that the sheet resistance is 30 to 300 Ω / □. The diffusion layer 2 having another conductivity type is formed.
[0022]
Next, after removing other portions except for the surface side of the semiconductor substrate 1, the semiconductor substrate 1 is washed with pure water. The removal of the portion other than the surface side of the semiconductor substrate 1 is performed by applying a resist film on the surface side of the semiconductor substrate 1, etching away using a mixed solution of hydrofluoric acid and nitric acid, and then removing the resist film.
[0023]
Next, an antireflection film 3 is formed on the front surface side of the semiconductor substrate 1. The antireflection film 3 is made of, for example, a silicon nitride film, and is formed by, for example, a plasma CVD method in which a mixed gas of silane (SiH 4 ) and ammonia (NH 4 ) is glow discharge-decomposed, turned into plasma, and deposited. . The antireflection film 3 is formed so as to have a refractive index of about 1.8 to 2.3 in consideration of a refractive index difference from the semiconductor substrate 1 and the like, and has a thickness of about 500 to 1000 °. The silicon nitride film 3 has a passivation effect when formed, and has an effect of improving the electrical characteristics of the solar cell together with the function of preventing reflection.
[0024]
Then, a back surface aluminum electrode 7 is formed by applying and baking a paste containing aluminum as a main component on the back surface, and aluminum is diffused into the semiconductor substrate 1 to form a BSF layer 4 which is a P-type high concentration layer. Is done. Further, the front surface electrode 5 and the back surface silver electrode 6 are formed by applying and baking an electrode material made of silver on the front and back surfaces. This electrode material is obtained by adding 10 to 30% by weight and 0.1 to 5% by weight of silver, an organic vehicle, and a glass frit to 100% by weight of silver, respectively, to form a paste. And baked at 600 to 800 ° C. for about 1 to 30 minutes.
[0025]
The organic vehicle used at this time is a resin used for converting a powdery material into a paste, and examples thereof include a cellulose-based resin and an acrylic-based resin. Since these are decomposed and volatilized at about 400 ° C., their components do not remain in the electrodes 5 and 6 after firing. The glass frit is used to impart strength to the baked electrodes 5 and 6. Glass frit contains oxides such as lead, boron and silicon, and has various softening points of about 300 to 600 ° C., but some remain in electrodes 5 and 6 after firing, and some Has a function of bonding the electrodes 5 and 6 to the semiconductor substrate 1 for welding.
[0026]
In the present invention, the surface electrode material contains Ti or P having a particle size of about 0.1 to 5 μm, or one or more of these compounds, for example, oxides. The particle size of Ti, P or these compounds is desirably 0.1 to 5 μm. If the thickness is less than 0.1 μm, the dispersibility in the electrode material becomes poor, and sufficient electrode strength cannot be obtained, which is not desirable. If the particle size is 5 μm or more, the screen printability (line breakage, line width uniformity) deteriorates, and sufficient electrode strength cannot be obtained, which is not desirable. The content is desirably 0.05 to 5% by weight. If it is less than 0.05% by weight, sufficient electrode strength cannot be obtained, which is not desirable. On the other hand, if the content is 5% by weight or more, the line resistance of the electrode material increases, which is not desirable.
[0027]
By including one or more of Ti, P, and these compounds in the electrode material, even if the electrode material is applied from above the antireflection film 3, the ohmic contact property is good and the electrode strength is high. A solar cell element is obtained. This is because these materials act on the glass frit component contained in the electrode material to promote the reaction between the antireflection film 3 and the glass frit. By doing so, sufficient ohmic contact and adhesive strength can be obtained even with the surface electrode 5 formed by the fire-through method.
[0028]
The surfaces of the front electrode 5 and the back electrode 6 are coated with solders 8 and 9 to secure long-term reliability and to connect inner leads (not shown) for connecting solar cell elements in a later step.
[0029]
The present invention is characterized in that the solder 8 covering the surface electrode 5 contains the same element as the plurality of elements contained in the surface electrode 5. By doing so, the wettability between the electrode and the solder is increased and the adhesion strength is improved as compared with the case where only Ag is conventionally included in the solder and the electrode.
[0030]
At this time, it is preferable that one of the plurality of identical elements is Ag and the other identical element is Ti, P, or one or more of these compounds, for example, oxides. By doing so, even if it is added to the solder, its properties are not adversely affected, and the long-term reliability required for the solder can be secured.
[0031]
It is preferable that 10 to 100 ppm of Ti, P, or one or more of these compounds be contained in the solder. If it is 10 ppm or less, it becomes difficult to achieve the original purpose of increasing the wettability between the electrode and the solder and improving the adhesion strength. On the other hand, if it is 100 ppm or more, the brittleness of the solder increases and the brittleness becomes brittle, so that it becomes difficult to secure long-term reliability, and it becomes difficult to connect to the inner lead in a later process.
[0032]
The present invention is not limited to the above embodiment, and many modifications and changes can be made within the scope of the present invention. For example, the above-mentioned solder exerts its effect particularly effectively when used on the front electrode 5, but can also be used on the back electrode 6.
[0033]
【The invention's effect】
As described above, according to the solar cell element of the present invention, since the surface electrode and the solder covering the same contain a plurality of the same elements, the wettability between the electrode and the solder is increased, and the adhesion strength is improved. I do.
[0034]
At this time, if one of the plurality of the same elements is Ag and the other of the same elements is Ti, P, or one or more of these compounds, the electrode material is directly applied on the antireflection film. By applying and baking, the anti-reflection film is melted and a good ohmic contact can be obtained even in a so-called fire-through method in which the semiconductor substrate and the surface electrode are brought into direct contact. High adhesion strength can be obtained. Further, even if added to the solder, the properties are not adversely affected, and the long-term reliability required for the solder can be secured.
[0035]
At this time, when one or more of Ti, P, and one or more of these compounds are contained in the solder in an amount of 10 to 100 ppm, the wettability between the electrode and the solder is increased, and the adhesion strength can be improved. Is low in brittleness and long-term reliability can be ensured, so that it can be connected well to the inner lead in a later step.
[0036]
Furthermore, when 0.05 to 5% by weight of Ti, P, or any one of these compounds is contained in the surface electrode, sufficient strength is obtained and the line resistance of the electrode material is also reduced. A good ohmic contact can be obtained even by the so-called fire-through method of directly applying and baking from above the antireflection film, and a sufficient adhesion strength of the surface electrode that can withstand modularization can be obtained. be able to.
[0037]
Further, the present invention can be used not only for Sn-Pb-based solder, but also effectively exerts its effects on various types of solders regardless of the type of solder. In particular, when used for so-called lead-free solders such as Sn-Ag, Sn-Ag-Bi, and Sn-Ag-Cu, which tend to cause problems in wettability and adhesion between the electrodes and the solder, the wettability between the electrodes and the solder is improved. And the adhesion strength is improved. Also, when the surface electrode is formed by a method other than fire-through, the wettability of the solder is increased and the adhesion strength between the solder and the electrode can be improved.
[Brief description of the drawings]
FIG. 1 is a view showing one embodiment of a solar cell element according to the present invention.
FIG. 2 is a view showing a conventional solar cell element.
[Explanation of symbols]
1: semiconductor substrate, 2: diffusion layer, 3: antireflection film, 4: BSF layer, 5: front electrode, 6: back silver electrode, 7: back aluminum electrode, 8: front solder layer, 9: back solder layer

Claims (4)

逆導電型の拡散層と反射防止膜を有する半導体基板の表面側に表面電極を設けるとともに裏面側に裏面電極を設け、これら電極を半田で被覆した太陽電池素子において、前記表面電極とそれを被覆する半田に複数の同一元素が含まれていることを特徴とする太陽電池素子。A front surface electrode is provided on a front surface side of a semiconductor substrate having a diffusion layer and an anti-reflection film of a reverse conductivity type, and a back surface electrode is provided on a back surface side. A solar cell element, wherein a plurality of the same elements are contained in the solder to be formed. 前記複数の同一元素のうち一種類はAgであるとともに、他の同一元素はTi、P、あるいはこれらの化合物のうちのいずれか1種以上であることを特徴とする請求項1に記載の太陽電池素子。2. The solar cell according to claim 1, wherein one of the plurality of identical elements is Ag, and the other identical element is Ti, P, or any one or more of these compounds. 3. Battery element. 前記他の同一元素が前記半田中に10〜100ppm含有されていることを特徴とする請求項2に記載の太陽電池素子。The solar cell element according to claim 2, wherein the other same element is contained in the solder in an amount of 10 to 100 ppm. 前記他の同一元素が前記表面電極中に0.05〜5重量%含有されていることを特徴とする請求項2に記載の太陽電池素子。The solar cell element according to claim 2, wherein the other same element is contained in the surface electrode in an amount of 0.05 to 5% by weight.
JP2003087433A 2003-03-17 2003-03-27 Solar battery element Pending JP2004296799A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003087433A JP2004296799A (en) 2003-03-27 2003-03-27 Solar battery element
DE102004013833A DE102004013833B4 (en) 2003-03-17 2004-03-16 Method for producing a solar cell module
US10/801,987 US20040200522A1 (en) 2003-03-17 2004-03-16 Solar cell element and solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087433A JP2004296799A (en) 2003-03-27 2003-03-27 Solar battery element

Publications (1)

Publication Number Publication Date
JP2004296799A true JP2004296799A (en) 2004-10-21

Family

ID=33401816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087433A Pending JP2004296799A (en) 2003-03-17 2003-03-27 Solar battery element

Country Status (1)

Country Link
JP (1) JP2004296799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and the fabrication method thereof
WO2013032256A1 (en) * 2011-08-31 2013-03-07 Hanwha Chemical Corporation. Method for manufacturing back contact solar cell using punch-through

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101103501B1 (en) * 2011-05-30 2012-01-09 한화케미칼 주식회사 Solar cell and the fabrication method thereof
WO2013032256A1 (en) * 2011-08-31 2013-03-07 Hanwha Chemical Corporation. Method for manufacturing back contact solar cell using punch-through
TWI496313B (en) * 2011-08-31 2015-08-11 Hanwha Chemical Corp Method for manufacturing back contact solar cell using punch-through

Similar Documents

Publication Publication Date Title
US20040200522A1 (en) Solar cell element and solar cell module
KR101226861B1 (en) Conductive paste for forming a solar cell electrode
EP2051304B1 (en) Semiconductor substrate, method for forming electrode, and method for manufacturing solar cell
JP6189971B2 (en) Solar cell and solar cell module
JP5734304B2 (en) Conductive paste for solar cell and method for producing solar cell element using the same
JP6272332B2 (en) Solar cell element and manufacturing method thereof
JP2001313400A (en) Method for forming solar battery element
JP4556886B2 (en) Conductive paste and solar cell element
JP5883116B2 (en) Conductive paste for solar cell electrode, solar cell, and method for manufacturing solar cell
WO2012173203A1 (en) Solar cell and method for manufacturing same
JP5822952B2 (en) Solar cell and method for manufacturing solar cell
JP2009193993A (en) Method of manufacturing solar cell electrode, and solar cell electrode
JP2005191107A (en) Manufacturing method for solar cell device
JP5323827B2 (en) Photovoltaic device and manufacturing method thereof
JP4126215B2 (en) Method for manufacturing solar battery cell
JP2004235276A (en) Solar cell element and its forming method
JP2002198547A (en) Method for manufacturing solar cell
JP6495713B2 (en) Solar cell element and manufacturing method thereof
JP2004296799A (en) Solar battery element
JP2014146553A (en) Conductive paste for electrode of solar battery and method of producing the same
JP5452755B2 (en) Method for manufacturing photovoltaic device
JPH06204512A (en) Electrode paste for semiconductor substrate
JP2005129660A (en) Solar cell element and forming method thereof
JP2003152200A (en) Solar battery element
JP2004296801A (en) Solar battery element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127