JPH06204512A - Electrode paste for semiconductor substrate - Google Patents

Electrode paste for semiconductor substrate

Info

Publication number
JPH06204512A
JPH06204512A JP5001006A JP100693A JPH06204512A JP H06204512 A JPH06204512 A JP H06204512A JP 5001006 A JP5001006 A JP 5001006A JP 100693 A JP100693 A JP 100693A JP H06204512 A JPH06204512 A JP H06204512A
Authority
JP
Japan
Prior art keywords
phosphorus
electrode
semiconductor substrate
pts
electrode paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5001006A
Other languages
Japanese (ja)
Inventor
Koichi Kawazu
康一 河津
Masatoshi Suehiro
雅利 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd, Dowa Mining Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP5001006A priority Critical patent/JPH06204512A/en
Publication of JPH06204512A publication Critical patent/JPH06204512A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To provide an electrode paste for a semiconductor substrate having an excellent adhesiveness to a semiconductor substrate and a sufficiently small contact resistance by means of a specified amount of silver powder and phosphorus or a compound containing phosphorus, and an organic vehicle. CONSTITUTION:An electrode paste for a semiconductor substrate is prepared to contain 100 pts.wt. of silver powder 0.1 to 3.0 pts.wt. of phophorus or a phosphorus-containing compound, and 15 to 40 pts.wt. of an organic vehicle. If phosphorus or the phosphorus-containing compound is less than 0.1 pt.wt. with respect to silver of 100 pts.wt., the bonding strength of the electrode for the substrate will not be sufficient. On the other hand, if the loadings exceed 3 pts.wt., the solder wettability of the electrode will substantially deteriorate. Moreover, if the amount of the organic vehicle blended with respect to silver of 100 pts.wt. falls below 15 pts.wt., paste-making will be rendered difficult. Conversly, if the loadings exceed 40pts.wt., an excessive increase in post-baking resistance of the electrode will result. The preparation in this manner provides the electrode paste for the semiconductor substrate having an excellent adhesiveness to the semiconductor substrate and a sufficiently small contact resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板上に形成され
る電極ペーストに関し、特に太陽電池などの半導体基板
上にスクリーン印刷により形成される電極ペーストに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode paste formed on a semiconductor substrate, and more particularly to an electrode paste formed by screen printing on a semiconductor substrate such as a solar cell.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近
年、自然との調和を保ちつつ産業の発達を図るという観
点から環境問題がクローズアップされ、クリーンなエネ
ルギーに対する要求が強まっており、その中の1つの手
段として太陽電池に対する関心が高まっている。ところ
で、太陽電池の基本は約100年前にセレン光電池ある
い亜酸化銅光電池に始まったが、変換効率が1〜1.5
%と低いため、実用化には至らなかった。その後半導体
工学の発展により、特に1954年単結晶Siを用いた
大面積pn接合作製技術の確立により、変換効率が6%
ほどになり、現在の太陽電池の変換効率としては、10
〜15%程度のものが得られている。この太陽電池の実
用化にあたっての課題は、係る変換効率の向上を図りつ
つ製造コストを低減することにある。そのため、電極形
成についても、高生産性で自動連続化が可能であるとい
うことから、受光面電極、裏面電極ともに、従来の真空
蒸着に代わって低コストの印刷法が採用されている。こ
の印刷法による電極形成のために用いられる導電ペース
ト(以下「電極ペースト」という)には、半導体基板と
の密着性が良いこと、接触抵抗が小さいこと(オーミッ
ク接触をすること)、電極ペーストの抵抗値が低いこと
などの特性が要求されており、次のような電極ペースト
が公知である。
2. Description of the Related Art Recently, environmental problems have been highlighted from the viewpoint of industrial development while maintaining harmony with nature, and the demand for clean energy is increasing. There is growing interest in solar cells as one means. By the way, the basics of solar cells began about 100 years ago with selenium photovoltaic cells or cuprous oxide photovoltaic cells, but the conversion efficiency is 1 to 1.5.
%, So low that it could not be put to practical use. After that, due to the development of semiconductor engineering, especially in 1954, the conversion efficiency was 6% due to the establishment of large area pn junction fabrication technology using single crystal Si.
The current solar cell conversion efficiency is 10
Approximately 15% is obtained. The problem in putting this solar cell to practical use is to reduce the manufacturing cost while improving the conversion efficiency. Therefore, as for the electrode formation, since it is possible to achieve high productivity and automatic continuation, a low-cost printing method is adopted for both the light-receiving surface electrode and the back surface electrode instead of the conventional vacuum deposition. The conductive paste (hereinafter referred to as "electrode paste") used for forming electrodes by this printing method has good adhesiveness with a semiconductor substrate, low contact resistance (makes ohmic contact), Properties such as low resistance are required, and the following electrode pastes are known.

【0003】まず、特開昭54−26676号公報に
は、「Agペースト中にAlまたはTiを加えた電極材
料をシリコン基板上に印刷し、これをN2 雰囲気中で低
温焼成し、もって電極とシリコン基板との接触抵抗が低
い半導体装置を製造せんとする方法およびその半導体装
置に関する発明」が開示されている(以下「従来技術
I」という)。また、特開昭59−33867号公報に
は、「Agペースト中に稀土類元素を加えた電極材料を
シリコン基板上に印刷焼成し、焼成時に半導体表面に形
成される酸化ケイ素を稀土類元素によって還元し、もっ
て電極とシリコン基板との接触抵抗の低い電極材料を得
んとする発明」が開示されている(以下「従来技術II」
という)。
First, JP-A-54-26676 discloses that "an electrode material obtained by adding Al or Ti to an Ag paste is printed on a silicon substrate, and this is baked at a low temperature in an N 2 atmosphere to obtain an electrode. A method for manufacturing a semiconductor device having a low contact resistance with a silicon substrate and an invention relating to the semiconductor device "are disclosed (hereinafter referred to as" prior art I "). Further, JP-A-59-33867 discloses that "an electrode material obtained by adding a rare earth element to an Ag paste is printed and fired on a silicon substrate, and silicon oxide formed on a semiconductor surface at the time of firing is changed by the rare earth element. "Invention in which an electrode material having a reduced contact resistance between the electrode and the silicon substrate is obtained" is disclosed (hereinafter referred to as "prior art II").
That).

【0004】このように、シリコン基板と電極とのオー
ミック接触をできるだけ形成し、変換効率の向上を図る
ための各種の提案がされている。しかしながら、従来技
術にあっては焼成後の半導体基板と電極との間の接着強
度は必ずしも十分でなく、特に過酷な環境下で用いられ
る太陽電池においては、初期の強度が高くとも経時的に
劣化し、電極の剥がれに至ることがあった。また、太陽
電池の変換効率を左右する重要な要素として、半導体基
板と電極間の接触抵抗があるが、基板と電極間の密着性
が十分でない場合、両者の接触不良による接触抵抗の増
大や整流性接触の発現により変換効率が低くなる。例え
ば、従来技術Iに係る方法で作製された太陽電池の変換
効率は最大12%であり、実用的に十分でなく、その接
触抵抗も10-2〜10-3Ω−cmの範囲にあり、それほど
低いとは言えない。また、従来技術IIの電極材料をその
電極とする太陽電池の接触抵抗は0.03〜0.34Ω
−cmの範囲にあり、従来技術Iよりさらに高くなってい
る。
As described above, various proposals have been made for improving the conversion efficiency by forming ohmic contact between the silicon substrate and the electrode as much as possible. However, in the conventional technique, the adhesive strength between the semiconductor substrate and the electrode after firing is not always sufficient, and in a solar cell used in a particularly harsh environment, even if the initial strength is high, it deteriorates with time. However, the electrodes may come off. In addition, the contact resistance between the semiconductor substrate and the electrode is an important factor that affects the conversion efficiency of the solar cell, but if the adhesion between the substrate and the electrode is not sufficient, increase in contact resistance or rectification due to poor contact between the two The conversion efficiency decreases due to the occurrence of sexual contact. For example, the conversion efficiency of the solar cell manufactured by the method according to the conventional technique I is 12% at maximum, which is not practically sufficient, and the contact resistance thereof is in the range of 10 -2 to 10 -3 Ω-cm. Not so low. Further, the contact resistance of a solar cell using the electrode material of Conventional Technique II as its electrode is 0.03 to 0.34 Ω.
It is in the range of −cm, which is higher than that of the prior art I.

【0005】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、半導
体基板との密着性が良好で、接触抵抗が十分に小さい半
導体基板用電極ペーストを提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object thereof is an electrode for a semiconductor substrate which has good adhesion to the semiconductor substrate and has a sufficiently small contact resistance. To provide the paste.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、銀粉末100重量部とリン及び/またはリ
ンを含む化合物0.1〜3.0重量部と有機ビヒクル1
5〜40重量部を有することを特徴とする半導体基板用
電極ペーストを第一の発明とし、上記第一の発明におい
て、リンを含む化合物が酸化リン、酸素酸、リン酸塩、
リン化物およびリンの有機化合物のうち1種以上のもの
からなることを特徴とする半導体基板用電極ペーストを
第二の発明とし、上記第二の発明において、リン酸塩が
リン酸アンモニウムであることを特徴とする半導体基板
用電極ペーストを第三の発明とし、上記第二の発明にお
いて、リン化物が、AsP、BP、C3 P、SiP、S
nP3 、Sn3 4 、Sn4 3 、TiP、ZrP2
よびZrPのうち1種以上のものからなることを特徴と
する半導体基板用電極ペーストを第四の発明とし、上記
第二の発明において、リンの有機化合物がリン酸エステ
ルであることを特徴とする半導体基板用電極ペーストを
第五の発明とする。
To achieve the above object, the present invention provides 100 parts by weight of silver powder, 0.1 to 3.0 parts by weight of phosphorus and / or a compound containing phosphorus, and organic vehicle 1.
The electrode paste for a semiconductor substrate is characterized by having 5 to 40 parts by weight, and the compound containing phosphorus is phosphorus oxide, oxyacid, phosphate,
A second invention is an electrode paste for a semiconductor substrate, which comprises one or more of a phosphide and an organic compound of phosphorus, and in the above second invention, the phosphate is ammonium phosphate. A semiconductor substrate electrode paste characterized by the above-mentioned is a third invention, and in the second invention, the phosphide is AsP, BP, C 3 P, SiP, S.
A fourth invention is an electrode paste for a semiconductor substrate, which comprises at least one of nP 3 , Sn 3 P 4 , Sn 4 P 3 , TiP, ZrP 2 and ZrP. In the fifth invention, the electrode paste for a semiconductor substrate is characterized in that the organic compound of phosphorus is a phosphoric acid ester.

【0007】銀粉末ならびに有機ビヒクルは、一般の電
極ペースト材料に用いられているものが使用できる。例
えば、銀粉末の粒径は10μm以下で、その形状は球
状、フレーク状等のいかなるものでも使用できる。有機
ビヒクルとしては、例えばセルロース系やアクリレート
系の樹脂をターピネオール、ブチルカルビトール、セル
ソルブ等の溶剤に溶解したものを使用することができ
る。
As the silver powder and the organic vehicle, those used in general electrode paste materials can be used. For example, the particle size of the silver powder is 10 μm or less, and any shape such as spherical or flake can be used. As the organic vehicle, for example, a cellulose-based or acrylate-based resin dissolved in a solvent such as terpineol, butyl carbitol, or cellosolve can be used.

【0008】リンについては、黄リン、紫リン、黒リン
等の同素体の他、無定形の赤リン、紅リンなどを使用す
ることもできる。また、酸化リンとしては、P2 5
24 等を使用することができ、酸素酸としてはH3
PO2 、H3 PO3 等を使用することができる。そし
て、リン酸塩、リン化物およびリンの有機化合物として
は上記各物質を使用することができる。これらリンおよ
びリンを含む化合物を銀ペーストに添加することによ
り、半導体基板との接着強度を増大することができる
が、これらの中でも後記する理由によりリン酸エステル
の添加が効果的である。
Regarding phosphorus, in addition to allotropes such as yellow phosphorus, purple phosphorus and black phosphorus, amorphous red phosphorus, red phosphorus and the like can be used. Further, as phosphorus oxide, P 2 O 5 ,
P 2 O 4 or the like can be used, and H 3 is used as the oxygen acid.
PO 2 , H 3 PO 3, etc. can be used. Each of the above substances can be used as the phosphate, the phosphide, and the organic compound of phosphorus. By adding these phosphorus and a compound containing phosphorus to the silver paste, the adhesive strength with the semiconductor substrate can be increased. Among these, the addition of phosphoric acid ester is effective for the reasons described below.

【0009】リンまたはリンを含む化合物が室温で固体
の場合、これらは粉末状のものを用いることができる
が、その粒径は10μm以下であることが好ましい。と
いうのは、半導体基板に電極を焼付ける際の焼成条件
は、ハイブリッドICの導電回路や電子部品の電極等を
焼付ける際の焼成条件に比して著しく時間が短いので、
リンまたはリンを含む化合物の粉末の粒径が大きいと、
焼成後接合に寄与せず未反応のまま導体中に残存するも
のが多くなり、半田濡れ性を劣化させるからである。
When phosphorus or a compound containing phosphorus is solid at room temperature, powdery ones can be used, but the particle size is preferably 10 μm or less. This is because the baking conditions for baking the electrodes on the semiconductor substrate are significantly shorter than the baking conditions for baking the conductive circuit of the hybrid IC and the electrodes of the electronic parts.
When the particle size of the powder of phosphorus or a compound containing phosphorus is large,
This is because, after firing, a large amount of unreacted material remains in the conductor without contributing to bonding and deteriorates solder wettability.

【0010】リンおよび/またはリンを含む化合物が電
極ペーストに含まれているので、リンとシリコンと直接
の反応によりシリコン基板と電極ペーストとの密着性は
確保されている。従って、接着性確保のために必ずしも
ガラス粉末を添加する必要はない。しかし、一定の接着
強度を確保しようとすれば、リンおよび/またはリンを
含む化合物の添加量を多くしなければならず、半田濡れ
性が悪くなることがある。そこで、ガラス粉末を併用し
てリンおよび/またはリンを含む化合物の添加量が過多
にならないようにするのが好ましい。なお、銀100重
量部に対するガラス粉末の添加量は10重量部以下に抑
えるのが好ましい。10重量部超配合すると、電極膜の
半田濡れ性が著しく劣化するからである。
Since phosphorus and / or a compound containing phosphorus is contained in the electrode paste, the adhesion between the silicon substrate and the electrode paste is secured by the direct reaction between phosphorus and silicon. Therefore, it is not always necessary to add the glass powder to secure the adhesiveness. However, in order to secure a certain adhesive strength, it is necessary to increase the amount of phosphorus and / or a compound containing phosphorus added, and the solder wettability may deteriorate. Therefore, it is preferable to use glass powder in combination to prevent an excessive amount of phosphorus and / or a compound containing phosphorus from being added. The amount of glass powder added is preferably 10 parts by weight or less with respect to 100 parts by weight of silver. This is because when the content exceeds 10 parts by weight, the solder wettability of the electrode film is significantly deteriorated.

【0011】[0011]

【作用】銀100重量部に対するリンおよび/またはリ
ンを含む化合物が0.1重量部未満では電極の基板に対
する接着強度が十分でなく、一方、その添加量が3重量
部を超えると、電極の半田濡れ性が著しく悪くなる。ま
た、銀100重量部に対する有機ビヒクルの配合量が1
5重量部未満ではペースト化が容易でなく、一方、その
配合量が40重量部を超えると焼成後の電極の抵抗が高
くなりすぎる。
If the amount of phosphorus and / or the compound containing phosphorus is less than 0.1 part by weight based on 100 parts by weight of silver, the adhesive strength of the electrode to the substrate is not sufficient. Solder wettability deteriorates significantly. Moreover, the compounding amount of the organic vehicle with respect to 100 parts by weight of silver is 1
If the amount is less than 5 parts by weight, it is not easy to form a paste, while if the amount is more than 40 parts by weight, the resistance of the electrode after firing becomes too high.

【0012】リンを含む化合物としてリン酸エステルは
それ自体分散剤や減粘剤としても作用するものが多く、
ペースト中の銀粉やその他の固形分を分散させる効果
や、高固形分のペーストの粘度を低くし、スクリーン印
刷に適した粘度を与える効果が期待できる。すなわち、
太陽電池の電極の膜厚を厚くすることで電気抵抗を低く
しようとした場合、そのためにペースト中の固形分(銀
粉)を増しても、これに伴う粘度の増大はリン酸エステ
ルの添加により抑制され、印刷不良を避けることができ
る。
As the phosphorus-containing compound, many phosphoric acid esters themselves also act as a dispersant and a thickener,
The effect of dispersing silver powder and other solids in the paste and the effect of lowering the viscosity of the paste with a high solid content and giving a viscosity suitable for screen printing can be expected. That is,
If you try to lower the electric resistance by increasing the thickness of the solar cell electrode, even if you increase the solid content (silver powder) in the paste for that reason, the accompanying increase in viscosity is suppressed by the addition of phosphate ester. As a result, defective printing can be avoided.

【0013】[0013]

【実施例】以下に本発明の実施例について説明するが、
本発明はこれら実施例に限定されるものではない。平均
粒径0.8μmからなる銀粉末100重量部に対し、以
下の表1に示す配合のリンおよび/またはリンを含む化
合物、ガラス粉末および有機ビヒクルを添加・混合し、
この混合物をアルミナ3本ロールミルを通過させてペー
スト化した。なお、有機ビヒクルとしては、エチルセル
ロース7重量部をターピネオールに溶解したものを用
い、ガラス粉末としてはホウ珪酸鉛系のものを用いた。
EXAMPLES Examples of the present invention will be described below.
The present invention is not limited to these examples. To 100 parts by weight of silver powder having an average particle size of 0.8 μm, phosphorus and / or a compound containing phosphorus having a composition shown in Table 1 below, glass powder and an organic vehicle were added and mixed,
This mixture was passed through a three-roll alumina mill to form a paste. The organic vehicle used was 7 parts by weight of ethyl cellulose dissolved in terpineol, and the glass powder used was a lead borosilicate type.

【0014】次いで、このようにして得た銀−リン系電
極ペースト3を、図1に示すpn接合のシリコン基板の
n型シリコン基板2面上に塗布し、一方、p型シリコン
基板1面上には銀−アルミニウム電極ペースト4を塗布
し、700℃で1分間焼付けた。なお、リンはn型半導
体を形成する代表的なドーパントであり、また、電極の
焼付け温度(700℃)は、拡散法によりp型薄層とn
型薄層を接合する際の処理温度(約900℃)に比して
十分低いので、電極焼成時のリンの拡散は問題にならな
い。
Next, the silver-phosphorus-based electrode paste 3 thus obtained is applied to the n-type silicon substrate 2 surface of the pn-junction silicon substrate shown in FIG. 1, while the p-type silicon substrate 1 surface is applied. Was coated with silver-aluminum electrode paste 4 and baked at 700 ° C. for 1 minute. Phosphorus is a typical dopant that forms an n-type semiconductor, and the baking temperature (700 ° C.) of the electrode is the same as the p-type thin layer and n
Since it is sufficiently lower than the processing temperature (about 900 ° C.) for joining the mold thin layers, the diffusion of phosphorus at the time of firing the electrode is not a problem.

【0015】そして、このようにして作製した太陽電池
の電流−電圧特性から、『シリコン基板と電極との接触
抵抗』と『フィルファクター』を求め、次に説明する方
法で『半田濡れ性』と『接着強度』を調査した。その結
果を以下の表2に示す。
Then, "contact resistance between silicon substrate and electrode" and "fill factor" were obtained from the current-voltage characteristics of the solar cell thus manufactured, and "solder wettability" was determined by the method described below. "Adhesive strength" was investigated. The results are shown in Table 2 below.

【0016】半田濡れ性=62Sn/36Pb/2Ag
からなる半田を用い、その半田の220℃静止浴中に上
記太陽電池を10秒間浸漬後引き上げて、十分に導体表
面が半田に濡れている場合を○、ピンホールが認められ
た場合を×とした。
Solder wettability = 62Sn / 36Pb / 2Ag
When the above-mentioned solar cell was immersed in a 220 ° C static bath of the solder for 10 seconds and then pulled up, the conductor surface was sufficiently wet with the solder, and the case where pinholes were observed was marked with x. did.

【0017】接着強度=直径0.6mmのワイヤーを上記
半田にて上記太陽電池の電極(2mm□)上に固定し、そ
のピール強度を測定した。その値が0.5kg以上が合
格である。
Adhesive strength = A wire having a diameter of 0.6 mm was fixed on the electrode (2 mm □) of the solar cell with the solder, and the peel strength was measured. A value of 0.5 kg or more is acceptable.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表2に明らかなように、本実施例に係る電
極材料には適量のリンまたはリンを含む化合物が添加さ
れているので、シリコン基板との接触抵抗が極めて低
く、半田濡れ性が良好で、接着強度が高い。しかし、比
較例1は、リンの添加量が少なすぎるので、シリコン基
板と電極との接触抵抗が高く、接着強度が低い。また、
比較例2はリンの添加量が多過ぎるので、接触抵抗が高
く、半田濡れ性が不良で、接着強度の測定さえできなか
った。
As is apparent from Table 2, since the electrode material according to this embodiment contains an appropriate amount of phosphorus or a compound containing phosphorus, the contact resistance with the silicon substrate is extremely low and the solder wettability is good. Therefore, the adhesive strength is high. However, in Comparative Example 1, since the amount of phosphorus added is too small, the contact resistance between the silicon substrate and the electrode is high, and the adhesive strength is low. Also,
In Comparative Example 2, since the amount of phosphorus added was too large, the contact resistance was high, the solder wettability was poor, and even the adhesive strength could not be measured.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
基板と電極との接触抵抗が十分に低く、半田濡れ性が良
好で、接着強度が高い電極ペーストを提供することがで
き、半導体基板用電極材料として極めて好適に用いるこ
とができる。
As described above, according to the present invention,
It is possible to provide an electrode paste having a sufficiently low contact resistance between a substrate and an electrode, good solder wettability, and high adhesive strength, and it can be used very suitably as an electrode material for a semiconductor substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】pn接合太陽電池の断面図である。FIG. 1 is a cross-sectional view of a pn junction solar cell.

【符号の説明】[Explanation of symbols]

1…p型シリコン基板 2…n型シリコン基板 3…銀−リン系電極ペースト 4…銀−アルミニウム電極ペースト DESCRIPTION OF SYMBOLS 1 ... p-type silicon substrate 2 ... n-type silicon substrate 3 ... silver-phosphorus electrode paste 4 ... silver-aluminum electrode paste

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H05K 1/09 A 6921−4E Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H05K 1/09 A 6921-4E

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銀粉末100重量部とリン及び/または
リンを含む化合物0.1〜3.0重量部と有機ビヒクル
15〜40重量部を有することを特徴とする半導体基板
用電極ペースト。
1. An electrode paste for a semiconductor substrate comprising 100 parts by weight of silver powder, 0.1 to 3.0 parts by weight of phosphorus and / or a compound containing phosphorus, and 15 to 40 parts by weight of an organic vehicle.
【請求項2】 リンを含む化合物が酸化リン、酸素酸、
リン酸塩、リン化物およびリンの有機化合物のうち1種
以上のものからなることを特徴とする請求項1記載の半
導体基板用電極ペースト。
2. The compound containing phosphorus is phosphorus oxide, oxygen acid,
The electrode paste for a semiconductor substrate according to claim 1, comprising one or more kinds of a phosphate, a phosphide and an organic compound of phosphorus.
【請求項3】 リン酸塩がリン酸アンモニウムであるこ
とを特徴とする請求項2記載の半導体基板用電極ペース
ト。
3. The electrode paste for a semiconductor substrate according to claim 2, wherein the phosphate is ammonium phosphate.
【請求項4】 リン化物が、AsP、BP、C3 P、S
iP、SnP3 、Sn3 4 、Sn4 3 、TiP、Z
rP2 およびZrPのうち1種以上のものからなること
を特徴とする請求項2記載の半導体基板用電極ペース
ト。
4. The phosphide is AsP, BP, C 3 P, S.
iP, SnP 3 , Sn 3 P 4 , Sn 4 P 3 , TiP, Z
The electrode paste for a semiconductor substrate according to claim 2, comprising at least one of rP 2 and ZrP.
【請求項5】 リンの有機化合物がリン酸エステルであ
ることを特徴とする請求項2記載の半導体基板用電極ペ
ースト。
5. The electrode paste for a semiconductor substrate according to claim 2, wherein the organic compound of phosphorus is a phosphoric acid ester.
JP5001006A 1993-01-07 1993-01-07 Electrode paste for semiconductor substrate Pending JPH06204512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5001006A JPH06204512A (en) 1993-01-07 1993-01-07 Electrode paste for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5001006A JPH06204512A (en) 1993-01-07 1993-01-07 Electrode paste for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH06204512A true JPH06204512A (en) 1994-07-22

Family

ID=11489499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5001006A Pending JPH06204512A (en) 1993-01-07 1993-01-07 Electrode paste for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH06204512A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156522A (en) * 2004-11-26 2006-06-15 Kyocera Corp Wiring board and its manufacturing method
JP2008010527A (en) * 2006-06-28 2008-01-17 Sharp Corp Conductive paste for solar cell electrode
DE112006002451T5 (en) 2005-09-16 2008-07-10 Murata Manufacturing Co., Ltd., Nagaokakyo Ceramic multilayer substrate and method of making the same
JP2010150473A (en) * 2008-12-26 2010-07-08 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin composition and polyurethane resin
WO2011090211A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 Paste composition for electrode, and solar cell
JP2013008759A (en) * 2011-06-23 2013-01-10 Toyo Aluminium Kk Paste composition, manufacturing method of solar cell element, and solar cell element
JP2017171934A (en) * 2008-01-30 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Conductive ink
CN111285339A (en) * 2020-03-15 2020-06-16 湖北中科墨磷科技有限公司 Sn (tin)3P4Preparation method of induced two-dimensional black phosphorus crystal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156522A (en) * 2004-11-26 2006-06-15 Kyocera Corp Wiring board and its manufacturing method
DE112006002451T5 (en) 2005-09-16 2008-07-10 Murata Manufacturing Co., Ltd., Nagaokakyo Ceramic multilayer substrate and method of making the same
US7691469B2 (en) 2005-09-16 2010-04-06 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and method for manufacturing the same
DE112006002451B4 (en) * 2005-09-16 2016-08-18 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate, ceramic multilayer module, and method of making the same
JP2008010527A (en) * 2006-06-28 2008-01-17 Sharp Corp Conductive paste for solar cell electrode
JP2017171934A (en) * 2008-01-30 2017-09-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Conductive ink
JP2010150473A (en) * 2008-12-26 2010-07-08 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane resin composition and polyurethane resin
WO2011090211A1 (en) * 2010-01-25 2011-07-28 日立化成工業株式会社 Paste composition for electrode, and solar cell
JP2011171270A (en) * 2010-01-25 2011-09-01 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
JP2013008759A (en) * 2011-06-23 2013-01-10 Toyo Aluminium Kk Paste composition, manufacturing method of solar cell element, and solar cell element
CN111285339A (en) * 2020-03-15 2020-06-16 湖北中科墨磷科技有限公司 Sn (tin)3P4Preparation method of induced two-dimensional black phosphorus crystal

Similar Documents

Publication Publication Date Title
JP3050064B2 (en) CONDUCTIVE PASTE, SOLAR CELL WITH GRID ELECTRODE FORMED FROM THE CONDUCTIVE PASTE AND METHOD FOR MANUFACTURING SAME
KR101226861B1 (en) Conductive paste for forming a solar cell electrode
US8721931B2 (en) Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
KR100798255B1 (en) Electroconductive thick film composition, electrode, and solar cell formed therefrom
TWI380458B (en) Method of making solar cell contacts
US20120238052A1 (en) Method of producing a crystalline silicon solar cell
JP2006313744A (en) Conductive thick film composition, electrode, and semiconductor device composed of same
JP2013512546A (en) Aluminum paste and its use in the manufacture of passivating emitters and back contact silicon solar cells.
JP2013512571A (en) Method for forming silver back electrode of passivated emitter and back contact silicon solar cell
JP2007194580A (en) Paste for solar cell electrode
KR20130051422A (en) Thick film conductive composition and use thereof
JP2010087131A (en) Conductive ink composition and solar cell module formed using the composition
CN107393623A (en) Composition for solar cel electrode and the electrode using its making
JPH023554B2 (en)
JP2019102719A (en) Conductive paste
JP5277844B2 (en) Conductive ink composition and solar cell module formed using the composition
JPH06204512A (en) Electrode paste for semiconductor substrate
WO2018221578A1 (en) Paste composition for solar battery
WO2013031751A1 (en) Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
JP6896506B2 (en) Paste composition for solar cells
JP2017092251A (en) Conductive composition
JPH06204511A (en) Electrode paste for semiconductor substrate
JPH0892506A (en) Electrically conductive paste, method of electrode formation and solar cell
JP2014187345A (en) Paste composition, method for manufacturing solar battery element, and solar battery element
JP6200128B2 (en) Conductive paste for solar cell electrode formation