JP2004296606A - Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core - Google Patents

Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core Download PDF

Info

Publication number
JP2004296606A
JP2004296606A JP2003084591A JP2003084591A JP2004296606A JP 2004296606 A JP2004296606 A JP 2004296606A JP 2003084591 A JP2003084591 A JP 2003084591A JP 2003084591 A JP2003084591 A JP 2003084591A JP 2004296606 A JP2004296606 A JP 2004296606A
Authority
JP
Japan
Prior art keywords
magnetic core
iron powder
coercive force
core
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084591A
Other languages
Japanese (ja)
Inventor
Masashi Fujinaga
政志 藤長
Naomichi Nakamura
尚道 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003084591A priority Critical patent/JP2004296606A/en
Publication of JP2004296606A publication Critical patent/JP2004296606A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive magnetic core of low coercive force, a manufacturing method of the core and iron powder for magnetic core. <P>SOLUTION: Not less than 90 vol. % of whole quantity of iron powders forming the magnetic core have particle sizes of not more than 75μm. Density of the magnetic core is set to be not more than 6g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、保磁力の低い磁心とその製造方法およびその磁心の素材となる鉄粉に関し、特に高周波電流の電源装置(いわゆるスイッチング電源装置)に備えられるトランスやチョークコイル等に用いられる磁心とその製造方法およびその磁心用鉄粉に関するものである。
【0002】
【従来の技術】
鉄粉を所定の形状に加圧成形して使用する圧粉磁心は、比抵抗が高いという特性を有している。したがって鉄粉を用いた圧粉磁心をトランス等の磁心(あるいは鉄心ともいう)として使用すると、鉄損(すなわち磁心における渦電流損失とヒステリシス損失,残留損失の合計値)が低減される。つまり比抵抗が高いことによって、渦電流損失が低く抑えられ、その結果、鉄損が低減されるのである。
【0003】
上記した通り圧粉磁心は、比抵抗が高いために鉄損を低減できるという特性を有するので、電流を流すことによる発熱を抑制するという効果がある。そのため、圧粉磁心はパソコン等の高周波電源装置に備えられるチョークコイル等に使用されている。
ところが近年、パソコンの小型化,軽量化のニーズが著しく高まり、電源装置の小型化の必要性が増大している。そこでパソコンの電源装置に備えられるトランスやチョークコイルの小型化を達成するために、より高い周波数の高周波電流を使用する試みがなされている。つまり高周波電流を使用することによって、所定の誘導起電力を得るための磁束が小さくてすむので、消費電力が同一であっても電源装置の小型化を達成できる。
【0004】
また、鉄粉を用いた圧粉磁心は、飽和磁束密度が高く、電源装置をより小型化することができる。また、その素材が鉄粉であるから、一般の金属材料と同様に温度が上昇することによって電気抵抗も増大するので、昇温により渦電流損失が低下して、発熱が抑制される利点がある。しかしながら鉄粉を用いた圧粉磁心は、十分に保磁力を低くすることができないので、ヒステリシス損失が問題となり、圧粉磁心を用い、かつ高周波電流を使用して電源装置を小型化する技術には限界があり、パソコンの小型化,軽量化のニーズに十分に対応できない。
【0005】
そこで鉄系の酸化物磁性材料であるフェライトを素材として製造した磁心を用いて、電源装置の小型化がなされている。しかしフェライトは、高温域では電気抵抗が減少するので、昇温により渦電流損失が一層増加して、さらに激しく昇温する、いわゆる熱暴走を起こす欠点があり、小型化の制約となっている。またフェライトを用いて磁心を製造する工程では、原料コストが高い上に、フェライトの粉末を所定の形状に加圧成形した後、さらに焼結を行なうので、製造コストは圧粉磁心に比べて高くなる。
【0006】
つまり電源装置のさらなる小型化を低コストで達成するためには、フェライトに比べて安価な鉄粉を所定の形状に加圧成形した磁心(すなわち圧粉磁心)を用いることが有効である。ところが圧粉磁心の小型化は上記したように限界に達しており、さらなる小型化を達成するためには圧粉磁心の保磁力を低下させ、ヒステリシス損失を低減する必要がある。
【0007】
そこで圧粉磁心の保磁力を低下させるために、種々の技術が提案されている。たとえば特開平4−293702号公報には、保磁力の小さい軟磁性粉末の製造法が開示されている。この技術は鉄粉を窒素と反応(すなわち窒化処理)させて、鉄粉の保磁力を低下させるものである。しかしながら、この技術では鉄粉に窒化処理を施すので、鉄粉の製造コストが上昇し、圧粉磁心の製造コストも上昇する。
【0008】
【特許文献1】
特開平4−293702号公報
【0009】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、保磁力の低い安価な磁心とその製造方法およびその磁心用鉄粉を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、保磁力の低い安価な圧粉磁心を得る技術について鋭意検討を行なった。その結果、圧粉磁心の素材となる鉄粉の粒径を規定し、かつ加圧成形した後の密度を規定することによって、従来から知られている鉄粉を用いて保磁力の低い安価な圧粉磁心を製造できることを見出した。
【0011】
本発明は、鉄粉を所定の形状に加圧成形した磁心であって、磁心を形成する鉄粉の全量に対して90体積%以上が75μm以下の粒径を有し、かつ磁心の密度が6g/cm以下である磁心である。
また本発明は、鉄粉を型枠内に充填して加圧し、所定の形状の磁心を製造する磁心の製造方法おいて、全量に対して90体積%以上が75μm以下の粒径を有する鉄粉を型枠内に充填して加圧し、磁心の密度を6g/cm以下とする磁心の製造方法である。
【0012】
また本発明は、磁心の加圧成形に用いる磁心用鉄粉であって、全量に対して90体積%以上が75μm以下の粒径を有する磁心用鉄粉である。
【0013】
【発明の実施の形態】
本発明では圧粉磁心の素材である鉄粉は、全量に対して90体積%以上が75μm以下の粒径を有する鉄粉を用いる。このように粒径の小さい粒子が多量に含まれる鉄粉を、所定の形状の型枠内に充填して加圧し、圧粉磁心を製造する。その際、得られる圧粉磁心の密度は6g/cm以下とする。このようにして圧粉磁心を形成する鉄粉を小粒化し、かつ圧粉磁心の密度を低減することによって、保磁力の低い圧粉磁心(保磁力 120A/m以下)が得られる。しかも素材として鉄粉を使用し、その鉄粉を加圧成形するのみ(すなわち焼結を行なわない)で製造できるので、安価な圧粉磁心が得られる。
【0014】
圧粉磁心の素材となる鉄粉は、大径の粒子が多量に含まれると、低い保磁力が得られない。したがって鉄粉は、全量に対して90体積%以上が75μm以下の粒径を有するものを使用する必要がある。なお、 全量に対して90体積%以上が50μm以下の粒径を有する鉄粉を使用するのが一層好ましい。
また圧粉磁心の密度が6g/cmを超えると、成形歪みが大きくなるので保磁力を低下させることが困難となる。したがって圧粉磁心の密度は6g/cm以下とする必要がある。ただし密度が5g/cm未満では、飽和磁束密度が低下するとともに、圧粉磁心が脆くなり容易に破損する。したがって圧粉磁心の密度は、5〜6g/cmの範囲内が好ましい。
【0015】
なお本発明で使用する鉄粉の製造方法は、特定の技術に限定せず、従来から知られている方法で製造した鉄粉が使用できる。また本発明は、表面に絶縁被覆を有する鉄粉も支障なく適用できる。つまり、本発明では鉄粉を加圧成形した後、焼結を行なわないので、絶縁被膜が焼失することなく残存する。したがって鉄粉と絶縁被膜の特性の劣化は生じない。
【0016】
【実施例】
表1に示す3種類の粒径を有する還元鉄粉を用いて、円筒形状(外径20.2mm,内径12.6mm,高さ9.5mm )の圧粉磁心を製造した。圧粉磁心の密度は、それぞれ表1に示す値になるように、加圧成形の圧力を調整した。
こうして得られた各圧粉磁心の保磁力(A/m)を測定した。その結果を表1に併せて示す。
【0017】
なお表1の発明例1,2は、還元鉄粉の粒径が本発明の範囲を満足する例であり、比較例は、還元鉄粉の粒径が本発明の範囲を外れる例である。
【0018】
【表1】

Figure 2004296606
【0019】
表1から明らかなように、発明例1,2では、圧粉磁心の密度が5〜6g/cmの範囲内で保磁力が 120A/m以下(すなわち60〜110 A/m)であった。特に発明例2は、圧粉磁心の密度が 6.5g/cmであっても保磁力は 120A/m以下(すなわち 100A/m)を達成した。
一方、比較例では、保磁力は 140〜200 A/mであり、 120A/m以下は達成されなかった。
【0020】
【発明の効果】
本発明によれば、保磁力が低くかつ安価な圧粉磁心を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic core having a low coercive force, a method for manufacturing the same, and iron powder used as a material of the magnetic core. The present invention relates to a manufacturing method and iron powder for a magnetic core.
[0002]
[Prior art]
A powder magnetic core formed by pressing iron powder into a predetermined shape has a characteristic of high specific resistance. Therefore, when a powder magnetic core using iron powder is used as a magnetic core of a transformer or the like (or also referred to as an iron core), iron loss (that is, the total value of eddy current loss, hysteresis loss, and residual loss in the magnetic core) is reduced. That is, the eddy current loss is suppressed low by the high specific resistance, and as a result, the iron loss is reduced.
[0003]
As described above, the dust core has a characteristic that iron loss can be reduced due to its high specific resistance, and thus has an effect of suppressing heat generation caused by flowing an electric current. Therefore, the dust core is used for a choke coil and the like provided in a high-frequency power supply device such as a personal computer.
However, in recent years, the need for miniaturization and weight reduction of personal computers has increased remarkably, and the necessity for miniaturization of power supply devices has increased. Attempts have been made to use higher-frequency high-frequency currents in order to reduce the size of transformers and choke coils provided in power supply devices for personal computers. In other words, by using the high-frequency current, the magnetic flux for obtaining the predetermined induced electromotive force can be small, and thus the power supply device can be downsized even if the power consumption is the same.
[0004]
In addition, a dust core using iron powder has a high saturation magnetic flux density, and can further reduce the size of the power supply device. In addition, since the material is iron powder, the electric resistance increases as the temperature rises in the same manner as a general metal material. Therefore, there is an advantage that the eddy current loss is reduced by the temperature rise and heat generation is suppressed. . However, dust cores using iron powder cannot reduce the coercive force sufficiently, so hysteresis loss becomes a problem. Are limited and cannot adequately meet the needs for smaller and lighter personal computers.
[0005]
Therefore, a power supply device has been downsized using a magnetic core manufactured using ferrite, which is an iron-based oxide magnetic material. However, ferrite has a drawback in that the electric resistance decreases in a high temperature range, so that the eddy current loss further increases due to the temperature rise, and the temperature rises more severely, that is, a so-called thermal runaway occurs, which restricts miniaturization. Also, in the process of manufacturing a magnetic core using ferrite, the raw material cost is high, and the ferrite powder is pressed into a predetermined shape and then sintered, so the manufacturing cost is higher than the dust core. Become.
[0006]
That is, in order to achieve further miniaturization of the power supply device at low cost, it is effective to use a magnetic core (that is, a dust core) obtained by pressing iron powder, which is less expensive than ferrite, into a predetermined shape. However, miniaturization of the dust core has reached the limit as described above, and in order to achieve further miniaturization, it is necessary to reduce the coercive force of the dust core and reduce the hysteresis loss.
[0007]
Therefore, various techniques have been proposed to reduce the coercive force of the dust core. For example, Japanese Patent Application Laid-Open No. 4-293702 discloses a method for producing a soft magnetic powder having a small coercive force. In this technique, iron powder is reacted with nitrogen (that is, nitriding treatment) to reduce the coercive force of the iron powder. However, in this technique, since the iron powder is subjected to the nitriding treatment, the manufacturing cost of the iron powder increases, and the manufacturing cost of the dust core also increases.
[0008]
[Patent Document 1]
JP-A-4-293702
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems and to provide an inexpensive magnetic core having a low coercive force, a method for manufacturing the same, and iron powder for the magnetic core.
[0010]
[Means for Solving the Problems]
The present inventors have intensively studied a technique for obtaining an inexpensive dust core having a low coercive force. As a result, by defining the particle size of the iron powder used as the material of the dust core, and by defining the density after the pressure molding, a coercive force having a low coercive force using a conventionally known iron powder is used. It has been found that a dust core can be manufactured.
[0011]
The present invention relates to a magnetic core obtained by pressing iron powder into a predetermined shape, wherein 90% by volume or more of the total amount of the iron powder forming the magnetic core has a particle size of 75 μm or less, and the density of the magnetic core is The magnetic core is 6 g / cm 3 or less.
Further, the present invention provides a method of manufacturing a magnetic core in which iron powder is filled in a mold and pressed to form a magnetic core having a predetermined shape. This is a method for manufacturing a magnetic core in which powder is filled in a mold and pressed to reduce the density of the magnetic core to 6 g / cm 3 or less.
[0012]
The present invention is also an iron powder for a magnetic core used for pressure molding of a magnetic core, wherein 90% by volume or more of the total amount has a particle size of 75 μm or less.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the iron powder used as the material of the dust core uses iron powder having a particle diameter of 90% by volume or more to 75 μm or less based on the total amount. The iron powder containing a large amount of particles having a small particle diameter is filled in a mold having a predetermined shape and pressed to manufacture a dust core. At this time, the density of the obtained dust core is 6 g / cm 3 or less. By reducing the size of the iron powder forming the dust core and reducing the density of the dust core in this way, a dust core having a low coercive force (a coercive force of 120 A / m or less) can be obtained. Moreover, since iron powder is used as a raw material and the iron powder can be manufactured only by pressure molding (ie, without sintering), an inexpensive dust core can be obtained.
[0014]
When the iron powder used as the material of the dust core contains a large amount of large-diameter particles, a low coercive force cannot be obtained. Therefore, it is necessary to use iron powder having a particle diameter of 90% by volume or more with respect to the total amount of 75 μm or less. It is more preferable to use iron powder having a particle diameter of 90% by volume or more to 50 μm or less based on the total amount.
If the density of the dust core exceeds 6 g / cm 3 , the molding distortion becomes large and it becomes difficult to lower the coercive force. Therefore, the density of the dust core needs to be 6 g / cm 3 or less. However, when the density is less than 5 g / cm 3 , the saturation magnetic flux density decreases, and the dust core becomes brittle and easily broken. Therefore, the density of the dust core is preferably in the range of 5 to 6 g / cm 3 .
[0015]
The method for producing iron powder used in the present invention is not limited to a specific technique, and iron powder produced by a conventionally known method can be used. The present invention can also be applied to iron powder having an insulating coating on the surface without any trouble. That is, in the present invention, since the sintering is not performed after the iron powder is pressed and formed, the insulating coating remains without being burned out. Therefore, the characteristics of the iron powder and the insulating film do not deteriorate.
[0016]
【Example】
A dust core having a cylindrical shape (outer diameter: 20.2 mm, inner diameter: 12.6 mm, height: 9.5 mm) was manufactured using the reduced iron powder having three types of particle diameters shown in Table 1. The pressure of the pressure molding was adjusted so that the density of the dust core became a value shown in Table 1, respectively.
The coercive force (A / m) of each powder magnetic core thus obtained was measured. The results are shown in Table 1.
[0017]
Examples 1 and 2 of Table 1 are examples in which the particle size of the reduced iron powder satisfies the range of the present invention, and Comparative Examples are examples in which the particle size of the reduced iron powder is out of the range of the present invention.
[0018]
[Table 1]
Figure 2004296606
[0019]
As is clear from Table 1, in Invention Examples 1 and 2, the coercive force was 120 A / m or less (that is, 60 to 110 A / m) when the density of the dust core was in the range of 5 to 6 g / cm 3 . . In particular, Invention Example 2 achieved a coercive force of 120 A / m or less (ie, 100 A / m) even when the density of the dust core was 6.5 g / cm 3 .
On the other hand, in the comparative example, the coercive force was 140 to 200 A / m, and 120 A / m or less was not achieved.
[0020]
【The invention's effect】
According to the present invention, an inexpensive dust core having a low coercive force can be obtained.

Claims (3)

鉄粉を加圧成形した磁心であって、前記磁心を形成する鉄粉の全量に対して90体積%以上が75μm以下の粒径を有し、かつ前記磁心の密度が6g/cm以下であることを特徴とする磁心。A magnetic core formed by pressing iron powder, wherein 90% by volume or more with respect to the total amount of the iron powder forming the magnetic core has a particle size of 75 μm or less, and the density of the magnetic core is 6 g / cm 3 or less. A magnetic core characterized in that there is. 鉄粉を型枠内に充填して加圧し、磁心を製造する磁心の製造方法おいて、全量に対して90体積%以上が75μm以下の粒径を有する鉄粉を前記型枠内に充填して加圧し、前記磁心の密度を6g/cm以下とすることを特徴とする磁心の製造方法。In a method for manufacturing a magnetic core, in which iron powder is filled in a mold and pressed to produce a magnetic core, iron powder having a particle size of 90% by volume or more and 75 μm or less with respect to the total amount is filled in the mold. And making the core have a density of 6 g / cm 3 or less. 磁心の加圧成形に用いる磁心用鉄粉であって、全量に対して90体積%以上が75μm以下の粒径を有することを特徴とする磁心用鉄粉。An iron powder for a magnetic core used for pressure molding of a magnetic core, wherein 90% by volume or more of the total amount has a particle size of 75 μm or less.
JP2003084591A 2003-03-26 2003-03-26 Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core Pending JP2004296606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084591A JP2004296606A (en) 2003-03-26 2003-03-26 Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084591A JP2004296606A (en) 2003-03-26 2003-03-26 Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core

Publications (1)

Publication Number Publication Date
JP2004296606A true JP2004296606A (en) 2004-10-21

Family

ID=33399732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084591A Pending JP2004296606A (en) 2003-03-26 2003-03-26 Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core

Country Status (1)

Country Link
JP (1) JP2004296606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
WO2019026612A1 (en) * 2017-08-02 2019-02-07 株式会社デンソー Powder for magnetic powder core and magnetic powder core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141011A (en) * 2006-12-01 2008-06-19 Hitachi Powdered Metals Co Ltd Amorphous dust core
WO2019026612A1 (en) * 2017-08-02 2019-02-07 株式会社デンソー Powder for magnetic powder core and magnetic powder core
JP2019026912A (en) * 2017-08-02 2019-02-21 株式会社デンソー Powder for powder magnetic core and powder magnetic core
US11532414B2 (en) 2017-08-02 2022-12-20 Denso Corporation Powder for dust core and dust core

Similar Documents

Publication Publication Date Title
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
CN107658090B (en) Soft magnetic metal powder magnetic core and reactor provided with same
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2009259974A (en) High-strength powder magnetic core, method of manufacturing high-strength powder magnetic core, choke coil, and method of manufacturing the same
JP2001196216A (en) Dust core
JP2007214425A (en) Powder magnetic core and inductor using it
JP6243298B2 (en) Powder magnetic core and reactor
JP2008255384A (en) Soft magnetic powder, powder magnetic core, and magnetic element
JP2009158802A (en) Manufacturing method of dust core
JP2004363466A (en) Complex magnetic material and method for manufacturing inductor using the same
JP7128439B2 (en) Dust core and inductor element
JP2004197218A (en) Composite magnetic material, core using the same, and magnetic element
JP2015026749A (en) Soft magnetic powder, powder-compact magnetic core, and soft magnetic alloy
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2005213621A (en) Soft magnetic material and powder magnetic core
JP7417830B2 (en) Manufacturing method of composite magnetic material
JP4701531B2 (en) Dust core
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2004296606A (en) Magnetic core of low coercive force, manufacturing method therefor and iron powder for magnetic core
JP2008195970A (en) Composite magnetic material, powder magnetic core and magnetic element
JP2015201481A (en) Powder-compact magnetic core arranged by use of nanocrystal soft magnetic alloy powder, and manufacturing method thereof
JP7128438B2 (en) Dust core and inductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014