JP2004288874A - パルス発振型ガスレーザ装置 - Google Patents

パルス発振型ガスレーザ装置 Download PDF

Info

Publication number
JP2004288874A
JP2004288874A JP2003078926A JP2003078926A JP2004288874A JP 2004288874 A JP2004288874 A JP 2004288874A JP 2003078926 A JP2003078926 A JP 2003078926A JP 2003078926 A JP2003078926 A JP 2003078926A JP 2004288874 A JP2004288874 A JP 2004288874A
Authority
JP
Japan
Prior art keywords
gas
laser
temperature
frequency
gas temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003078926A
Other languages
English (en)
Other versions
JP4195320B2 (ja
Inventor
Takayuki Yabu
隆之 藪
Koji Kakizaki
弘司 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Priority to JP2003078926A priority Critical patent/JP4195320B2/ja
Publication of JP2004288874A publication Critical patent/JP2004288874A/ja
Application granted granted Critical
Publication of JP4195320B2 publication Critical patent/JP4195320B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

【課題】音響波の影響を低減させて、露光用光として適切なビーム品質を有するレーザ光を得ることの可能なガスレーザ装置を提供する。
【解決手段】ガス温(T)を検出するガス温検出部(42)と、発振周波数(f)を検出するレーザコントローラ(29)と、ビーム品質を測定するモニタ(45,46)と、レーザガスのガス温(T)を変化させるガス温変更手段(43)とを備え、レーザコントローラ(29)は、ガス温度(T)に基づいてレーザ光のビーム品質が許容範囲外となる許容外周波数(f1n)を設定し、発振周波数(f)と許容外周波数(f1n)とが略一致したとき、レーザガスのガス温(T)を変更して、そのガス温(T)における許容外周波数(fmn)を、レーザ光の発振周波数(f)からずらすようにしている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ガスレーザ装置におけるガス温制御技術に関する。
【0002】
【従来の技術】
従来から、エキシマレーザ装置等のパルス発振型ガスレーザ装置において、パルス放電の際に衝撃波や音響波が発生することが知られている。尚、衝撃波は数μsecで音響波となるため、以下においてはすべて音響波として説明する。
この音響波により、レーザガスのガス密度に揺らぎが生じ、レーザ光のビームプロファイルが不安定になる。
【0003】
これを防止するために、例えば特許文献1においては、音響波がビームプロファイルに影響を与えそうな発振周波数でレーザ発振を行なう場合に、レーザガスのガス温を変更することにより、音響波の影響を低減している。
【0004】
即ち、音響波の伝搬速度はガス温の平方根に比例するため、ガス温を変えると、音響波の伝搬速度を変えることができる。ビームプロファイルの乱れは、パルス発振を行なうことによって生じた音響波が、次のパルス発振の際に励起領域に戻ってくることによって起きるものである。従って、音響波の伝搬速度を変えることにより、戻ってきた音響波と次のパルス発振とのタイミングをずらして、音響波がレーザガスのガス密度に影響を与えないようにしている。
【0005】
【特許文献1】
特願2001−276778(未公開)
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来技術には、次に述べるような問題がある。
即ち、特許文献1においては、音響波による問題点としてレーザ光のビームプロファイルの乱れのみに注目し、この乱れが最小となるようにレーザガスの温度制御を行なっている。
【0007】
しかしながら、その後の研究により、音響波の影響として、ビームプロファイルだけでなく、レーザ光のパルスエネルギー、スペクトル線幅、スペクトル純度、ビームダイバージェンス、及びビームポインティング等の各項目が、許容範囲外に低下したり安定性が損なわれたりするということが判明した。
【0008】
レーザ光を露光用光として用いるためには、上述した各項目が、いずれも許容範囲内で安定であることが求められており、特許文献1に関わる技術のみで得られるレーザ光は、露光用光として不適切なことがある。
尚、以下の説明では、これらの項目を、レーザ光のビームの特性を表すものとしてビーム品質と総称する。また、各項目の品質が低下したり安定性が損なわれることを、ビーム品質が低下すると総称する。
【0009】
本発明は、上記の問題に着目してなされたものであり、音響波の影響を低減させて、露光用光として適切なビーム品質を有するレーザ光を得ることの可能なガスレーザ装置を提供することを目的としている。
【0010】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、本発明に関わるパルス発振型ガスレーザ装置は、
内部に封止したレーザガスをパルス放電によって励起し、レーザ光を発振させるレーザチャンバと、
レーザガスのガス温を検出する温度センサと、
レーザ光の発振周波数を検出するレーザコントローラと、
レーザ光のビーム品質を測定するモニタと、
レーザコントローラの指令に基づいてレーザガスのガス温を変化させるガス温変更手段とを備え、
レーザコントローラは、ガス温に基づいてレーザ光のビーム品質が許容外となる許容外周波数を設定し、
レーザガスのガス温を変更して、レーザ光の許容外周波数を発振周波数からずらすようにしている。
これにより、ビーム品質が常に許容範囲内となり、例えば露光に適切な露光光を得ることが容易となる。
【0011】
また本発明のパルス発振型ガスレーザ装置は、
レーザコントローラは、許容外周波数をレーザ光の発振周波数から少なくとも50Hz以上ずらすようにしている。
これにより、ビーム品質が確実に許容範囲内となる。
【0012】
また本発明のパルス発振型ガスレーザ装置は、
レーザ光の発振周波数を検出するレーザコントローラと、
レーザ光のビーム品質を測定するモニタと、
ガス温を検出するガス温検出部と、
レーザコントローラの指令に基づいてレーザガスのガス温を変化させるガス温変更手段とを備え、
前記レーザコントローラは、
ガス温を所定の基準ガス設定温に温度制御した場合に、レーザ光のビーム品質が許容範囲から外れる許容外周波数を求め、
発振周波数が前記許容外周波数に略一致した場合に、ビーム品質が許容範囲内に収まる変更ガス設定温を少なくとも1つ以上設定し、
ガス温を前記変更ガス設定温に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数を求め、
発振周波数が、現在のガス温における許容外周波数に略一致するとき、現在の発振周波数が許容外周波数に略一致しないガス設定温を基準ガス設定温及びガス設定温のいずれかから選択して、現在のガス温を前記選択したガス設定温へと変化させ、
レーザ光の発振周波数を許容外周波数からずらすようにしている。
これにより、ビーム品質を容易に許容範囲内とすることができ、例えば露光に適切な露光光を得ることが容易となる。
【0013】
また本発明のパルス発振型ガスレーザ装置は、
レーザ光の発振周波数を検出するレーザコントローラと、
レーザ光のビーム品質を測定するモニタと、
ガス温を検出するガス温検出部と、
レーザコントローラの指令に基づいてレーザガスのガス温を変化させるガス温変更手段とを備え、
前記レーザコントローラは、
ガス温を所定の基準ガス設定温に温度制御した場合に、レーザ光の2つ以上のビーム品質のうち少なくとも1つが許容範囲から外れる許容外周波数を求め、
発振周波数が前記許容外周波数に略一致した場合に、ガス温をいずれかの変更ガス設定温に制御すれば、前記2つ以上のビーム品質がすべて許容範囲内に収まるような変更ガス設定温を少なくとも1つ以上設定し、
ガス温を前記変更ガス設定温に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数を求め、
発振周波数が、現在のガス温における許容外周波数に略一致するとき、現在の発振周波数が許容外周波数に略一致しないガス設定温を基準ガス設定温及びガス設定温のいずれかから選択して、現在のガス温を前記選択したガス設定温へと変化させ、
レーザ光の発振周波数を許容外周波数からずらすようにしている。
これにより、複数のビーム品質を許容範囲内とすることができるので、露光により適切な露光光を得ることができる。
【0014】
また本発明のパルス発振型ガスレーザ装置は、
前記ガス温を前記変更ガス設定温に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数を、所定のタイミングで再検出するようにしている。
これにより、常に許容外周波数を監視するので、レーザチャンバの内部の環境が変化しても、ビーム品質が許容範囲から外れることが少ない。
【0015】
また本発明のパルス発振型ガスレーザ装置は、
前記許容外周波数を再検出するタイミングが、所定の期間ごと、及び、ガス温を変更してもビーム品質が許容範囲から外れる場合の少なくとも一方である。
これにより、許容外周波数が変化しやすいタイミングでの監視を行なうので、ビーム品質が許容範囲から外れることが少ない。
【0016】
また本発明のパルス発振型ガスレーザ装置は、
レーザ光の発振周波数を検出するレーザコントローラと、
レーザ光のビーム品質を測定するモニタと、
ガス温を検出するガス温検出部と、
レーザコントローラの指令に基づいてレーザガスのガス温を変化させるガス温変更手段とを備え、
前記レーザコントローラは、
ビーム品質が許容範囲内から外れた場合に、ガス温を変更してビーム品質を許容範囲内に収めるようにしている。
これにより、ビーム品質を容易に許容範囲内とすることができ、例えば露光に適切な露光光を得ることが容易となる。
【0017】
また本発明のパルス発振型ガスレーザ装置は、
前記ビーム品質が複数である。
これにより、複数のビーム品質を許容範囲内とすることができるので、露光により適切な露光光を得ることができる。
【0018】
また本発明のパルス発振型ガスレーザ装置は、
前記ビーム品質が、スペクトル線幅、スペクトル純度、ビームプロファイル、ビームダイバージェンス、ビームポインティング、及びパルスエネルギーのうち少なくとも1つである。
これにより、露光光に最も大事なビーム品質を、許容範囲内に収めることが可能となっている。
【0019】
【発明の実施の形態】
以下、図を参照しながら、本発明に関わる実施形態を詳細に説明する。
図1は、本発明に関わるエキシマレーザ装置の側面断面図を示している。図1において、エキシマレーザ装置11は、ハロゲンガス、希ガス、及び不活性ガスからなるレーザガスを封入したレーザチャンバ12を備えている。
【0020】
レーザチャンバ12は、例えばアルミニウムにニッケルメッキを施して構成され、高圧電源23の接地GND側に、電気的に接続されている。
レーザチャンバ12の上部には開口部35が設けられ、絶縁性のカソードベース49がその開口部35を封止している。
【0021】
カソードベース49には、アルミニウム等の金属製のカソードホルダ51が固定されている。カソードホルダ51の両側方には、カソード15とレーザチャンバ12の内壁面との間の絶縁距離を大きくして沿面放電を防ぐための絶縁ヒダ40,40が、カソード15の長手方向に沿って形成されている。
【0022】
また、レーザチャンバ12の内部には、カソードホルダ51と対向して、アノード14を固定する金属製のアノードホルダ50が設置されている。アノードホルダ50を固定するアノードベース48は、図示しない金属プレートにより、レーザチャンバ12から吊るされた状態で固定されている。
【0023】
アノード14は、アノードホルダ50及びアノードベース48を介して、高圧電源23の接地GND側に、電気的に接続されている。
また、カソード15は、カソードホルダ51を介して図示しない電流導入手段によって、高圧電源23の高圧HV側に、電気的に接続されている。アノード14及びカソード15からなる主放電電極14,15の材質は、無酸素銅が好適である。
【0024】
レーザチャンバ12の内部には、図示しないモータによって駆動される貫流ファン24と、熱交換器13とが設置されている。矢印47に示すように、主放電電極14,15間のレーザガスは、貫流ファン24によって連続的に新鮮なものと入れ替えられる。主放電によって熱せられたレーザガスは、熱交換器13で冷却される。
【0025】
熱交換器13の内部に流れる冷却水の温度は、レーザコントローラ29の指示に基づき、ガス温変更手段であるチラー43によって制御される。
レーザコントローラ29は、レーザチャンバ12の内部に挿入された温度センサ42の出力信号に基づいてレーザガスの温度(以下、ガス温Tと言う)を検出する。そして、チラー43に指示を送って冷却水の温度を調整し、ガス温Tを所望の温度に制御することが可能である。
【0026】
温度センサ42等のガス温検出部としては、シース(耐腐食性のカバー)をつけた、熱電対や測温抵抗体等が有効である。
尚、ガス温を変化させる手段としては、例えばレーザチャンバ12の周囲にヒータや熱電素子を接触させるなどでもよい。
【0027】
或いは、図示しない冷却水量調整手段を用いて、ガス温Tの温度制御を行なってもよい。即ち、レーザコントローラ29はガス温Tを検出し、冷却水量調整手段に指令を送って熱交換器13の内部を流れる冷却水の流量を調整し、熱交換器13の熱交換効率を制御して、ガス温Tを所望の温度に制御してもよい。
【0028】
アノード14の両側方には、長手方向に沿って予備電離電極37,37が配置されている。予備電離電極37は、金属製の棒状の内部導電体38と、その外周部を包囲する誘電体39とで構成され、内部導電体38は、その端部において図示しない接続手段により、高圧電源23の高圧側HVに接続されている。
【0029】
レーザコントローラ29は、まず、予備電離電極37の内部導電体38に、高圧電源23からパルス状の高電圧を印加することにより、アノード14との間でコロナ放電を起こし、主放電電極14,15間の励起領域を電離させる。
その状態で、主電極14,15間に高圧電源23からパルス状の高電圧を印加することによって主放電を起こし、レーザガスを励起して、レーザ光21を紙面と垂直方向に発生させる。
【0030】
図2に、図1の矢印A方向から見た、エキシマレーザ装置11の平面図を示す。図2において、レーザチャンバ12の前後部には、レーザ光21を透過するウィンドウ17,19がそれぞれ付設されている。また、レーザチャンバ12の前後方には、レーザ光21のビーム幅を制限するフロント及びリアのスリット26,27が、それぞれ設置されている。
スリット26,27の前後方には、レーザ光21を部分反射するフロントミラー16と、レーザ光21の波長を狭帯域化する狭帯域化光学素子を収納した狭帯域化ボックス31とが、それぞれ配置されている。
【0031】
主放電によって主放電電極14,15間で発生したレーザ光21は、レーザチャンバ12後方(図2中左方)に配置された、狭帯域化ボックス31に入射する。
狭帯域化ボックス31の内部には、レーザ光21のビーム幅を拡大させる複数のプリズム32,32と、精密な溝が設けられたグレーティング33とを含む狭帯域化光学素子が収納されている。ここでグレーティング33は、反射型グレーティングである。
【0032】
レーザ光21は、プリズム32,32によってビーム幅を拡大され、拡大レーザ光21Aとなってグレーティング33に入射する。拡大レーザ光21Aは、グレーティング33の表面でその波長に応じて回折され、回折光は角度分散する。このようにして、レーザ光21の波長のスペクトル線幅を、所定の中心波長の近辺のみに制限してレーザ発振させることを、狭帯域化と言う。
【0033】
狭帯域化された拡大レーザ光21Aは、光路を逆向きに通ってビーム幅を元に戻され、フロントミラー16に達する。フロントミラー16は、レーザ光21の一部を反射し、一部を透過する。フロントミラー16で反射したレーザ光21の成分は、グレーティング33との間で反射を繰り返し、その間に主放電電極14,15間で増幅される。一方、フロントミラー16を透過した成分は、エキシマレーザ装置11から図2中右方へ出射する。
【0034】
出射したレーザ光21の一部は、ビームスプリッタ22に入射する。大部分のレーザ光21は、ビームスプリッタ22を透過し、ステッパ等の露光機25に入射して露光用光となる。
露光機25とレーザコントローラ29との間は、通信回線で接続され、露光機25からレーザコントローラ29に対し、レーザ光21の発振周波数、パルスエネルギー、及び中心波長等の要求が伝えられる。
【0035】
一方、レーザ光21の一部はビームスプリッタ22で反射され、サンプルレーザ光21Bとなってモニタボックス44に入射する。モニタボックス44の内部には、パルスエネルギーを測定するエネルギーモニタ45と、ビーム品質を測定する波長モニタ46とが備えられている。
【0036】
エネルギーモニタ45は、例えばパルスエネルギーの大きさに対応した出力信号を出力する光ダイオード等から構成されている。また、波長モニタ46は、例えばモニタエタロン等の分光手段を備え、サンプル光21Bのスペクトル線幅やスペクトル純度を測定することができる。また、波長モニタ46は、MOSやCCD等からなるイメージセンサを備え、これによってビームプロファイルやビームポインティング等を測定している。
【0037】
レーザコントローラ29は、エネルギーモニタ45からの信号に基づき、レーザ光21のパルスエネルギーが、露光機25から要求された所定値となるように、高圧電源23に指令信号を出力し、主放電電極14,15間に印加する電圧を制御する。これを、パルスエネルギー一定制御と呼ぶ。
【0038】
またレーザコントローラ29は、波長モニタ46からの信号に基づき、レーザ光21の中心波長及びスペクトル線幅が、露光機25から要求された所定値となるように、ステージ56を回転させてグレーティング33の角度を調整する。これを、波長制御と呼ぶ。
【0039】
以上のような構成のエキシマレーザ装置において、音響波によるレーザ光21のビーム品質の乱れを排し、ビーム品質が良好で露光用光に適したレーザ光21を得るための技術について、以下詳細に説明する。
【0040】
まず第1実施形態として、ビーム品質のうち、少なくとも1つ(本実施形態ではスペクトル線幅)の乱れをなくして、ビーム品質が低下しないようにするための技術について説明する。
【0041】
図3に、第1実施形態に関わるガス温制御方法を、フローチャートで示す。
まず、レーザコントローラ29は、ガス温Tを所定の基準ガス設定温T1に制御して、調整のためのレーザ発振を行なう(ステップS11)。このようなレーザ発振を、以下、調整発振と呼ぶ。また、露光のためのレーザ発振を、露光発振と呼ぶ。
尚、以下の説明において、特記しない限り、ガス温T及びガス設定温は、絶対温度(K)で表すものとする。
【0042】
次に発振周波数fを変更し、基準ガス設定温T1における、発振周波数fとスペクトル線幅との関係を求め、これに基づいて、レーザ光21のビーム品質が許容値を越える許容外周波数f1n(n=1,2,3……)を求める(ステップS12)。許容外周波数fmnは、例えば1Hz単位であるのが望ましいが、例えば10Hz単位であってもよい。
尚、上述したような、ガス温Tにおける発振周波数fとスペクトル線幅との関係を、スペクトル線幅の周波数特性S1(f,T)と呼ぶ。
【0043】
図4の上側に、基準ガス設定温T1におけるスペクトル線幅の周波数特性S1(f,T1)のグラフを示す。図4において、S1Uは、露光用光としてレーザ光21が要求されるスペクトル線幅の許容範囲の上限を示している。
図4に示すように、基準ガス設定温T1においては、発振周波数fがf11及びf12において、スペクトル線幅が許容の上限S1Uを越えている。
【0044】
次にレーザコントローラ29は、第2のガス設定温T2を、後述する計算によって定める(ステップS13)。
このとき、第2のガス設定温T2として、そのガス設定温T2における許容外周波数f2nが、基準ガス設定温T1における許容外周波数f1nよりも、それぞれ所定周波数差Δf以上離れているように、第2のガス設定温T2を定める。
尚、以下において、基準ガス設定温T1から変化させるガス設定温を、変更ガス設定温と総称する。
【0045】
音響波の伝搬速度は、ガス温Tの平方根に比例するため、許容外周波数fmnは、ガス温Tの平方根に反比例する。従って、基準ガス設定温T1における許容外周波数f1nに基づき、第2のガス設定温T2における許容外周波数f2nを、次の数式1で概略求めることが、可能となっている。
f2n=f1n・(T1/T2)^(1/2) …………(1)
【0046】
ビーム品質がスペクトル線幅である場合、所定周波数差Δfとしては、50Hz以上であればよいことが、実験的に知られている。他のビーム品質についても、略同様である。
従って、ステップS13においては、数式1に基づき、第2のガス設定温T2の許容外周波数f2nのそれぞれが、基準ガス設定温T1における許容外周波数f1nのそれぞれに対し、50Hz以上離れているように、第2のガス設定温T2を定めるようにする。尚、50Hzの周波数差Δfは、ガス温Tの差に換算して、約10度に相当する。
【0047】
尚、レーザ動作は、所定の基準ガス設定温T1付近で行なうことが理想的であることが多く、ガス温Tの温度変化はなるべく小さいほうが望ましい。しかしながら、第2のガス設定温T2と基準ガス設定温T1との差が小さ過ぎると、ガス温Tを正確に制御するのが困難となる。また、その差が大き過ぎると、ガス温Tが高過ぎたり低過ぎたりして、レーザ光21を安定に発振させるための条件を満たさないことがあるため、第2のガス設定温T2の設定にはこれらに注意する必要がある。
【0048】
また、第2のガス設定温T2と基準ガス設定温T1との差を大きく設定し過ぎて、いずれかが高くなり過ぎた場合には、レーザチャンバ12の耐熱温度の上限値(主に、シール材として用いられるOリングの耐熱温度)を越えてしまう場合がある。さらには、設定ガス温Tの下限値は、熱交換器13の熱交換能力によって定まるため、これよりも低い設定ガス温Tとしないように、注意が必要である。
【0049】
そして、レーザコントローラ29は、チラー43に指示を送ってガス温Tを第2のガス設定温T2に制御し、第2のガス設定温T2における周波数特性を計測して許容外周波数f2nを実験的に求め(ステップS14)、どのような発振周波数fにおいても、ビームプロファイルが許容範囲内となるガス設定温T1,T2が存在することを確認する(ステップS15)。
【0050】
図4の下側に、第2のガス設定温T2におけるスペクトル線幅の周波数特性S1(f,T2)のグラフを示す。図4に示すように、第2のガス設定温T2においては、発振周波数fがf21及びf22において、スペクトル線幅が許容範囲の上限S1Uを越えている。
従って、ステップS15においては、図4から、許容外周波数f1nと許容外周波数f2nとを比較し、f11がf21及びf22の双方から所定周波数差Δf以上離れ、かつ、f12がf21及びf22の双方から所定周波数差Δf以上離れていることを確認すればよい。
【0051】
ステップS15において、スペクトル線幅が、ある発振周波数fにおいて許容範囲外となってしまうようであれば、ステップS13に戻る。そして、図4を参考にして新たな第2の温度T2を求め、ステップS14で、この新たな第2の温度T2におけるスペクトル線幅の周波数特性S1(f,T2)を求め、ステップS15で確認を繰り返す。
尚、上記ステップS14,S15を省いて、ステップS13の計算のみによって、第2のガス設定温T2を定めてもよい。
【0052】
このように、第2のガス設定温T2を定めると、レーザコントローラ29は、露光発振を行なう(ステップS17)。まずレーザコントローラ29は、ガス温Tを基準ガス設定温T1とし(ステップS18)、露光機25の指示信号に基づいて、発振周波数fを求める(ステップS19)。
【0053】
ステップS19において、発振周波数fは、露光機25からレーザコントローラ29に通信によって通知される。レーザコントローラ29は、その指示に基づき、高圧電源23に主放電を行なうトリガ信号を送っている。
或いは、露光機25からレーザコントローラ29に、トリガ信号が送られる場合がある。このような場合には、レーザコントローラ29はカウンタにより、そのときの発振周波数fを算出するようにしている。
【0054】
レーザコントローラ29は、そのときのガス設定温Tmにおける許容外周波数fmnと、発振周波数fとを比較する(ステップS20)。両者が、充分離れているようであれば、レーザコントローラ29は、ガス温Tを現在の温度に制御し続ける(ステップS21)。
【0055】
一方ステップS20において、許容外周波数fmnと発振周波数fとが略一致する場合には、レーザコントローラ29は、ガス温Tを変更する(ステップS22)。これは、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2に、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2になるように制御する。尚、略一致とは、両者の差が所定周波数差以下であることを指す。
【0056】
即ち、上述したように、そのときのガス温Tにおける許容外周波数fmnと発振周波数fとが略一致すると、音響波の影響によってビーム品質(本実施形態ではスペクトル線幅)が低下する。
これを防止するため、ガス温Tを現在の値から変更して、許容外周波数fmnと発振周波数fとの差を所定周波数差Δf以上とすることにより、音響波によるビーム品質の低下を防止している。
【0057】
次に、第2実施形態について、説明する。
第1実施形態においては、ガス温Tを基準ガス設定温T1と第2のガス温T2との間で移動させるようにしたが、このようにガス設定温Tを2つ定めるだけでは、発振周波数fを許容外周波数fmnから充分にずらすことが困難で、音響波の影響を受けてしまうような場合がある。
【0058】
以下に、そのような場合について、ビーム品質としてビームプロファイルを例に取って説明する。
図5は、ガス温Tを上から基準ガス設定温T1、第2のガス設定温T2、及び第3のガス設定温T3と変えた場合の、ビームプロファイルの周波数特性S2(f,Tm)を示している。
【0059】
図5において、S2U,S2Lは、ビームプロファイルの許容範囲の上限及び下限を示している。
図5に示すように基準ガス設定温T1では、許容外周波数f1nは、f11,f12,f13,f14となる。また、第2のガス設定温T2においては、許容外周波数f2nは、f21,f22,f23,f24となり、第3のガス設定温T3においては、許容外周波数f3nは、f33,f32,f33,f34となっている。
【0060】
このような場合、ガス温Tを、基準ガス設定温T1及び第2のガス設定温T2のみとすると、基準ガス設定温T1において例えば発振周波数fがf13と略一致した場合に、ガス温Tを第2のガス設定温T2としても、ビームプロファイルが許容範囲外となってしまう。
【0061】
従って、このような場合においては、第3のガス設定温T3を設け、基準ガス設定温T1及び第2のガス設定温T2のガス温Tにおいてビームプロファイルが許容範囲外となる場合には、ガス温Tを第3のガス設定温T3に制御するようにする。
これにより、ビームプロファイルが、許容範囲内となる。
【0062】
以下、具体的に説明する。
図6に、第2実施形態に関わるガス温制御方法を、フローチャートで示す。
まず、調整発振を行ない(ステップS31)、基準ガス設定温T1における、ビームプロファイルの周波数特性S2(f,T1)を求める(ステップS32)。
【0063】
次にレーザコントローラ29は、第2のガス設定温T2及び第3のガス設定温T3を、例えば上述したように数式1を用いた計算によって定める(ステップS33)。
このとき、図5に示すように、周波数域内のどのような発振周波数fで発振しても、ガス温Tを基準ガス設定温T1、第2のガス設定温T2、及び第3のガス設定温T3のいずれかに制御すれば、ビームプロファイルが許容範囲内となるように、第2、第3のガス設定温T2,T3を定めるようにする。
【0064】
そして、レーザコントローラ29は、チラー43に指示を送ってガス温Tを第2のガス設定温T2に制御し、第2のガス設定温T2における許容外周波数f2nを実験的に求める(ステップS34)。さらに、ガス温Tを第3のガス設定温T3に制御し、第3のガス設定温T3における許容外周波数f3nを実験的に求める(ステップS35)。
【0065】
そして、これらの許容外周波数f1n,f2n,f3nから、どのような発振周波数fにおいてもビーム品質が許容範囲内となるガス設定温T1,T2,T3が存在することを確認する(ステップS36)。
【0066】
ステップS36において、ある発振周波数fにおいてビームプロファイルが許容範囲外となるようであれば、ステップS33に戻り、新たな第2の温度T2を求める。
尚、上記ステップS34〜S36を省いて、ステップS33の計算のみによって、第2のガス設定温T2を定めてもよい。
【0067】
このように、第2、第3のガス設定温T2,T3を定めると、レーザコントローラ29は、露光発振を行なう(ステップS37)。まずレーザコントローラ29は、ガス温Tを基準ガス設定温T1とし(ステップS38)、発振周波数fを求める(ステップS39)。
【0068】
そしてレーザコントローラ29は、そのときのガス設定温Tmにおける許容外周波数fmnと、発振周波数fとを比較する(ステップS41)。両者が、充分離れているようであれば、レーザコントローラ29は、ガス温Tを現在の温度に制御し続ける(ステップS42)。
【0069】
一方ステップS40において、許容外周波数fmnと発振周波数fとが略一致する場合には、レーザコントローラ29は、ガス温Tを変更する(ステップS43)。このとき、許容外周波数fmnに基づき、どのガス設定温T1,T2,T3を選択するかを決める。
【0070】
このように、第2実施形態においては、基準ガス設定温T1以外に第2、第3のガス設定温T2,T3を定め、ビーム品質が低下しないようにガス温Tの制御を行なっている。尚、本実施形態では、基準ガス設定温T1以外のガス設定温Tmを2つ定めるようにしているが、状況に合わせて、より多くのガス設定温Tmを定める場合も同様である。
【0071】
次に第3実施形態について、説明する。第1、第2実施形態においては、スペクトル線幅やビームプロファイル等のうち、1つのビーム品質だけを許容範囲外に出ないようにする場合について説明した。しかしながら、上述したようにレーザ光21を好適な露光光として用いるためには、すべてのビーム品質が許容範囲内にある必要がある。
【0072】
そこで第3実施形態においては、ビーム品質としてスペクトル線幅とビームプロファイルとを例にとり、複数のビーム品質がすべて許容範囲外に出ないように、ガス温Tの制御を行なう技術を説明する。
【0073】
図7に、第3実施形態に関わるガス温制御方法を、フローチャートで示す。
まずレーザコントローラ29は調整発振を行ない(ステップS51)、基準ガス設定温T1における、スペクトル線幅に対する周波数特性S1(f,T1)を求め(ステップS52)、ビームプロファイルに対する周波数特性S2(f,T1)を求める(ステップS53)。
【0074】
そして、基準ガス設定温T1における、スペクトル線幅及びビームプロファイルの双方に対する許容外周波数f1nを得る(ステップS54)。
図8に、基準ガス設定温T1における、スペクトル線幅に対する周波数特性S1(f,T1)と、ビームプロファイルに対する周波数特性S2(f,T1)とをグラフで示す。図8に示すように、ビームプロファイルに対しては、発振周波数fがf12,f15の場合に許容範囲から外れる。一方、スペクトル線幅に対しては、発振周波数fがf11,f13,f14,f16の場合に許容範囲から外れている。
従って、許容外周波数f1nは、f11,f12,f13,f14,f15,f16となる。
【0075】
次にレーザコントローラ29は、許容外周波数f2nが許容外周波数f1nと略一致しない第2のガス設定温T2を、例えば上述したように数式1を用いた計算によって定める(ステップS55)。
【0076】
そして、レーザコントローラ29は、チラー43に指示を送ってガス温Tを第2のガス設定温T2に制御し、第2のガス設定温T2における許容外周波数f2nを実験的に求める(ステップS56)。
そして、どのような発振周波数fにおいても、スペクトル線幅及びビームプロファイルが、どちらも許容範囲内となるガス設定温T1,T2が存在することを確認する(ステップS57)。
【0077】
ステップS57において、ある発振周波数fにおいてスペクトル線幅又はビームプロファイルが許容範囲外となるようであれば、ステップS55に戻り、新たな第2の温度T2を求める。
尚、上記ステップS55〜S57を省いて、ステップS54の計算のみによって、第2のガス設定温T2を定めてもよい。
【0078】
このように、第2のガス設定温T2を定めると、レーザコントローラ29は、露光発振を行なう(ステップS58)。まずレーザコントローラ29は、ガス温Tを基準ガス設定温T1とし(ステップS59)、発振周波数fを求める(ステップS60)。
【0079】
レーザコントローラ29は、そのときのガス設定温Tmにおける許容外周波数fmnと、発振周波数fとを比較する(ステップS61)。両者が、所定周波数Δf以上離れているようであれば、レーザコントローラ29は、ガス温Tを現在の温度に制御し続ける(ステップS61)。
【0080】
一方ステップS60において、許容外周波数fmnと発振周波数fとが略一致する場合には、レーザコントローラ29は、ガス温Tを変更する(ステップS62)。これは、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2に、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2になるように制御する。
【0081】
以上説明したように第3実施形態によれば、複数のビーム品質に対して、すべてが許容範囲内に入るように、ガス温Tを変更している。これにより、音響波の影響をより少なくして、露光光として適したレーザ光21を得ることが、可能となっている。
【0082】
尚、上記の説明においては、2つのビーム品質のみに対して対応しているが、より多くのビーム品質を許容範囲内に入れるような場合にも、同様にして応用できる。また、第2のガス設定温T2のみを定め、基準ガス設定温T1とどちらか一方を選ぶようにしているが、第2実施形態で説明したように、より多くの変更ガス設定温Tmを定めてもよい。
【0083】
次に、第4実施形態について説明する。
これは、第1〜第3実施形態のように、予め変更ガス設定温Tmを定めておくのではなく、ビーム品質の少なくとも1つが許容範囲外となったらガス温Tを少しずつ変化させることにより、ビーム品質をすべて許容範囲内とするものである。即ち、予めガス温Tを変更する際の、上げ幅ΔT1及び下げ幅ΔT2を定めておく。そして、この上げ幅ΔT1及び下げ幅ΔT2ずつ、ガス温Tを上昇及び降下させている。
【0084】
図9に、第4実施形態に関わるガス温制御方法を、フローチャートで示す。
図9において、まずレーザコントローラ29は、発振周波数f、基準ガス設定温T1で、露光発振を行なう(ステップS71)。そして、波長モニタ46及びエネルギーモニタ45からの信号に基づいて各ビーム品質を計測し、各ビーム品質が、許容範囲内に入っているか否かをチェックする(ステップS72)。
【0085】
このとき、複数のビーム品質をチェックする場合については、すべてのビーム品質が許容範囲内に入っているか否かを順にチェックする。そして、ビーム品質のすべてが入っておればステップS72に戻る。
また、ビーム品質のうち、1つでも許容範囲内に入っていなければ、ステップS73に移り、許容範囲内に入るようにガス温Tを変更する。
【0086】
レーザコントローラ29は、現在のガス温Tに所定の上げ幅ΔT1を加えた値(T+ΔT1)を、ガス温Tの上限TUと比較する(ステップS73)。そして、T+ΔT1<TUの場合には、ガス温Tを上げ幅ΔT1だけ上昇させる(ステップS74)。
【0087】
そしてレーザコントローラ29は、波長モニタ46及びエネルギーモニタ45からの信号に基づき、各ビーム品質を計測して許容範囲内か否かを判定し(ステップS75)、各ビーム品質が許容範囲内であれば、ステップS75に戻る。また、ステップS75で、ビーム品質が1つでも許容範囲外であれば、ステップS73に戻る。
【0088】
また、ステップS73で、T+ΔT1≧TUの場合には、現在のガス温Tから所定の下げ幅ΔT2を引いた値(T−ΔT2)を、ガス温Tの下限TLと比較する(ステップS76)。(T−ΔT2)>TLの場合には、ガス温Tを下げ幅ΔT2だけ降下させる(ステップS77)。
尚、ステップS73〜S75の動作を繰り返して、T+ΔT1≧TUとなった場合には、一番最初にステップS73を行なったときのガス温(例えばTSと呼ぶ)にガス温Tを戻し、その後、ステップS76において、(T−T2)と下限TLとを比較してもよい。
【0089】
そしてレーザコントローラ29は、波長モニタ46及びエネルギーモニタ45からの信号に基づいて各ビーム品質を計測し、各ビーム品質が、許容範囲内に入っているか否かを判定する(ステップS78)。
ステップS78で、各ビーム品質が許容範囲内であれば、ステップS78に戻る。一方、ビーム品質が1つでも許容範囲外であれば、ステップS76に戻る。
【0090】
また、ステップS76で、T−ΔT2≦TLであれば、上げ幅ΔT1及び下げ幅ΔT2を、例えば所定割合だけ増やすといった方法で変更し、ステップS72に戻る。
【0091】
尚、以上の説明においては、ガス温Tをまず上昇させる場合について説明したが、これに限られるものではなく、まず降下させてもよい。或いは、まず上げ幅ΔT1だけ上昇させてT+ΔT1とし、それでも許容範囲外の場合には、元のガス温Tから下げ幅ΔT2だけ降下させてT−ΔT2とするというように、ガス温Tの上昇と降下とを交互に行ない、ガス温Tを上下に振動させてもよい。
【0092】
また、上げ幅ΔT1と下げ幅ΔT2とは、同じ値でもよいし、異なる値でもよい。
さらには、ステップS73でビーム品質を計測するタイミングとしては、定期的に行なってもよく、又は発振周波数fが変更になるたびに行なうようにしてもよい。
【0093】
次に、第5実施形態について説明する。
例えば主放電電極14,15が主放電によって摩耗したり、レーザガスが劣化したりして、レーザチャンバ12の内部の環境が変化することがある。このような場合には、最初に設定した第2のガス設定温T2にガス温Tを変更しても、ビーム品質が許容範囲内にならないことがあり、第5実施形態においては、このような場合の対応を説明している。
【0094】
図10に、第5実施形態に関わるガス温制御方法を、フローチャートで示す。ビーム品質としては、スペクトル線幅を例に取って説明する。
まずレーザコントローラ29は調整発振を行なう(ステップS91)。そして、初期の基準ガス設定温T1における、スペクトル線幅に対する周波数特性S1(f,T1)に基づき、許容外周波数f1nを求める(ステップS92)。
次にレーザコントローラ29は、第2のガス設定温T2を、後述する計算によって定める(ステップS93)。
【0095】
そして、レーザコントローラ29は、チラー43に指示を送ってガス温Tを第2のガス設定温T2に制御し、第2のガス設定温T2における周波数特性を計測して許容外周波数f2nを実験的に求める(ステップS94)。そして、どのような発振周波数fにおいても、スペクトル線幅が許容範囲内となるガス設定温T1,T2が存在することを確認する(ステップS95)。
尚、上記ステップS94,S95を省いて、ステップS93の計算のみによって、第2のガス設定温T2を定めてもよい。
【0096】
このように、第2のガス設定温T2を定めると、レーザコントローラ29は、ガス温Tを基準ガス設定温T1として露光発振を行なう(ステップS97)。そして、波長モニタ46からの信号に基づいて、各ビーム品質を計測し、スペクトル線幅が許容範囲内に入っているか否かを判定する(ステップS98)。
【0097】
ステップS98で、スペクトル線幅が許容範囲内に入っていれば、ステップS98に戻る。また、スペクトル線幅が許容範囲外であれば、ガス温Tを変更する(ステップS99)。これは、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2に、現在のガス温Tが基準ガス設定温T1であれば第2のガス設定温T2になるように制御する。
【0098】
そして、波長モニタ46からの信号に基づいて、スペクトル線幅が許容範囲内に入っているか否かを判定する(ステップS101)。ステップS101で、スペクトル線幅が許容範囲内に入っていれば、ステップS101に戻る。
【0099】
一方、ステップS101でスペクトル線幅が許容範囲内になければ、例えば、第2のガス設定温T2に所定の値を加える(又は減じる)などの方法で、新たな第2のガス設定温T2を設定する(ステップS102)。そしてステップS98に戻る。
【0100】
即ち第5実施形態によれば、変更ガス設定温Tmを固定せず、所定の方法で設定変更している。これにより、レーザチャンバ12の内部の環境が変化しても、常にビーム品質を許容範囲内とすることが可能である。
【0101】
尚、上記の説明においては、変更ガス設定温を第2のガス設定温T2のみとして、これを設定変更させたが、複数の変更ガス設定温を設ける場合にも、同様である。
また、ビーム品質をスペクトル線幅のみとしたが、他の複数のビーム品質についても判定する場合には、第4実施形態のようにする。即ち、ステップS98、ステップS100において、ビーム品質の許容範囲の判定を行なう際に、すべてのビーム品質が許容範囲内に入っているか否かを順にチェックし、1つでも入っていなければ、許容範囲外とする。
【0102】
また、ステップS101で、第2のガス設定温T2においてビーム品質が許容範囲にない場合に、改めて第2のガス設定温T2を変更するようにしたが、これに限られるものではない。
例えば定期的に調整発振を行なって、第2のガス設定温T2において、基準ガス設定温T1の許容外周波数f1nで発振させた場合に、ビーム品質が許容範囲内にあるか否かを確認しておいてもよい。
【0103】
また、定期的に調整発振を行なって、第2のガス設定温T2における周波数特性を計測して許容外周波数f2nを再び実験的に求め、どのような発振周波数fにおいても、スペクトル線幅が許容範囲内となるガス設定温T1,T2が存在することを確認してもよい。そして確認の結果、どのような発振周波数fにおいても、スペクトル線幅が許容範囲内となるガス設定温T1,T2が存在するとは限らない場合には、存在するようにガス設定温T2を変更して再設定するとよい。
さらには、発振周波数fが変化した場合に調整発振を行なって、第2のガス設定温T2においてビーム品質が許容範囲にあるか否かを確認してもよい。
【0104】
尚、上記の説明は、エキシマレーザ装置を例にとって行なったが、フッ素分子レーザ装置等でも、同様に応用が可能である。また、グレーティング33によって波長を狭帯域化したレーザ装置について説明したが、エタロンによって狭帯域化した場合や、分散プリズムによって波長のシングルライン化を行なった場合についても同様である。
【図面の簡単な説明】
【図1】エキシマレーザ装置の側面断面図。
【図2】エキシマレーザ装置の平面図。
【図3】第1実施形態に関わる、ガス温制御方法を示すフローチャート。
【図4】基準ガス設定温及び第2のガス設定温におけるスペクトル線幅の周波数特性を示すグラフ。
【図5】第2実施形態に関わる、ビーム品質の周波数特性を示すグラフ。
【図6】第2実施形態に関わる、ガス温制御方法を示すフローチャート。
【図7】第3実施形態に関わる、ガス温制御方法を示すフローチャート。
【図8】基準ガス設定温における、スペクトル線幅及びビームプロファイルに対する周波数特性を示すグラフ。
【図9】第4実施形態に関わる、ガス温制御方法を示すフローチャート。
【図10】第5実施形態に関わる、ガス温制御方法を示すフローチャート。
【符号の説明】
11:エキシマレーザ装置、12:レーザチャンバ、13:熱交換器、14:アノード、15:カソード、16:フロントミラー、17:フロントウィンドウ、1:リアミラー、19:リアウィンドウ、21:レーザ光、22:ビームスプリッタ、23:高圧電源、24:貫流ファン、25:露光機、26:フロントスリット、27:リアスリット、29:レーザコントローラ、31:狭帯域化ボックス、32:プリズム、33:グレーティング、35:開口部、37:予備電離電極、38:内部導電体、39:誘電体、40:絶縁ヒダ、42:温度センサ、43:チラー、44:モニタボックス、45:エネルギーモニタ、46:波長モニタ、47:レーザガス、48:アノードベース、49:カソードベース、50:アノードホルダ、51:カソードホルダ、56:ステージ。

Claims (9)

  1. パルス発振型ガスレーザ装置において、
    内部に封止したレーザガスをパルス放電によって励起し、レーザ光を発振させるレーザチャンバ(12)と、
    レーザガスのガス温(T)を検出するガス温検出部(42)と、
    レーザ光の発振周波数(f)を検出するレーザコントローラ(29)と、
    レーザ光(21)のビーム品質を測定するモニタ(45,46)と、
    レーザコントローラ(29)の指令に基づいてレーザガスのガス温(T)を変化させるガス温変更手段(43)とを備え、
    レーザコントローラ(29)は、ガス温度(T)に基づいてレーザ光のビーム品質が許容範囲外となる許容外周波数(f1n)を設定し、
    発振周波数(f)と許容外周波数(f1n)とが略一致したとき、
    レーザガスのガス温(T)を変更して、そのガス温(T)における許容外周波数(fmn)を、レーザ光の発振周波数(f)からずらすようにしたことを特徴とする
    ことを特徴とする、パルス発振型ガスレーザ装置。
  2. 請求項1に記載のパルス発振型ガスレーザ装置において、
    レーザコントローラ(29)は、許容外周波数(fmn)をレーザ光(21)の発振周波数(f)から少なくとも50Hz以上ずらすようにした
    ことを特徴とする、パルス発振型ガスレーザ装置。
  3. レーザガスが封入されたレーザチャンバ(12)内にレーザガスを励起するための主放電電極(14,15)と、前記主放電電極(14,15)間に高電圧パルスを印加して主放電を発生させる高圧電源(23)と、共振器とを備えたパルス発振型ガスレーザ装置において、
    レーザ光の発振周波数(f)を検出するレーザコントローラ(29)と、
    レーザ光(21)のビーム品質を測定するモニタ(45,46)と、
    ガス温(T)を検出するガス温検出部(42)と、
    レーザコントローラ(29)の指令に基づいてレーザガスのガス温(T)を変化させるガス温変更手段(43)とを備え、
    前記レーザコントローラ(29)は、
    ガス温(T)を所定の基準ガス設定温(T1)に温度制御した場合に、レーザ光(21)のビーム品質が許容範囲から外れる許容外周波数(f1n)を求め、
    発振周波数(f)が前記許容外周波数(f1n)に略一致した場合に、ビーム品質が許容範囲内に収まる変更ガス設定温(T2,T3)を少なくとも1つ以上設定し、
    ガス温(T)を前記変更ガス設定温(T2,T3)に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数(fmn)を求め、
    発振周波数(f)が、現在のガス温(T)における許容外周波数に略一致するとき、現在の発振周波数(f)が許容外周波数に略一致しないガス設定温を基準ガス設定温(T1)及びガス設定温(T2,T3)のいずれかから選択して、現在のガス温(T)を前記選択したガス設定温へと変化させ、
    レーザ光の発振周波数(f)を許容外周波数(fmn)からずらすようにした
    ことを特徴とするパルス発振型ガスレーザ装置。
  4. レーザガスが封入されたレーザチャンバ(12)内にレーザガスを励起するための主放電電極(14,15)と、前記主放電電極(14,15)間に高電圧パルスを印加して主放電を発生させる高圧電源(23)と、共振器とを備えたパルス発振型ガスレーザ装置において、
    レーザ光の発振周波数(f)を検出するレーザコントローラ(29)と、
    レーザ光(21)のビーム品質を測定するモニタ(45,46)と、
    ガス温(T)を検出するガス温検出部(42)と、
    レーザコントローラ(29)の指令に基づいてレーザガスのガス温(T)を変化させるガス温変更手段(43)とを備え、
    前記レーザコントローラ(29)は、
    ガス温(T)を所定の基準ガス設定温(T1)に温度制御した場合に、レーザ光(21)の2つ以上のビーム品質のうち少なくとも1つが許容範囲から外れる許容外周波数(f1n)を求め、
    発振周波数(f)が前記許容外周波数に略一致した場合に、ガス温(T)をいずれかの変更ガス設定温(T2,T3)に制御すれば、前記2つ以上のビーム品質がすべて許容範囲内に収まるような変更ガス設定温(T2,T3)を少なくとも1つ以上設定し、
    ガス温(T)を前記変更ガス設定温(T2,T3)に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数(fmn)を求め、
    発振周波数(f)が、現在のガス温(T)における許容外周波数に略一致するとき、現在の発振周波数(f)が許容外周波数に略一致しないガス設定温を基準ガス設定温(T1)及びガス設定温(T2,T3)のいずれかから選択して、現在のガス温(T)を前記選択したガス設定温へと変化させ、
    レーザ光の発振周波数(f)を許容外周波数(fmn)からずらすようにした
    ことを特徴とするパルス発振型ガスレーザ装置。
  5. 請求項3又は4に記載のパルス発振型ガスレーザ装置において、
    前記ガス温(T)を前記変更ガス設定温(T2,T3)に温度制御した場合に、ビーム品質が許容範囲から外れる許容外周波数(fmn)を、所定のタイミングで再検出するようにした
    ことを特徴とするパルス発振型ガスレーザ装置。
  6. 請求項5に記載のパルス発振型ガスレーザ装置において、
    前記許容外周波数(fmn)を再検出するタイミングが、所定の期間ごと、及び、ガス温(T)を変更してもビーム品質が許容範囲から外れる場合の少なくとも一方である
    ことを特徴とするパルス発振型ガスレーザ装置。
  7. レーザガスが封入されたレーザチャンバ(12)内にレーザガスを励起するための主放電電極(14,15)と、前記主放電電極(14,15)間に高電圧パルスを印加して主放電を発生させる高圧電源(23)と、共振器とを備えたパルス発振型ガスレーザ装置において、
    レーザ光の発振周波数(f)を検出するレーザコントローラ(29)と、
    レーザ光(21)のビーム品質を測定するモニタ(45,46)と、
    ガス温(T)を検出するガス温検出部(42)と、
    レーザコントローラ(29)の指令に基づいてレーザガスのガス温(T)を変化させるガス温変更手段(43)とを備え、
    前記レーザコントローラ(29)は、
    ビーム品質が許容範囲内から外れた場合に、ガス温(T)を変更してビーム品質を許容範囲内に収めるようにした
    ことを特徴とするパルス発振型ガスレーザ装置。
  8. 請求項7に記載のパルス発振型ガスレーザ装置において、
    前記ビーム品質が複数である
    ことを特徴とするパルス発振型ガスレーザ装置。
  9. 請求項1〜8のいずれかに記載のパルス発振型ガスレーザ装置において、
    前記ビーム品質が、スペクトル線幅、スペクトル純度、ビームプロファイル、ビームダイバージェンス、ビームポインティング、及びパルスエネルギーのうち少なくとも1つである
    ことを特徴とするパルス発振型ガスレーザ装置。
JP2003078926A 2003-03-20 2003-03-20 パルス発振型ガスレーザ装置及びそのガス温制御方法 Expired - Fee Related JP4195320B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003078926A JP4195320B2 (ja) 2003-03-20 2003-03-20 パルス発振型ガスレーザ装置及びそのガス温制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003078926A JP4195320B2 (ja) 2003-03-20 2003-03-20 パルス発振型ガスレーザ装置及びそのガス温制御方法

Publications (2)

Publication Number Publication Date
JP2004288874A true JP2004288874A (ja) 2004-10-14
JP4195320B2 JP4195320B2 (ja) 2008-12-10

Family

ID=33293264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003078926A Expired - Fee Related JP4195320B2 (ja) 2003-03-20 2003-03-20 パルス発振型ガスレーザ装置及びそのガス温制御方法

Country Status (1)

Country Link
JP (1) JP4195320B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319943B2 (en) 2008-12-26 2012-11-27 Canon Kabushiki Kaisha Exposure apparatus, light source apparatus and method of manufacturing device
WO2018061210A1 (ja) * 2016-09-30 2018-04-05 ギガフォトン株式会社 レーザ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223020A (ja) * 2001-01-26 2002-08-09 Gigaphoton Inc フッ素分子レーザ装置、及びフッ素露光装置
JP2004022916A (ja) * 2002-06-19 2004-01-22 Nikon Corp レーザ光源制御方法及び装置、露光方法及び装置、並びにデバイス製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223020A (ja) * 2001-01-26 2002-08-09 Gigaphoton Inc フッ素分子レーザ装置、及びフッ素露光装置
JP2004022916A (ja) * 2002-06-19 2004-01-22 Nikon Corp レーザ光源制御方法及び装置、露光方法及び装置、並びにデバイス製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319943B2 (en) 2008-12-26 2012-11-27 Canon Kabushiki Kaisha Exposure apparatus, light source apparatus and method of manufacturing device
WO2018061210A1 (ja) * 2016-09-30 2018-04-05 ギガフォトン株式会社 レーザ装置
US10797465B2 (en) 2016-09-30 2020-10-06 Gigaphoton Inc. Laser apparatus

Also Published As

Publication number Publication date
JP4195320B2 (ja) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4677392B2 (ja) パルスレーザ熱処理装置とその制御方法
JP6841845B2 (ja) レーザ装置及びレーザ加工システム
US7903700B2 (en) Narrow-spectrum laser device
US6243405B1 (en) Very stable excimer or molecular fluorine laser
JP3204949B2 (ja) 高信頼性、モジュラ、プロダクションクオリティ狭帯域化KrFエキシマレーザ
US7782922B2 (en) Excimer laser device operable at high repetition rate and having high band-narrowing efficiency
JP2003008119A (ja) 注入同期式又はmopa方式のレーザ装置
JP2013201433A (ja) マルチチャンバエキシマ又は分子フッ素ガス放電レーザのフッ素注入制御
JP2005525001A (ja) ビーム伝達及びビーム照準制御を備えるリソグラフィレーザ
JP3830036B2 (ja) 狭帯域化ガスレーザ装置
US6516013B1 (en) Laser beam monitoring apparatus and method
JPH11274632A (ja) 狭帯域化レーザの波面制御装置
JP4195320B2 (ja) パルス発振型ガスレーザ装置及びそのガス温制御方法
US5495489A (en) Second harmonic generating method and apparatus
JP2007294498A (ja) パルスレーザ装置及びパルスレーザビーム生成方法
JP2002118309A (ja) エキシマレーザ装置又はフッ素分子レーザ装置及びその出力ビームパラメータを安定化させる方法
US20040202211A1 (en) Temperature control systems for excimer lasers
JP4184015B2 (ja) 狭帯域化レーザ装置
WO2020084685A1 (ja) レーザシステム、及び電子デバイスの製造方法
JP2003511688A (ja) 波長計の温度補償方法
JP2003075877A (ja) レーザ光源及び非線型光学素子の温度制御方法
JP5138480B2 (ja) 高繰返し高出力パルスガスレーザ装置およびその制御方法
WO2021178091A1 (en) Control system for a light source
JP2003051634A (ja) 放電励起型レーザ装置
Moffatt et al. Temperature perturbation model of the opto-galvanic effect in CO2 laser discharges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

R150 Certificate of patent or registration of utility model

Ref document number: 4195320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees