JP2004285384A - High strength carburized component - Google Patents
High strength carburized component Download PDFInfo
- Publication number
- JP2004285384A JP2004285384A JP2003077356A JP2003077356A JP2004285384A JP 2004285384 A JP2004285384 A JP 2004285384A JP 2003077356 A JP2003077356 A JP 2003077356A JP 2003077356 A JP2003077356 A JP 2003077356A JP 2004285384 A JP2004285384 A JP 2004285384A
- Authority
- JP
- Japan
- Prior art keywords
- strength
- carbide
- carbides
- less
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は浸炭部品に関し、詳しくは浸炭処理により表面硬化処理された上で使用される歯車等の動力伝達部品その他耐ピッチング性の要求される機械構造部品として好適なものに関する。
【0002】
【従来の技術】
従来、自動車等の動力伝達部品として用いられる、機械構造部品としての歯車用の材料としてJIS SCr420Hが用いられてきた。
機械構造部品としての歯車は高い耐ピッチング強度と歯元強度(疲労強度,衝撃強度)とが要求される部品であり、そこで従来から種々の表面処理による高強度化を施した上で使用されてきた。
その表面処理の中でも浸炭処理は特に高い強度を付与することができる手法として広く用いられてきた。また近年耐ピッチング強度,疲労強度を改善する手法として浸炭窒化処理が適用され始めている。
【0003】
しかしながら、近年における自動車等の高出力化や小型化に伴って歯車等の機械構造部品に対する高強度化の要求が益々高くなってきており、浸炭や浸炭窒化処理を施してもピッチング破壊したり、歯元破壊したりすることがしばしばで、更なる改善が求められている。
【0004】
上記ピッチングの現象は機械構造部品同士の表面が擦り合うことによって、例えば歯車の歯面と歯面とが擦り合うことによって発生する高い応力により亀裂発生,亀裂進行及び剥離する現象であり、そこで従来ではこのようなピッチング破壊或いは歯元破壊等を防止するために、歯面等の摺動面の研削を行い、浸炭異常層等の欠陥を除去することにより強度向上を図っていることが多いが、歯研(歯面研削)の費用は高く、その歯研に要するコストが歯車の製造費用の半分を占める場合があるなどコスト的な面で大きな問題があった。
【0005】
このような問題を解決するため、歯車等に用いられる材料を高合金化して強度向上を図ることも行われている。
例えば下記特許文献1には鋼部材についての発明が示され、そこにおいて歯車,摺動部品等の曲げ疲労特性を害することなく耐ピッチング性を高めることを目的として、炭化物析出量を増し、また焼入性を向上させる元素としてMoを0.05〜0.6%、好ましくは0.15%以上添加する点が開示されている。
【0006】
また下記特許文献2には高面圧部品の製造方法についての発明が示され、そこにおいて歯車等において耐ピッチング性を高める目的でMoを1.0%までの範囲で、またNiを3%までの範囲でそれぞれ添加する点が開示されている。
【0007】
【特許文献1】
特開2002−212672号公報
【特許文献2】
特開平6−158266号公報
【0008】
【発明が解決しようとする課題】
しかしながらこれらNiやMo等を多く添加することで強度向上を図る場合、これらNiやMoは高価な元素であるため、結果として材料コストが高くなってしまう問題がある。
【0009】
【課題を解決するための手段】
本発明の高強度浸炭部品はこのような課題を解決するために案出されたものである。
而して請求項1のものは、芯部の化学組成が、重量%でC:0.15〜0.30%,Si:0.25〜1.10%,Mn:0.3〜1.20%,Cr:1.25〜2.0%を含有し、残部が不可避的不純物及びFeからなり、真空浸炭後の表面C%が1.0〜1.5%で、表面から50μmまでの範囲での炭化物面積率が5〜15%で且つ5μm以下の炭化物数が全炭化物数の90%以上であり、粒界酸化層深さが1μm以下であることを特徴とする。
ここで芯部とは浸炭により浸入させた炭素が到達していない領域の内部を意味する。
【0010】
請求項2のものは、請求項1において、重量%でB:0.0005〜0.0050%,Ti:0.02〜0.06%を更に含有していることを特徴とする。
【0011】
請求項3のものは、請求項1,2の何れかにおいて、重量%でNb:0.02〜0.12%を更に含有していることを特徴とする。
【0012】
請求項4のものは、請求項1〜3の何れかにおいて、重量%でPb:0.01〜0.20%,Bi:0.01〜0.10%,Ca:0.0005〜0.0050%,S:0.005〜0.100%の1種又は2種以上を更に含有していることを特徴とする。
【0013】
【作用及び発明の効果】
以上のように本発明は、Mo,Ni等の高価な元素を添加しないこと、高濃度浸炭を行って炭化物を歯車等表面に微細に析出させ表面硬度,強度を高めること、真空浸炭を施して表面の粒界酸化層を実質的に無くすこと等を骨子とするものである。
具体的には、成分的にはCを高めとするとともに炭化物形成元素としてのCrを高めに添加し、またSiを高めに添加して焼戻し軟化抵抗を高め、更に浸炭後における表面C濃度を1.0〜1.5%と高濃度となし、加えて炭化物面積率を5〜15%とすること、その際に5μm以下の炭化物がその殆ど(90%以上)を占めるようにすること、そして真空浸炭を施すことにより粒界酸化層深さを1μm以下とすること等を骨子とするものである。
【0014】
本発明は、ピッチングの原因として結晶粒界に沿ってCrやSiの脆い酸化層が生成し、これが結晶粒界の強度を低下させて、そこから亀裂発生,亀裂進行及び剥離進行させる点に着眼し、そこで浸炭手法として真空浸炭処理を施して結晶粒界の脆い酸化層を実質的に無くし(具体的には粒界酸化層深さを1μm以下となるようにする)、結晶粒界に生じた脆い酸化層によって結晶粒界から亀裂が進行するのを防止するのと併せて、高濃度浸炭を施すことで表面に炭化物を微細に析出させ、その析出硬化により表面硬さ,強度を高めるようになしたものである。
【0015】
但し高濃度浸炭を行って表面C濃度を高め、炭化物を多く析出させたとしても析出した炭化物が粗大であると、その粗大炭化物が結晶粒界に沿って網目状に生成してしまって結晶粒界の強度を弱めてしまう。
そこで本発明では表面C濃度を1.0〜1.5%に維持し、また炭化物面積率を5〜15%とする一方で、5μm以下の微細な炭化物が全炭化物の90%以上を占めるように制御しており、そしてこのようにすることで炭化物の析出による表面強度向上及び結晶粒界の強度向上を達成して、歯車等表面の耐ピッチング性を効果的に高めることができる。
【0016】
このような本発明によれば、歯研等の表面研削処理を省略でき、Mo,Ni等の高価な元素を添加しないことと相俟って高強度浸炭部品を安価に提供できる効果が得られる。
【0017】
本発明においては、必要に応じてB,TiをB:0.0005〜0.0050%,Ti:0.02〜0.06%の範囲で更に含有させることができる(請求項2)。
また更にNbをNb:0.02〜0.12%の範囲で含有させることができる(請求項3)。
その他に、更に必要に応じてPb:0.01〜0.20%,Bi:0.01〜0.10%,Ca:0.0005〜0.0050%,S:0.005〜0.100%の1種又は2種以上を含有させることができる(請求項4)。
【0018】
次に本発明における各化学成分等の限定理由を以下に詳述する。
C:0.15〜0.30%
Cは非浸炭層の強度を上げる上で必須である。そのためには0.15%以上含有させる必要がある。
一方0.30%を超えて含有させると、芯部硬さの上昇により冷鍛(冷間鍛造)加工性や被削性が劣化するため0.30%以下とする。
【0019】
Si:0.25〜1.10%
Siは炭化物の微細化と焼戻し軟化抵抗の向上とによって耐ピッチング強度を高める効果があり、その効果のため0.25%以上含有させる。
一方1.10%を超えて多く含有させると、芯部硬さの上昇により冷鍛加工性や被削性が劣化する。また浸炭性を阻害し、浸炭処理が長時間化するため上限を1.10%とする。
好ましい範囲は0.60%以下である。
【0020】
Mn:0.3〜1.20%
Mnは芯部強度の向上,焼入性向上に有効である。そのためには0.3%以上含有させることが必要である。これよりも少ないと焼入性が低くなり過ぎ、炭化物の周辺に不完全焼入組織が生成する。
一方1.20%を超えて含有させると、芯部硬さの上昇により冷鍛加工性や被削性が劣化する。従って本発明では1.20%以下とする。
好ましい範囲は0.60%以下である。
【0021】
Cr:1.25〜2.0%
Crは炭化物形成元素として、また焼入性を向上させる元素として1.25%以上含有させる必要がある。
一方2.0%を超えて含有させると、芯部硬さの上昇により冷鍛加工性や被削性が劣化する。また粗大炭化物が多く生成する。そのため本発明では2.0%以下の範囲で含有させる。
【0022】
B:0.0005〜0.0050%
Bは焼入性を向上させ、また靭性を向上させて歯元の衝撃強度,疲労強度を高める働きがある。従って必要に応じてBを0.0005%以上含有させる。
但し0.0050%を超えて含有させても効果が飽和し、経済的に不利となるため上限を0.0050%とする。
【0023】
Ti:0.02〜0.06%
Tiは窒化物を形成することによりBが窒化物となることを防止し、Bによる焼入性,靭性向上効果を確保する上で有効である。
但し0.02%よりも少ないとその効果がなく、一方0.06%でその効果が飽和し、それ以上の添加は経済的に不利となるため、Bとともに含有させるとしてもその上限を0.06%とする。
【0024】
Nb:0.02〜0.12%
Nbは1000℃前後の高温で処理を行う際、結晶粒の成長を、ひいては粗大炭化物の生成を抑制し、疲労強度の低下を抑制する働きがある。その効果を得るためには0.02%以上含有させる必要がある。
一方で0.12%を超えて含有させると、凝固時に粗大な炭窒化物を形成し、結晶粒成長抑制効果が減退するとともに強度を低下させてしまうため上限を0.12%とする。
【0025】
Pb:0.01〜0.20%
Bi:0.01〜0.10%
Ca:0.0005〜0.0050%
S :0.005〜0.100%
これら元素は被削性を向上させる元素であり、必要に応じて含有させる。
但し必要以上に含有させると強度の低下を招くため、それぞれの上限値を上記の値とする。
【0026】
尚、スクラップを原料とする電炉製鋼等においてはCu,Ni,Mo等が不可避的不純物成分として含有されてくる。
そこで本発明では、これら成分の含有量を極端に低く規制すると却って高コストとなってしまうため、ある程度の含有を許容するものとする。
【0027】
但し本発明においてはこれらの含有量は以下のように規制することが望ましい。
Cu:≦0.30%
Cuは芯部硬さの上昇により冷鍛加工性や被削性を劣化させる。従って0.30%以下に規制しておくことが望ましい。
【0028】
Ni:≦0.30%
Niは芯部硬さの上昇により冷鍛加工性や被削性を劣化させる。従って0.30%以下に規制することが望ましい。
【0029】
Mo:≦0.05%
Moは熱間加工ままや焼ならし状態の素材硬度を著しく上昇させる。従って製造性と強度の両立を目的とする本発明においては積極的な添加元素ではない。
そのため本発明ではMoの含有量を0.05%以下に規制するのが望ましい。
これらCu,Ni,Moの上記含有量は何れも電炉製鋼における不純物レベルである。
【0030】
浸炭処理:真空浸炭(1000Pa以下)
本発明の浸炭部品では真空浸炭が施される。
このような真空浸炭処理による粒界酸化層の低減によって浸炭部品の高強度化が図られる。
本発明では、化学成分としてSiが必須成分として添加される。
このSiは通常の大気浸炭の際に粒界酸化を促進する元素であり、Siの粒界酸化層によって歯元の衝撃強度や疲労強度が低下する一因となる。従って通常の大気浸炭の場合Siを多量に含有させることはできない。
しかるに真空浸炭による浸炭部品の場合、そのような粒界酸化層の生成が抑制されることでSiを多量に含有させることができる。そしてこれにより焼戻し軟化抵抗が高められ、耐ピッチング強度と歯元強度の向上が図られる。
また高濃度浸炭を従来の大気ガス浸炭法で行うとスーティング(すす発生)が生じ、浸炭ムラが発生する場合があるが、真空浸炭によればこのような浸炭ムラを抑制できる。
【0031】
粒界酸化層深さ:1μm以下
粒界酸化層は疲労強度,耐ピッチング強度の低下を招き、その深さが深くなるにつれて低下の程度が大きくなる。
本発明では、真空浸炭後の粒界酸化層深さは1μm以下でなくてはならない。
【0032】
炭化物分布:表面から50μmまでの範囲で炭化物面積率が5〜15%且つ5μm以下の炭化物数が全炭化物数の90%以上
炭化物の析出は表面硬度を上昇させ、強度を向上させる。
但し表面から50μmの範囲で炭化物の量が5%未満では強度向上の効果が十分得られず、一方15%より多くすると炭化物にCr等の元素が取り込まれてマトリックス中にCr欠乏層等が生じ、マトリックスの焼入性が不足して、炭化物の周りにトルースタイトが生成することにより強度の低下を招く。
また炭化物面積率5〜15%を充足したとしても、5μmより大きい粗大炭化物が10%を超えて生成すると、それらが粒界に沿った網目状炭化物となって、粒界に切欠が形成されたような状態となり強度の低下を招く。
従って本発明では5μm以下の炭化物数が全炭化物数の90%以上を占めるように微細な炭化物析出状態とする必要がある。
【0033】
表面C%:1.0〜1.5%
表面C%は炭化物の析出量及び大きさを左右する要因で、1.0%未満であると炭化物の析出量が少なく、十分な強度向上効果が得られない。
一方1.5%を超えると炭化物の量が15%を超えるようになり、マトリックスの焼入性が不足し強度の低下を招く。
従って本発明では表面C%を1.0〜1.5%に規制する。
【0034】
ショットピーニング(S/P),ウォータージェットピーニング(W/J):
本発明においては、必要に応じてS/P,W/Jを施しておくことができる。
【0035】
浸炭パターン:
本発明の浸炭部品は、例えば図1に示すような処理パターンで高濃度真空浸炭を施すことで得ることができる。
ここでは第1段階で、950℃程度の温度域でカーボンポテンシャル(Cp)を1.5%程度に調整した雰囲気中で浸炭した後、第2段階で850℃程度の温度でカーボンポテンシャルを0.8%程度に調整した雰囲気中で2時間程度保持し、その後油焼入れするようにしている。
【0036】
【実施例】
次に本発明の実施例を以下に詳述する。
(イ)素材の製造
表1に示す組成の材料を真空誘導炉にて50kg溶製し、インゴット鋳造後にφ32mmに鍛伸を行い、機械加工に供した。
また表2に示す各種項目を測定した。尚測定条件は以下の通りである。
【0037】
(ロ)焼ならし硬さ
機械加工によりφ25×100mmの丸棒試験片に加工した後、920℃×1hrの焼ならしを施し、焼ならし硬さを測定した。
測定は、横断面の中心部をJIS Z 2245に準拠しBスケールによる測定を実施した。
【0038】
(ハ)浸炭処理
強度評価用の試験片に施した真空浸炭処理は次のようにして行った。
第1段階:最表面C%を1.2%狙いの浸炭処理を施し、比較的多量のCを鋼中に浸入させた。
第2段階:第1段階にて浸入させたCを析出させるために850℃にて60minの析出処理を施した。
また浸炭処理後に180℃×90minの焼戻し処理を実施した。
【0039】
(ニ)表面C%
浸炭処理後、処理試験片の表面から50μm位置までのダライ粉からC%を測定した。
【0040】
(ホ)最大炭化物サイズの測定,面積率
高濃度浸炭焼入れ・焼戻しを行った丸棒試験片の長さ方向中央の横断面を切断,研磨後、ピクラールで腐食した後、最表面から50μmの位置をSEMで写真撮影(観察倍率5000倍)し、画像解析して面積率の測定を行った。また径5μm以下の炭化物が占める割合を算出した。
【0041】
(ヘ)網目状炭化物,不完全焼入組織の有無
上記と同様の条件で網目状炭化物,不完全焼入組織の有無を観察した。ここで網目状炭化物は粗大な炭化物が結晶粒界に沿って網目状をなすように析出したものである。
【0042】
【表1】
【0043】
【表2】
【0044】
上記の表1及び表2において鋼種A〜L及びN,Oは本発明の要件を満たす実施例である。
これら実施例のものは、何れも焼ならし後の硬さがHRB90未満であり、機械加工を容易に行うことができる。
浸炭後の特性も要件を満たしており、強度の劣化を招く不完全焼入組織の生成は見られず、粗大炭化物の面積率も少ない。
【0045】
一方鋼種M及びPは本発明の要件を欠く比較例である。
鋼種MはMn量が少な過ぎるため、浸炭層に不完全焼入組織が生成している。
これはMn量が少な過ぎるために浸炭層(特に炭化物の周辺)の焼入性が不足したためと考えられる。
【0046】
鋼種PはCr量が多過ぎるために浸炭され易く、表面C%が請求の範囲の上限を超えている。
その結果炭化物量が多く、5μm超の粗大炭化物が多く析出している。
また鋼種Pは炭化物の周りに不完全焼入組織も観察された。
【0047】
次に表3は、表1における鋼種Aの鋼に表面炭素濃度(表面C%)0.8%,1.2%,1.4%,1.6%,1.8%狙いの真空高濃度浸炭処理を施した際の浸炭特性を調べた結果である。
測定の方法は上記と同様である。
【0048】
【表3】
【0049】
No.18,No.19は本発明の要件を満たす実施例であり、強度の劣化を招く不完全焼入組織の生成は見られず、粗大炭化物の面積率も少ない。
【0050】
一方No.17は表面炭素濃度が低い場合の比較例であり、炭化物の析出量が極めて少なくなっている。
【0051】
No.20,No.21は表面炭素濃度が本発明の請求の範囲から外れて高い場合の比較例で、共に粗大炭化物の量が多くなっている。
特にNo.21は炭化物の析出量が多いためにマトリックスの焼入性が低下し、浸炭層に不完全焼入組織が確認された。
【0052】
表1に示す各鋼種について真空浸炭処理(浸炭の処理条件は上記と同様)を実施し、その浸炭処理品について硬さ測定,粒界酸化層深さ測定及び疲労強度,ピッチング寿命,シャルピー吸収エネルギー測定をそれぞれ行った。
その結果が表4に示してある。
ここで各試験の試験条件は以下の通りとした。
尚表4には比較として大気ガス浸炭を実施した場合の結果も併せて示してある。
【0053】
(イ)試験片加工
図2(A)に示すローラーピッチング試験片10,図2(B)に示す回転曲げ試験片12及び図2(C)に示すシャルピー衝撃試験片14をそれぞれ用意した。
ここで回転曲げ試験片12はr=1mm(応力集中係数αk=1.8)の環状切欠を有する小野式回転曲げ疲労試験片に加工した後、上記浸炭処理を施し、試験に供した。
一部の試験片にアークハイト1mmAのS/P(ショットピーニング)処理を施した。
【0054】
(ロ)試験条件
[硬さ]
ローラーピッチング試験片10の転送面から50μm位置の硬さをJIS Z 2244に準拠し測定した(HV0.3)。
【0055】
[粒界酸化層深さ]
ローラーピッチング試験片10の転送面を研磨し、未腐食で観察して粒界に沿って黒く見える層の深さを測定した。
【0056】
[ローラーピッチング試験]
面圧:3.4GPa,回転数:1500rpm,すべり率:−40%,油温:80℃の条件で試験を実施した。
【0057】
[回転曲げ試験]
小野式回転曲げ試験を回転数:3500rpm,試験温度:室温の条件で実施した。
107サイクル回しても破損しない応力を疲労限度とした。
【0058】
[シャルピー衝撃試験]
ノッチは10Rノッチとした。
【0059】
【表4】
表4において、鋼種QはJIS SCr420H相当の鋼である。
【0060】
また表4のNo.22〜No.32,No.34,No.38は本発明の要件を満たす実施例である。
これら実施例のものはJIS SCr420Hの浸炭材(表1の鋼種Qを用いたNo.36)に比べて同等以上の硬度が得られている。
また1.5倍程度の疲労強度,3倍程度のピッチング寿命,約2倍以上の衝撃値が得られている。
【0061】
No.38はNo.22+S/Pの実施例であるが、No.39のJIS SCr420H浸炭(No.36)+S/Pに対して優れた強度特性を示している。
【0062】
No.33,No.35〜No.37,No.39は本発明の要件を充足しない比較例である。
No.33(表1の鋼種Mを用いたもの)は不完全焼入組織が生成しており、疲労強度及びピッチング寿命が低くなっている。
またNo.35(表1の鋼種Pを用いたもの)は不完全焼入組織のため表面硬度が下がっており、ピッチング寿命が低下している。
大気浸炭をしたもの(No.36,No.37)は粒界酸化層が深く生成しており、衝撃強度が低くなっている。
【0063】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【図面の簡単な説明】
【図1】
本発明の高強度浸炭部品を得るために施す高濃度真空浸炭の処理パターンの一例を示す図である。
【図2】
本発明の実施例で行った(A)ピッチング寿命,(B)疲労強度及び(C)シャルピー吸収エネルギー測定に用いた試験片を示した図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carburized component, and more particularly to a power transmission component such as a gear used after being subjected to a surface hardening treatment by a carburizing process and other suitable mechanical structure components requiring a pitting resistance.
[0002]
[Prior art]
Conventionally, JIS SCr420H has been used as a material for a gear as a mechanical structure component used as a power transmission component of an automobile or the like.
Gears as mechanical structural parts are parts that require high pitting resistance and root strength (fatigue strength, impact strength). Therefore, they have been used after being subjected to various surface treatments to enhance the strength. Was.
Among the surface treatments, carburizing treatment has been widely used as a technique capable of imparting particularly high strength. In recent years, carbonitriding has begun to be applied as a technique for improving pitting resistance and fatigue strength.
[0003]
However, in recent years, with the increase in output and miniaturization of automobiles and the like, demands for higher strength of mechanical structural parts such as gears have been increasingly increased, and even when carburizing or carbonitriding treatment is performed, pitting fracture or The root is often destroyed, and further improvement is required.
[0004]
The above-mentioned pitting phenomenon is a phenomenon in which cracks are generated, crack progresses, and peels due to high stress generated when the surfaces of the mechanical structural parts rub against each other, for example, when the tooth surfaces of the gears rub against each other. In order to prevent such pitting destruction or tooth root destruction, the sliding surface such as the tooth surface is often ground to improve the strength by removing defects such as an abnormal carburized layer. However, the cost of tooth grinding (tooth surface grinding) is high, and the cost required for the tooth grinding may account for half of the gear manufacturing cost.
[0005]
In order to solve such a problem, materials used for gears and the like are also made to have a high alloy to improve strength.
For example, Patent Document 1 listed below discloses an invention relating to a steel member, in which the amount of carbide precipitation is increased and the firing amount is increased for the purpose of enhancing the pitting resistance without impairing the bending fatigue characteristics of gears, sliding parts, and the like. It is disclosed that Mo is added in an amount of 0.05 to 0.6%, preferably 0.15% or more as an element for improving the penetration.
[0006]
Patent Literature 2 below discloses an invention on a method for manufacturing a high surface pressure component, in which Mo is limited to a range of up to 1.0% and Ni is limited to a range of up to 3% for the purpose of enhancing pitting resistance in gears and the like. Are disclosed in the respective ranges.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-212672 [Patent Document 2]
JP-A-6-158266
[Problems to be solved by the invention]
However, in the case where the strength is to be improved by adding a large amount of Ni or Mo or the like, since Ni or Mo is an expensive element, there is a problem that the material cost is increased as a result.
[0009]
[Means for Solving the Problems]
The high-strength carburized part of the present invention has been devised to solve such a problem.
According to the first aspect of the present invention, the chemical composition of the core portion is as follows: C: 0.15 to 0.30%, Si: 0.25 to 1.10%, Mn: 0.3 to 1. 20%, Cr: 1.25-2.0%, the balance consists of unavoidable impurities and Fe, the surface C% after vacuum carburization is 1.0-1.5%, It is characterized in that the carbide area ratio in the range is 5 to 15%, the number of carbides of 5 μm or less is 90% or more of the total number of carbides, and the grain boundary oxide layer depth is 1 μm or less.
Here, the core means the inside of a region where the carbon invaded by carburization has not reached.
[0010]
Claim 2 is characterized in that in Claim 1, B: 0.0005 to 0.0050% and Ti: 0.02 to 0.06% by weight are further contained.
[0011]
According to a third aspect of the present invention, in any one of the first and second aspects, Nb: 0.02 to 0.12% by weight is further contained.
[0012]
According to a fourth aspect, in any one of the first to third aspects, Pb: 0.01 to 0.20%, Bi: 0.01 to 0.10%, and Ca: 0.0005 to 0. One or more of 0050% and S: 0.005 to 0.100% are further contained.
[0013]
[Action and effect of the invention]
As described above, the present invention does not add expensive elements such as Mo and Ni, performs high-concentration carburization, finely precipitates carbide on the surface of gears or the like to increase surface hardness and strength, and performs vacuum carburization. The main point is to substantially eliminate the grain boundary oxide layer on the surface.
Specifically, as a component, C is increased, Cr as a carbide forming element is added to a high level, and Si is added to increase the tempering softening resistance, and further, the surface C concentration after carburizing is reduced to 1%. A high concentration of 0.0 to 1.5%, and a carbide area ratio of 5 to 15%, in which case carbide of 5 μm or less occupies most (90% or more), and The main point is to reduce the grain boundary oxide layer depth to 1 μm or less by performing vacuum carburization.
[0014]
The present invention focuses on the point that as a cause of pitting, a brittle oxide layer of Cr or Si is formed along a crystal grain boundary, which lowers the strength of the crystal grain boundary and causes crack generation, crack progress, and peeling progress therefrom. Then, a vacuum carburizing treatment is performed as a carburizing method to substantially eliminate brittle oxide layers at the crystal grain boundaries (specifically, to reduce the depth of the grain boundary oxide layer to 1 μm or less). In addition to preventing the cracks from progressing from the grain boundaries by the brittle oxide layer, the carbide is finely precipitated on the surface by performing high-concentration carburization, and the surface hardness and strength are increased by the precipitation hardening. It has been done.
[0015]
However, even if the surface C concentration is increased by performing high-concentration carburization and a large amount of carbide is precipitated, if the precipitated carbide is coarse, the coarse carbide is formed in a network along the crystal grain boundaries and the crystal grain is formed. It weakens the strength of the world.
Therefore, in the present invention, while maintaining the surface C concentration at 1.0 to 1.5% and the carbide area ratio at 5 to 15%, fine carbide of 5 μm or less accounts for 90% or more of the total carbide. By doing so, it is possible to achieve an improvement in surface strength due to precipitation of carbides and an improvement in the strength of crystal grain boundaries, thereby effectively improving the pitting resistance of the surface of a gear or the like.
[0016]
According to the present invention, the surface grinding treatment such as tooth grinding can be omitted, and the effect of providing high-strength carburized parts at low cost can be obtained in combination with not adding expensive elements such as Mo and Ni. .
[0017]
In the present invention, if necessary, B and Ti can be further contained in the range of B: 0.0005 to 0.0050% and Ti: 0.02 to 0.06% (claim 2).
Further, Nb can be contained in the range of Nb: 0.02 to 0.12% (claim 3).
In addition, if necessary, Pb: 0.01 to 0.20%, Bi: 0.01 to 0.10%, Ca: 0.0005 to 0.0050%, S: 0.005 to 0.100 % Of one or more kinds (claim 4).
[0018]
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C: 0.15 to 0.30%
C is essential for increasing the strength of the non-carburized layer. For that purpose, it is necessary to contain 0.15% or more.
On the other hand, if the content exceeds 0.30%, cold forging (cold forging) workability and machinability deteriorate due to an increase in core hardness, so that the content is set to 0.30% or less.
[0019]
Si: 0.25 to 1.10%
Si has an effect of increasing the pitting resistance by making the carbide finer and improving the tempering softening resistance. For this effect, 0.25% or more is contained.
On the other hand, when it is contained more than 1.10%, cold forging workability and machinability deteriorate due to an increase in core hardness. In addition, the upper limit is set to 1.10% because the carburizing property is impaired and the carburizing process is prolonged.
The preferred range is 0.60% or less.
[0020]
Mn: 0.3-1.20%
Mn is effective for improving core strength and hardenability. For that purpose, it is necessary to contain 0.3% or more. If the amount is less than this, the hardenability becomes too low, and an incompletely hardened structure is formed around the carbide.
On the other hand, if the content exceeds 1.20%, cold forging workability and machinability deteriorate due to an increase in core hardness. Therefore, in the present invention, the content is set to 1.20% or less.
The preferred range is 0.60% or less.
[0021]
Cr: 1.25 to 2.0%
Cr must be contained in an amount of 1.25% or more as a carbide forming element and as an element for improving hardenability.
On the other hand, if the content exceeds 2.0%, cold forging workability and machinability deteriorate due to an increase in core hardness. Also, large amounts of coarse carbides are generated. Therefore, in the present invention, it is contained in a range of 2.0% or less.
[0022]
B: 0.0005 to 0.0050%
B has the function of improving the hardenability and improving the toughness to increase the impact strength and fatigue strength of the tooth root. Therefore, if necessary, 0.0005% or more of B is contained.
However, if the content exceeds 0.0050%, the effect saturates and becomes economically disadvantageous, so the upper limit is made 0.0050%.
[0023]
Ti: 0.02 to 0.06%
Ti is effective in forming a nitride to prevent B from becoming a nitride and for ensuring the effect of improving hardenability and toughness due to B.
However, if the content is less than 0.02%, the effect is not obtained, while if the content is 0.06%, the effect is saturated, and further addition becomes economically disadvantageous. 06%.
[0024]
Nb: 0.02 to 0.12%
When Nb is processed at a high temperature of about 1000 ° C., it has the function of suppressing the growth of crystal grains, and thus the formation of coarse carbides, and the reduction of fatigue strength. In order to obtain the effect, it is necessary to contain 0.02% or more.
On the other hand, if the content exceeds 0.12%, coarse carbonitrides are formed during solidification, the effect of suppressing the growth of crystal grains is reduced, and the strength is reduced. Therefore, the upper limit is set to 0.12%.
[0025]
Pb: 0.01 to 0.20%
Bi: 0.01 to 0.10%
Ca: 0.0005 to 0.0050%
S: 0.005 to 0.100%
These elements are elements that improve machinability, and are contained as necessary.
However, if the content is more than necessary, the strength is reduced. Therefore, the respective upper limits are set to the above values.
[0026]
Incidentally, in electric furnace steelmaking using scrap as a raw material, Cu, Ni, Mo and the like are contained as inevitable impurity components.
Therefore, in the present invention, if the content of these components is regulated to be extremely low, the cost will be rather increased.
[0027]
However, in the present invention, it is desirable to regulate these contents as follows.
Cu: ≦ 0.30%
Cu degrades cold forgeability and machinability due to an increase in core hardness. Therefore, it is desirable to regulate to 0.30% or less.
[0028]
Ni: ≦ 0.30%
Ni degrades cold forging workability and machinability due to an increase in core hardness. Therefore, it is desirable to restrict the content to 0.30% or less.
[0029]
Mo: ≦ 0.05%
Mo significantly increases the hardness of the raw material as it is hot worked or in the normalized state. Therefore, it is not a positive additive element in the present invention aiming at compatibility between manufacturability and strength.
Therefore, in the present invention, the content of Mo is desirably regulated to 0.05% or less.
The above contents of Cu, Ni, and Mo are all impurity levels in electric furnace steelmaking.
[0030]
Carburizing: Vacuum carburizing (1000Pa or less)
The carburized part of the present invention is subjected to vacuum carburization.
By reducing the grain boundary oxide layer by such vacuum carburizing treatment, the strength of the carburized component can be increased.
In the present invention, Si is added as an essential component as a chemical component.
This Si is an element that promotes grain boundary oxidation during normal atmospheric carburization, and contributes to a decrease in impact strength and fatigue strength at the tooth root due to the grain boundary oxide layer of Si. Therefore, in the case of normal atmospheric carburization, a large amount of Si cannot be contained.
However, in the case of a carburized part obtained by vacuum carburization, a large amount of Si can be contained by suppressing the formation of such a grain boundary oxide layer. Thereby, the tempering softening resistance is increased, and the pitting resistance and the root strength are improved.
When high-concentration carburization is performed by the conventional atmospheric gas carburizing method, sooting (soot generation) occurs and carburization unevenness may occur. However, such carburization unevenness can be suppressed by vacuum carburization.
[0031]
Grain boundary oxide layer depth: 1 μm or less A grain boundary oxide layer causes a decrease in fatigue strength and pitting resistance, and the degree of the decrease increases as the depth increases.
In the present invention, the grain boundary oxide layer depth after vacuum carburization must be 1 μm or less.
[0032]
Carbide distribution: The precipitation of carbide in which the number of carbides having a carbide area ratio of 5 to 15% and 5 μm or less in the range from the surface to 50 μm is 90% or more of the total number of carbides increases the surface hardness and improves the strength.
However, if the amount of carbide is less than 5% in the range of 50 μm from the surface, the effect of improving strength is not sufficiently obtained, while if it is more than 15%, elements such as Cr are taken into the carbide and a Cr-deficient layer or the like occurs in the matrix. In addition, the hardenability of the matrix is insufficient, and the formation of troostite around the carbide causes a decrease in strength.
Further, even if the carbide area ratio of 5 to 15% is satisfied, if coarse carbides larger than 5 μm are generated in excess of 10%, they become networked carbides along the grain boundaries, and notches are formed in the grain boundaries. Such a state results in a decrease in strength.
Therefore, in the present invention, it is necessary to form a fine carbide precipitate state so that the number of carbides of 5 μm or less accounts for 90% or more of the total number of carbides.
[0033]
Surface C%: 1.0 to 1.5%
The surface C% is a factor that affects the amount and size of carbide precipitation. If it is less than 1.0%, the amount of carbide precipitation is small, and a sufficient strength improving effect cannot be obtained.
On the other hand, if it exceeds 1.5%, the amount of carbide exceeds 15%, and the hardenability of the matrix becomes insufficient, leading to a decrease in strength.
Therefore, in the present invention, the surface C% is restricted to 1.0 to 1.5%.
[0034]
Shot peening (S / P), water jet peening (W / J):
In the present invention, S / P and W / J can be applied as needed.
[0035]
Carburizing pattern:
The carburized part of the present invention can be obtained, for example, by performing high-concentration vacuum carburization in a processing pattern as shown in FIG.
Here, in the first step, after carburizing in an atmosphere in which the carbon potential (Cp) is adjusted to about 1.5% in a temperature range of about 950 ° C., the carbon potential is reduced to about 850 ° C. in a second step. It is held for about 2 hours in an atmosphere adjusted to about 8%, and then oil quenched.
[0036]
【Example】
Next, examples of the present invention will be described in detail below.
(A) Production of raw material A 50 kg material having the composition shown in Table 1 was melted in a vacuum induction furnace, and after ingot casting, forged to φ32 mm and subjected to machining.
Various items shown in Table 2 were measured. The measurement conditions are as follows.
[0037]
(B) Normalized Hardness After processing into a round bar test piece of φ25 × 100 mm by mechanical processing, normalizing at 920 ° C. × 1 hr was performed, and the normalizing hardness was measured.
In the measurement, the center of the cross section was measured on a B scale in accordance with JIS Z 2245.
[0038]
(C) Carburizing treatment Vacuum carburizing treatment applied to a test piece for strength evaluation was performed as follows.
First stage: Carburizing treatment was performed with the aim of 1.2% of the outermost surface C%, and a relatively large amount of C was infiltrated into the steel.
2nd stage: In order to precipitate the C which infiltrated in the 1st stage, the precipitation process was performed at 850 ° C for 60 minutes.
After the carburizing treatment, a tempering treatment at 180 ° C. for 90 minutes was performed.
[0039]
(D) Surface C%
After the carburizing treatment, C% was measured from Dalai powder from the surface of the treated test piece to a position of 50 μm.
[0040]
(E) Measurement of maximum carbide size, area ratio high concentration Carburizing and tempering of a round bar test piece that has been cut, polished, polished, and corroded with Picral, then 50 μm from the outermost surface Was photographed with an SEM (observation magnification: 5000 times), and image analysis was performed to measure the area ratio. The ratio occupied by carbide having a diameter of 5 μm or less was calculated.
[0041]
(F) Presence or absence of network carbide and incomplete quenched structure The presence or absence of network carbide and incomplete quenched structure was observed under the same conditions as above. Here, the network-like carbide is formed by depositing coarse carbides so as to form a network along crystal grain boundaries.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
In Tables 1 and 2 above, steel types A to L and N, O are examples satisfying the requirements of the present invention.
In all of these examples, the hardness after normalization is less than HRB 90, and machining can be easily performed.
The properties after carburization also satisfy the requirements, no formation of incomplete quenching structure that causes deterioration in strength is observed, and the area ratio of coarse carbides is small.
[0045]
On the other hand, steel types M and P are comparative examples lacking the requirements of the present invention.
Steel type M has an incompletely quenched structure in the carburized layer because the amount of Mn is too small.
This is considered to be because the hardenability of the carburized layer (especially around the carbide) was insufficient because the amount of Mn was too small.
[0046]
Steel type P is easily carburized due to an excessive amount of Cr, and the surface C% exceeds the upper limit of the claims.
As a result, the amount of carbides is large, and large amounts of coarse carbides exceeding 5 μm are precipitated.
In steel type P, an incomplete quenched structure was also observed around the carbide.
[0047]
Next, Table 3 shows the target vacuum heights of 0.8%, 1.2%, 1.4%, 1.6%, and 1.8% of the surface carbon concentration (surface C%) of steel type A in Table 1. It is the result of having investigated the carburizing characteristic at the time of performing a concentration carburizing process.
The measuring method is the same as described above.
[0048]
[Table 3]
[0049]
No. 18, No. 19 is an example satisfying the requirements of the present invention, in which no incompletely quenched structure causing deterioration in strength is observed and the area ratio of coarse carbides is small.
[0050]
On the other hand, no. 17 is a comparative example when the surface carbon concentration is low, in which the amount of precipitated carbide is extremely small.
[0051]
No. 20, no. Reference numeral 21 is a comparative example in which the surface carbon concentration is high outside the scope of the claims of the present invention, and both have large amounts of coarse carbides.
In particular, no. In No. 21, the hardenability of the matrix was reduced due to a large amount of carbide precipitation, and an incompletely hardened structure was confirmed in the carburized layer.
[0052]
Vacuum carburizing treatment was performed for each steel type shown in Table 1 (the carburizing treatment conditions were the same as above), and for the carburized product, hardness measurement, grain boundary oxide layer depth measurement and fatigue strength, pitting life, Charpy absorbed energy Each measurement was performed.
The results are shown in Table 4.
Here, the test conditions of each test were as follows.
Table 4 also shows, as a comparison, the results when air gas carburization was performed.
[0053]
(A) Test piece processing A roller
Here, the rotating
Some test pieces were subjected to S / P (shot peening) treatment with an arc height of 1 mmA.
[0054]
(B) Test conditions [hardness]
The hardness at a position of 50 μm from the transfer surface of the roller
[0055]
[Grain boundary oxide layer depth]
The transfer surface of the roller
[0056]
[Roller pitching test]
The test was performed under the following conditions: surface pressure: 3.4 GPa, rotation speed: 1500 rpm, slip ratio: -40%, and oil temperature: 80 ° C.
[0057]
[Rotating bending test]
The Ono-type rotary bending test was performed under the conditions of a rotation speed of 3500 rpm and a test temperature of room temperature.
Even turning 10 7 cycle was the stress that does not damage the fatigue limit.
[0058]
[Charpy impact test]
The notch was a 10R notch.
[0059]
[Table 4]
In Table 4, steel type Q is steel corresponding to JIS SCr420H.
[0060]
Also, in Table 4, No. 22-No. 32, No. 34, no. Reference numeral 38 denotes an embodiment satisfying the requirements of the present invention.
In these examples, hardness equal to or higher than that of the carburized material of JIS SCr420H (No. 36 using steel type Q in Table 1) is obtained.
Further, the fatigue strength is about 1.5 times, the pitting life is about 3 times, and the impact value is about 2 times or more.
[0061]
No. No. 38 is No. 22 + S / P. 39 shows excellent strength characteristics with respect to JIS SCr420H carburized (No. 36) + S / P.
[0062]
No. 33, no. 35-No. 37, no. 39 is a comparative example which does not satisfy the requirements of the present invention.
No. No. 33 (using steel type M in Table 1) has an incompletely quenched structure, and the fatigue strength and the pitting life are low.
No. No. 35 (using steel type P in Table 1) has a low surface hardness due to an incompletely quenched structure, and the pitting life is short.
In the case of carburizing with air (No. 36 and No. 37), the grain boundary oxide layer is formed deeply, and the impact strength is low.
[0063]
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit thereof.
[Brief description of the drawings]
FIG.
It is a figure which shows an example of the processing pattern of the high concentration vacuum carburizing performed in order to obtain the high strength carburized part of this invention.
FIG. 2
It is the figure which showed the test piece used for (A) pitting life, (B) fatigue strength, and (C) Charpy absorbed energy measurement performed in the Example of this invention.
Claims (4)
C :0.15〜0.30%
Si:0.25〜1.10%
Mn:0.3〜1.20%
Cr:1.25〜2.0%
を含有し、残部が不可避的不純物及びFeからなり、真空浸炭後の表面C%が1.0〜1.5%で、表面から50μmまでの範囲での炭化物面積率が5〜15%で且つ5μm以下の炭化物数が全炭化物数の90%以上であり、粒界酸化層深さが1μm以下であることを特徴とする高強度浸炭部品。The chemical composition of the core is C: 0.15 to 0.30% by weight.
Si: 0.25 to 1.10%
Mn: 0.3-1.20%
Cr: 1.25 to 2.0%
And the balance consists of unavoidable impurities and Fe, the surface C% after vacuum carburization is 1.0 to 1.5%, the carbide area ratio in the range from the surface to 50 μm is 5 to 15%, and A high-strength carburized part characterized in that the number of carbides of 5 μm or less is 90% or more of the total number of carbides and the grain boundary oxide layer depth is 1 μm or less.
B :0.0005〜0.0050%
Ti:0.02〜0.06%
を更に含有していることを特徴とする高強度浸炭部品。2. The composition according to claim 1, wherein B: 0.0005 to 0.0050% by weight.
Ti: 0.02 to 0.06%
A high-strength carburized part characterized by further containing:
Nb:0.02〜0.12%
を更に含有していることを特徴とする高強度浸炭部品。Nb: 0.02 to 0.12% by weight% according to any one of claims 1 and 2.
A high-strength carburized part characterized by further containing:
Pb:0.01〜0.20%
Bi:0.01〜0.10%
Ca:0.0005〜0.0050%
S :0.005〜0.100%
の1種又は2種以上を更に含有していることを特徴とする高強度浸炭部品。Pb: 0.01 to 0.20% by weight in any one of claims 1 to 3.
Bi: 0.01 to 0.10%
Ca: 0.0005 to 0.0050%
S: 0.005 to 0.100%
A high-strength carburized part characterized by further containing one or more of the following.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003077356A JP2004285384A (en) | 2003-03-20 | 2003-03-20 | High strength carburized component |
US10/803,915 US20040182480A1 (en) | 2003-03-20 | 2004-03-19 | High-strength carburized part and a method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003077356A JP2004285384A (en) | 2003-03-20 | 2003-03-20 | High strength carburized component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004285384A true JP2004285384A (en) | 2004-10-14 |
Family
ID=32984844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003077356A Pending JP2004285384A (en) | 2003-03-20 | 2003-03-20 | High strength carburized component |
Country Status (2)
Country | Link |
---|---|
US (1) | US20040182480A1 (en) |
JP (1) | JP2004285384A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006085549A1 (en) * | 2005-02-08 | 2006-08-17 | Parker Netsushori Kogyo K.K. | High-concentration carburized/low-strain quenched member and process for producing the same |
JP2007308792A (en) * | 2006-04-20 | 2007-11-29 | Daido Steel Co Ltd | Carburized component and manufacturing method thereof |
JP2009074110A (en) * | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | Gear part excellent in fitness |
JP2009293070A (en) * | 2008-06-04 | 2009-12-17 | Sanyo Special Steel Co Ltd | Case hardening steel for shaft having excellent low cycle twisting fatigue strength |
JP2015160982A (en) * | 2014-02-27 | 2015-09-07 | 新日鐵住金株式会社 | Carburized component |
WO2019142947A1 (en) * | 2018-01-22 | 2019-07-25 | 日本製鉄株式会社 | Carburized bearing steel component, and steel bar for carburized bearing steel component |
CN110129653A (en) * | 2019-05-21 | 2019-08-16 | 柳州钢铁股份有限公司 | A kind of production method of soft 20CrMnTi round steel |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4188307B2 (en) * | 2004-12-10 | 2008-11-26 | 大同特殊鋼株式会社 | Carburized parts and manufacturing method thereof |
CN114645182B (en) * | 2022-03-23 | 2022-10-14 | 承德建龙特殊钢有限公司 | Gear steel and preparation method and application thereof |
-
2003
- 2003-03-20 JP JP2003077356A patent/JP2004285384A/en active Pending
-
2004
- 2004-03-19 US US10/803,915 patent/US20040182480A1/en not_active Abandoned
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627776B2 (en) * | 2005-02-08 | 2011-02-09 | パーカー熱処理工業株式会社 | High concentration carburizing / low strain quenching member and method of manufacturing the same |
JPWO2006085549A1 (en) * | 2005-02-08 | 2008-06-26 | パーカー熱処理工業株式会社 | High concentration carburizing / low strain quenching member and method of manufacturing the same |
WO2006085549A1 (en) * | 2005-02-08 | 2006-08-17 | Parker Netsushori Kogyo K.K. | High-concentration carburized/low-strain quenched member and process for producing the same |
KR100898679B1 (en) * | 2005-02-08 | 2009-05-22 | 파커 네쓰쇼리 고교 가부시키카이샤 | High-concentration carburized/low-strain quenched member and process for producing the same |
JP2007308792A (en) * | 2006-04-20 | 2007-11-29 | Daido Steel Co Ltd | Carburized component and manufacturing method thereof |
US7967921B2 (en) | 2006-04-20 | 2011-06-28 | Daido Steel Co., Ltd. | Carburized component and manufacturing method thereof |
JP2009074110A (en) * | 2007-09-18 | 2009-04-09 | Kobe Steel Ltd | Gear part excellent in fitness |
JP2009293070A (en) * | 2008-06-04 | 2009-12-17 | Sanyo Special Steel Co Ltd | Case hardening steel for shaft having excellent low cycle twisting fatigue strength |
JP2015160982A (en) * | 2014-02-27 | 2015-09-07 | 新日鐵住金株式会社 | Carburized component |
WO2019142947A1 (en) * | 2018-01-22 | 2019-07-25 | 日本製鉄株式会社 | Carburized bearing steel component, and steel bar for carburized bearing steel component |
JPWO2019142947A1 (en) * | 2018-01-22 | 2021-01-28 | 日本製鉄株式会社 | Carburized bearing steel parts and steel bars for carburized bearing steel parts |
CN110129653A (en) * | 2019-05-21 | 2019-08-16 | 柳州钢铁股份有限公司 | A kind of production method of soft 20CrMnTi round steel |
CN110129653B (en) * | 2019-05-21 | 2020-12-01 | 柳州钢铁股份有限公司 | Production method of low-hardness 20CrMnTi round steel |
CN112553538A (en) * | 2019-05-21 | 2021-03-26 | 柳州钢铁股份有限公司 | Low-hardness 20CrMnTi round steel |
CN112553538B (en) * | 2019-05-21 | 2021-10-29 | 柳州钢铁股份有限公司 | Low-hardness 20CrMnTi round steel |
Also Published As
Publication number | Publication date |
---|---|
US20040182480A1 (en) | 2004-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6098732B2 (en) | Manufacturing method of carburized steel parts and carburized steel parts | |
JP5333682B2 (en) | Rolled steel bar or wire rod for hot forging | |
WO2012077705A1 (en) | Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component | |
JP7152832B2 (en) | machine parts | |
JP2009127095A (en) | Case-hardening steel for power transmission component | |
JP5206271B2 (en) | Carbonitriding parts made of steel | |
JP2008057017A (en) | Carburized component or carbo-nitrided component made of steel | |
JP4752635B2 (en) | Method for manufacturing soft nitrided parts | |
JP4962695B2 (en) | Steel for soft nitriding and method for producing soft nitriding component | |
JP4188307B2 (en) | Carburized parts and manufacturing method thereof | |
JP4102866B2 (en) | Gear manufacturing method | |
JP2004285384A (en) | High strength carburized component | |
JP5370073B2 (en) | Alloy steel for machine structural use | |
JP4116787B2 (en) | Steel member | |
JP2004238702A (en) | Carburized component excellent in low-cycle impact fatigue resistance | |
JP2009263767A (en) | Method for manufacturing high-strength case hardened steel part | |
JP5272609B2 (en) | Carbonitriding parts made of steel | |
JPH0488148A (en) | High strength gear steel capable of rapid carburization and high strength gear | |
JPH07188895A (en) | Manufacture of parts for machine structure use | |
JP7436779B2 (en) | Steel for carburized gears, carburized gears, and method for manufacturing carburized gears | |
JP5969204B2 (en) | Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same | |
JP4821582B2 (en) | Steel for vacuum carburized gear | |
JPH05239602A (en) | High bearing pressure parts | |
JPH08260039A (en) | Production of carburized and case hardened steel | |
JP3430685B2 (en) | Pitching resistant nitrocarburized gear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060829 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061019 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061212 |