JP4116787B2 - Steel member - Google Patents

Steel member Download PDF

Info

Publication number
JP4116787B2
JP4116787B2 JP2001351980A JP2001351980A JP4116787B2 JP 4116787 B2 JP4116787 B2 JP 4116787B2 JP 2001351980 A JP2001351980 A JP 2001351980A JP 2001351980 A JP2001351980 A JP 2001351980A JP 4116787 B2 JP4116787 B2 JP 4116787B2
Authority
JP
Japan
Prior art keywords
less
steel
carbides
steel member
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001351980A
Other languages
Japanese (ja)
Other versions
JP2002212672A (en
Inventor
正一 池田
安部  聡
義武 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001351980A priority Critical patent/JP4116787B2/en
Publication of JP2002212672A publication Critical patent/JP2002212672A/en
Application granted granted Critical
Publication of JP4116787B2 publication Critical patent/JP4116787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋼部材に関し、より詳細には、例えば高面圧で使用される歯車、摺動部品、軸類等の如く優れた耐ピッチング性と疲労強度を兼ね備えた機械構造用鋼部品や、耐摩耗性に優れた工具等として用いられる鋼部材に関するものである。
【0002】
以下では、鋼部材のうち機械構造用鋼部品として用いる場合を主体に説明する。
【0003】
【従来の技術】
機械構造用鋼部品は、例えば自動車、建設機械、産業機械等における動力伝達部品として広く使用されている。このような機械構造用鋼部品に用いられる鋼材としては、これまでJlS G4104,G4105,G4103等に規定されているCr肌焼鋼、Cr−Mo肌焼鋼、Ni−Cr−Mo肌焼鋼があり、これらの鋼を成形加工した後、浸炭処理もしくは浸炭窒化処理等の表面硬化処理を施したものが機械構造用鋼部品として使用されてきた。
【0004】
ところが近年、自動車、建設機械、産業機械等の高応力化や部品の小型軽量化に対する要望が高まってくるにつれて、動力伝達用歯車などの負荷応力はますます増大する傾向にあり、上述したような従来の機械構造用鋼や表面硬化処理鋼では、こうした厳しい使用環境に適応し難くなっている。
【0005】
このような状況に鑑み、特に接触面圧の増加に伴う接触面の剥離損傷、すなわちピッチング損傷を抑制するため、表層部のC濃度を高めて炭化物を微細析出させることにより表層部の高硬度化を狙った高濃度浸炭法、CD(CarbideDispersion)浸炭法、過共析浸炭法などが採用されている。また特開平6−158266号公報には、C:0.10〜0.3%、Si:1.0%未満、Mn:0.3〜1.5%、P:0.020%未満、Cr:1.50%超であって、質量比が「4.5<(8・Si+3Cr)<13.5」を満たし、Al:0.010〜0.050%、N:0.005〜0.025%、残部Feからなる鋼素材を、表面炭素濃度が0.7〜1.2%となるように浸炭してから焼入れ・焼戻し処理を行う高面圧部品の製法が開示されている。
【0006】
また特開平6−25823号公報には、C:0.05〜0.3%、Si:0.05〜2%、Mn:0.3〜2%、Cr:2〜8%、S:0.03%以下、A1:0.015〜0.06%、N:0.005〜0.02%を含み、残部Feおよび不可避不純物からなり、該不可避不純物中のP(りん)を0.02%以下、O(酸素)を0.002%以下にそれぞれ制御してなる鋼を素材とし、該鋼素材によって作製された部品に、浸炭もしくは浸炭窒化処理および焼入れ・焼戻し処理を施し、表層部に平均粒径が5μm以下の炭化物、または炭窒化物を析出させた浸炭鋼部品が開示されている。
【0007】
しかし、これら特開平6−158266号や特開平6−25823号に開示された方法で製造した機械構造用鋼部品はC含有量が高く、直径で数μm程度の粗大な炭化物が多数析出しているため、耐ピッチング性は満足し得るものの、曲げ疲労強度に劣るという問題がある。
【0008】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、曲げ疲労特性を害することなく、耐ピッチング性を高めることのできた機械構造用鋼部品の他、耐摩耗性に優れた工具等としても使用することのできる鋼部材を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記課題を解決することのできた本発明にかかる鋼部材とは、心部がC:0.10〜0.30%、Si:0.35〜1.0%、Mn:0.20〜1.0%、Cr:1.0〜1.31%、Mo:0.05〜0.6%を含み、且つA1:0.005〜0.05%、Nb:0.005〜0.05%、Ti:0.005〜0.1%よりなる群から選択される1種または2種以上の元素と、N:0.008〜0.05%を含み、残部鉄および不可避不純物であると共に、浸炭焼入・焼戻し処理後におけるオーステナイト結晶粒度番号が8.5以上で、且つ、走査型電子顕微鏡で8000倍の倍率で観察したときに、表面から50μm以内の表層部における直径0.5μm以下の炭化物の面密度が6.0個/10μm2以上で、且つ全炭化物数に占める直径0.5μm以下の炭化物数の割合が80%以上であり、更に鋼板表面から深さ50μmの位置の残留オーステナイト量が20%以下(0%を含まない)であるところに要旨を有しており、この鋼部材は、HV800以上の表面硬さを有している。
【0010】
この鋼部材には、Zr:0.01〜0.15%、Pb:0.09%以下よりなる群から選択される1種または2種以上の元素を含有させると、優れた被削性をも併せ付与することができるので好ましい。
【0011】
尚、上記「心部」とは、表面から浸炭した炭素の到達していない、Cの濃度分布がほぼ一定である鋼内部をいうものとする。
【0012】
【発明の実施の形態】
発明者らは前述した様な課題の下で、鋼部材、特に曲げ疲労特性を害することなく、耐ピッチング性の高められた機械構造用鋼部品の開発を期して検討を重ねた結果、心部の化学成分を規定すると共に、表面から50μmまでの表層部に微細な炭化物を多数析出させ、表層硬さをHV800以上に高めてやれば、機械構造用鋼部品として耐ピッチング性が大幅に改善されることを見出した。但し、機械部品に求められる高レベルの疲労強度を確保するには、表面から50μm以内の表層部における炭化物のサイズと個数を厳密に制御しなければならず、該炭化物として、直径0.5μm以下のものが面密度6.0個/10μm2以上で、全炭化物数中に占める直径0.5μm以下の炭化物数の割合が80%以上であるものは、機械構造用鋼部品として前述した要求特性を満たすものとなることを知り、本発明に想到したものである。
【0013】
以下、本発明で定める各数値限定の理由について詳述する。まず表面から50μmまでの表層部における炭化物の面密度であるが、直径0.5μm以下のものが面密度で6.0個/10μm2以上でなければならず、面密度が6.0個/10μm2未満では、本発明で意図するレベルの耐ピッチング性が得られない。また、直径0.5μm以下の炭化物が全炭化物数中に占める割合は80%以上でなければならず、80%未満では、20%を超えて存在する直径0.5μm超の炭化物が破壊の起点となり、機械構造用鋼部品の曲げ疲労強度に悪影響が現われる。しかし、直径0.5μmを超える炭化物の個数が全炭化物数中に占める比率で20%未満であれば、疲労強度に与える影響は小さく、実用上の問題となることはない。
【0014】
曲げ疲労特性を劣化させることなく優れた耐ピッチング性を確保する上でより好ましい前記面密度は8.0個/10μm2以上、更に好ましくは10.0個/10μm2以上で、直径0.5μm以下の炭化物が全炭化物数中に占めるより好ましい比率は90%以上、更に好ましくは95%以上である。
【0015】
更に本発明においては、上記要件に加えて、心部の化学成分が適切な鋼材を使用することが必要であり、それらの総合により表層部の硬さでHV800以上を確保し、優れた耐ピッチング性および曲げ疲労強度を両立することが可能となる。以下、本発明で定める鋼材の化学成分について、各成分の限定理由を説明する。
【0016】
C:0.10〜0.30%
Cは鋼部材として必要な心部硬さを確保する上で欠くことのできない元素であり、0.10%未満では心部硬さが不足し、機械構造用鋼部品や工具として強度不足となる。しかしC量が多くなり過ぎると、心部硬さが過度に高くなって冷鍛加工性や被削性が劣化するので、0.30%以下に抑えなければならない。こうした観点から、Cのより好ましい下限は0.15%、より好ましい上限は0.25%である。
【0017】
Si:0.15〜1.0%
Siは、本発明における最も重要な元素の1つで、鋼材の表層部で析出する炭化物を微細化する作用を有しており、本発明の鋼材を浸炭処理したときに、表層部において微細な炭化物を多数析出させ、直径0.5μm以下の炭化物を面密度で6.0個/10μm2以上存在させる上で重要な要件となる。しかも、適量のSiは鋼マトリックスを強化し、表層の硬度を更に高める作用も発揮する。鋼中のSiが0.15%未満では、こうした作用が十分に発揮されず、表層の炭化物が粗大化すると共に面密度も小さくなり、満足のいく表面硬度が得られなくなる。逆にSi量が1.0%を超えると、鋼部材を製造する際に、球状化焼鈍後の硬さが高くなり過ぎて被削性や冷間鍛造性が劣悪となる。こうした観点から、Siのより好ましい下限は0.35%、より好ましい上限は0.6%である。
【0018】
Mn:0.20〜1.0%
Mnは、脱酸剤として作用し酸化物系介在物量を低減して部材の内部品質を高める作用を発揮すると共に、有効硬化層深さや心部硬さを確保する上でも有効に作用する。こうした作用を有効に発揮させるには、Mnを0.20%以上、より好ましくは0.25%以上含有させるべきであり、0.20%未満では有効硬化層深さや心部硬さが不足し、十分な疲労強度が得られなくなる。逆にMnが1.0%を超えると、表層部における残留オーステナイト量が過度に多くなり、表層部が硬度不足となる。こうした観点から、Mnのより好ましい含有率は0.25%以上、0.60%以下である。
【0019】
Cr:1.0〜2.0%
Crも本発明における重要な元素の1つであり、適量のCrの添加によって、浸炭時における炭化物の析出を促進することが可能となる。ちなみに、Cr量が1.0%未満では上記作用が有効に発揮されず、加えて鋼部材の焼入性も低下し、必要とされる有効硬化層深さや芯部硬さが不足気味となって疲労強度が劣化する。しかし2.0%を超えてCrを過度に含有させると、心部硬さが高くなり過ぎて被削性不良となる。Crのより好ましい下限は1.25%、より好ましい上限は1.50%である。
【0020】
Mo:0.05〜0.6%
Moも重要な元素であり、表層部の浸炭層における炭化物の析出量を増すと共に、鋼マトリックスの焼入性を高め、表層部を硬質化する上で重要な役割を果たす。ちなみに、Moが0.05%未満では炭化物が生成不足となるばかりでなく、表層部に不完全焼入れ組織が生成して疲労強度を劣化させる原因になる。逆にMo量が0.6%を超えると、鋼部材が過度に硬質化して被削性や冷間加工性が劣悪となる。Moのより好ましい含有率は0.15%以上、0.5%以下である。
【0021】
ところで本発明において、先に説明した如く、表面から50μm以内の表層部における直径0.5μm以下の炭化物の面密度が6.0個/10μm2以上で、且つ全炭化物数に占める直径0.5μm以下の炭化物数の割合が80%以上となる様に炭化物を析出させるには、浸炭焼入・焼戻し後において、機械部品である鋼のオーステナイト結晶粒度番号で8.5以上を確保することが必須の要件となる。これは、浸炭時に過剰に侵入した炭素が炭化物として析出する析出サイトの1つがオーステナイト結晶粒界であり、結晶粒微細化によりオーステナイト結晶粒界を増やすことで析出サイトを増加させることにより、微細な炭化物を多数析出させ得るからである。
【0022】
ちなみにオーステナイト結晶粒度番号が8.5未満では、炭化物の析出サイトが少ないため直径0.5μm超の粗大な炭化物が多数析出し、直径0.5μm以下の炭化物の面密度も小さくなって耐ピッチング性や曲げ疲労特性に劣るものとなる。
【0023】
こうした析出サイト増大による作用効果をより効果的に発揮させる上で、より好ましいオーステナイト結晶粒度番号は9.0以上、更に好ましくは9.5以上である。
【0024】
この様に、心部組織におけるオーステナイト結晶粒度番号の大きな鋼を得るには、浸炭のための加熱工程でオーステナイト粒の成長を抑制する必要があり、そのための具体的な方法としては、鋼中に、Al:0.005〜0.05%、Nb:0.005〜0.05%、Ti:0.005〜0.1%よりなる群から選択される1種または2種以上の元素と、N:0.008〜0.05%を存在させる方法が挙げられる。即ち、これらの元素を含有させることによって鋼中に生成するAlN,NbN,TiN等の析出を利用し、浸炭加熱中におけるオーステナイト結晶粒の成長を抑制することができるのである。
【0025】
そして、鋼中のA1量が0.005%未満、Nb量が0.005%未満あるいはTi量が0.005%未満では、結晶粒の粗大化抑制作用が有効に発揮されず、心部組織のオーステナイト結晶粒度番号を8.5以上に高めることができなくなる。一方、Al量が0.05%を超え、Nb量が0.05%を超え、あるいはTi量が0.1%を超えると、上記作用効果が飽和するばかりでなく、アルミナ系介在物やTiNの生成により曲げ疲労強度が低下したり冷間加工性が低下するといった障害が現われてくる。
【0026】
更に本発明においては、上記元素に加えて、Ca:0.0005〜0.05%、Zr:0.01〜0.15%、Bi:0.05%以下、S:0.12%以下、Pb:0.09%以下、Mg:0.02%以下よりなる群から選択される1種または2種以上の元素を含有させると、鋼部材を作製する際の切削性を大幅に改善できるので好ましい。ちなみに、これら選択元素の含有量が下限値未満では上記作用効果が十分に発揮されず、一方上限付近で各元素の上記作用効果は飽和し、むしろ粗大な複合介在物を多量に生成して曲げ疲労強度や耐ピッチング性劣化させるといった障害を生じる原因になることがある。
【0027】
更に本発明においては、表層部の残留オーステナイト量が5%以上、35%以下、より好ましくは10%以上、20%以下であることが望ましい。その理由は、残留オーステナイト量が5%未満では、靭性が低くなると共に機械構造部品として使用する際の他部品とのなじみが悪くなり、衝撃疲労破壊や騒音の原因になり、逆に35%を超えると、表面硬さが低下して耐ピッチング性不足になるからである。
【0028】
本発明の鋼部材を得る際に採用される表面硬化処理法であるが、炭化物を微細析出させるためには、高濃度浸炭やCD浸炭を採用することが望ましい。
【0029】
該表面硬化処理法の具体的な方法としては、例えば、
▲1▼第1工程で、カーボンポテンシャルが1.20%程度の雰囲気下、930℃程度で8hr程度保持して浸炭し、その後の第2工程で、830℃程度で45分程度保持してから油焼入することにより再加熱焼入する方法が挙げられるが、本発明で規定の炭化物析出形態とするにあたっては、930℃にて2時間、カーボンポテンシャル1.15%の雰囲気に保持して表層から50μm位置までの平均炭素濃度が0.9%となるまで浸炭した後、ガス冷却して室温近傍まで冷却し、その後、25℃/分以上の速度で加熱して、再度850℃でカーボンポテンシャルが0.85%の雰囲気に1時間保持した後、コールド油焼入れし最後に焼戻しを行う方法がより具体的な一例として挙げられる。その他、
▲2▼カーボンポテンシャルが1.30%程度の雰囲気下、1000℃程度に加熱し、その後700℃程度まで冷却してから880℃程度に加熱する工程を複数繰り返す方法
なども用いうる表面硬化処理方法の一つとして挙げられる。
【0030】
本発明の鋼部材は、上述の通り、部材表面に炭化物を析出させて高硬度とし、耐摩耗性にも優れているので、六角レンチのホルダー、コンクリートドリルのホルダー、鍛造用金型等の工具として使用することもできる。
【0031】
【実施例】
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
【0032】
実施例1
表1,3に示す成分組成の鋼材を小型炉によって溶製し、熱間鍛造後に溶体化処理および焼ならし処理を行なった後、機械加工により直径10mm×130mm(2本)、および直径26mm×130mmの丸棒試験片、回転曲げ疲労試験片、およびローラピッチング試験片の形状に加工した。図1にローラピッチング試験片の形状を示す。回転曲げ疲労試験片としては、形状係数2.0の切欠き付き疲労試験片を用いた。そしてこれらの試験片に、図2に示すパターンで高濃度浸炭処理を施した。図2において、第1段階ではカーボンポテンシャル(Cp)が1.2%の雰囲気で放置することにより高濃度浸炭し、更に第2段階で再加熱焼入れを行うことによって表層の浸炭部に微細な炭化物を析出させ、第3段階で焼戻し処理を行なった。
【0033】
焼戻し終了後、直径10mmの丸棒試験片の1本を用いて不完全焼入れ組織の有無、炭化物の個数およびサイズの測定、結晶粒度番号の測定を、下記の方法で行なった。
【0034】
(1)不完全焼入れ組織の有無:丸棒試験片を切断、研磨後、表面から50μm位置を倍率8,000倍でSEM観察し、不完全焼入れ組織の有無を判定、
(2)炭化物の個数およびサイズ:上記8,000倍の写真を画像処理し、炭化物の個数とサイズを求める。なお炭化物の直径の求め方は、炭化物の面積を測定した後、同じ面積となる円の直径として求める。
【0035】
(3)結晶粒度番号:J1S G0551に準拠して測定する。
【0036】
更に、焼戻し後の試験片にショットピーニング処理を施した後、直径10mmの丸棒試験片の残りを取出し、残留オーステナイトと硬度を測定する。またローラピッチング試験は、仕上げ研磨を行った後に、また回転曲げ疲労試験はそのまま試験に供し、更に下記の条件で焼ならし後の硬さを測定した。
【0037】
残留オーステナイトは、X線回折によって表面から深さ50μmの位置を測定し、硬度は切断した断面において表面から50μmの位置と、直径方向中心位置で測定した。回転曲げ疲労試験は、回転数3,600rpmにて行い107回に達しても破断しない応力を曲げ疲労強度として求めた。ローラピッチング試験には下記の条件を採用し、ピッチング損傷が生じた時をもってピッチング寿命とした。
【0038】
[ローラピッチング試験条件]
面圧:3.7GPa、回転数:1,500rpm、すべり率:−40%、油温:80℃、相手ローラ:JlS G4805高炭素クロム軸受鋼SUJ2
[焼ならし後の硬さ試験]
JIS Z2244に準拠して実施、試験荷重は98N。
【0039】
試験結果を表2,4,5に示す。
【0040】
【表1】

Figure 0004116787
【0041】
【表2】
Figure 0004116787
【0042】
【表3】
Figure 0004116787
【0043】
【表4】
Figure 0004116787
【0044】
【表5】
Figure 0004116787
【0045】
表1,2において、No.1〜18は本発明の規定要件を満たす実施例であり、回転曲げ疲労強度が850MPa以上と高く、ピッチング寿命も長寿命を示している。更に、適量の快削性元素を添加したNo.2,4,6,8,9,10,14,15,18は優れた快削性を示している。
【0046】
これらに対し、表3,4におけるNo.19〜27は、本発明で定める何れかの要件を欠く比較例であり、No.19,21,22,25〜27は、直径0.5μm以下の炭化物の面密度が6.0個/10μm2未満で、全炭化物数に占める直径0.5μm以下の炭化物数の割合が80%未満であるため、粗大な炭化物の存在によって回転曲げ疲労強度が劣り、また直径0.5μm以下の炭化物の面密度が低いためピッチング寿命が短い。
【0047】
またNo.23では、Mo量が少ないため炭化物数不足となって表層が硬度不足となり、ピッチング寿命が短くなる他、回転曲げ疲労強度も乏しい。No.21は、表層に不完全焼入れ組織が生成しており、微細炭化物の数も割合も少ないためピッチング寿命が短く、回転曲げ疲労強度が乏しい。
【0048】
No.20,22,24では、Si量、Cr量またはMo量が多過ぎるためか、焼ならし後の硬さが高く、切削性および冷鍛加工性が悪くて鋼部材としての適性を欠く。
【0049】
【発明の効果】
本発明は以上の様に構成されており、心部の化学成分を規定すると共に、浸炭焼入・焼戻し処理後におけるオーステナイト結晶粒度番号、表層部の微細炭化物の面密度と微細炭化物数の割合を特定することによって、高い曲げ疲労強度を維持しつつ優れたピッチング寿命を示す機械構造用鋼部品や、優れた耐摩耗性を発揮する工具として使用できる鋼部材を提供し得ることになった。
【0050】
特に、上記鋼部材を、高度の耐ピッチング性と疲労強度の要求される歯車や軸類に使用することで、該歯車や軸類の耐久性を著しく高めることができた。
【図面の簡単な説明】
【図1】性能評価試験に用いたローラピッチング試験片の寸法・形状を示す図である。
【図2】実験で採用した高濃度浸炭処理パターンを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel member, and more specifically, a steel part for mechanical structure having excellent pitting resistance and fatigue strength such as gears, sliding parts, shafts, etc. used at high surface pressure, The present invention relates to a steel member used as a tool or the like having excellent wear characteristics.
[0002]
Below, the case where it uses as a steel part for machine structures among steel members is demonstrated mainly.
[0003]
[Prior art]
Machine structural steel parts are widely used as power transmission parts in, for example, automobiles, construction machines, and industrial machines. As steel materials used for such mechanical structural steel parts, Cr case-hardened steel, Cr-Mo case-hardened steel, Ni-Cr-Mo case-hardened steel, which have been defined in JLS G4104, G4105, G4103, etc. There have been used steel parts for machine structural use that have been subjected to surface hardening treatment such as carburizing treatment or carbonitriding treatment after molding these steels.
[0004]
However, in recent years, as the demand for higher stress and smaller and lighter parts of automobiles, construction machinery, industrial machinery, etc. has increased, load stresses such as gears for power transmission have been increasing. Conventional steels for machine structural use and surface-hardened steels are difficult to adapt to such harsh usage environments.
[0005]
In view of such a situation, in order to suppress peeling damage on the contact surface accompanying increase in contact surface pressure, that is, pitting damage, the hardness of the surface layer portion is increased by increasing the C concentration of the surface layer portion and finely depositing carbides. For example, a high concentration carburizing method, a CD (Carbide Dispersion) carburizing method, a hypereutectoid carburizing method and the like are employed. JP-A-6-158266 discloses C: 0.10 to 0.3%, Si: less than 1.0%, Mn: 0.3 to 1.5%, P: less than 0.020%, Cr : Over 1.50%, and the mass ratio satisfies “4.5 <(8 · Si + 3Cr) <13.5”, Al: 0.010 to 0.050%, N: 0.005 to 0.00. A method of manufacturing a high surface pressure component is disclosed in which a steel material composed of 025% and the balance Fe is carburized so that the surface carbon concentration is 0.7 to 1.2%, and then quenched and tempered.
[0006]
In JP-A-6-25823, C: 0.05 to 0.3%, Si: 0.05 to 2%, Mn: 0.3 to 2%, Cr: 2 to 8%, S: 0 0.03% or less, A1: 0.015 to 0.06%, N: 0.005 to 0.02%, the balance being Fe and inevitable impurities, P (phosphorus) in the inevitable impurities being 0.02 %, And O (oxygen) is controlled to 0.002% or less, and parts made of the steel material are subjected to carburizing or carbonitriding treatment and quenching / tempering treatment. A carburized steel part on which carbide or carbonitride having an average particle size of 5 μm or less is deposited is disclosed.
[0007]
However, the steel parts for mechanical structures manufactured by the methods disclosed in JP-A-6-158266 and JP-A-6-25823 have a high C content and a large number of coarse carbides having a diameter of about several μm are precipitated. Therefore, although the pitting resistance can be satisfied, there is a problem that the bending fatigue strength is inferior.
[0008]
[Problems to be solved by the invention]
The present invention has been made by paying attention to the above-mentioned circumstances, and its purpose is to provide wear resistance in addition to steel parts for mechanical structures that can enhance the pitting resistance without impairing the bending fatigue characteristics. It is an object of the present invention to provide a steel member that can be used as an excellent tool.
[0009]
[Means for Solving the Problems]
The steel member according to the present invention, which has been able to solve the above problems, has C: 0.10 to 0.30%, Si: 0.35 to 1.0%, Mn: 0.20 to 1. 0%, Cr: 1.0 to 1.31 %, Mo: 0.05 to 0.6%, and A1: 0.005 to 0.05%, Nb: 0.005 to 0.05%, Ti: one or two or more elements selected from the group consisting of 0.005 to 0.1%, N: 0.008 to 0.05%, the balance being iron and inevitable impurities, Carbide having an austenite grain size number of 8.5 or more after charcoal quenching and tempering and a diameter of 0.5 μm or less in the surface layer within 50 μm from the surface when observed with a scanning electron microscope at a magnification of 8000 times The surface density is 6.0 pieces / 10 μm 2 or more, and the diameter occupies the total number of carbides. It has a gist in that the ratio of the number of carbides of 0.5 μm or less is 80% or more, and the amount of retained austenite at a depth of 50 μm from the steel sheet surface is 20% or less (excluding 0%). This steel member has a surface hardness of HV800 or higher.
[0010]
When this steel member contains one or more elements selected from the group consisting of Zr: 0.01 to 0.15% and Pb: 0.09% or less , excellent machinability is achieved. Is also preferable because it can be added together.
[0011]
Note that the above “center” refers to the inside of steel in which the carbon concentration distribution that is not reached by the carburized carbon from the surface is substantially constant.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Under the above-mentioned problems, the inventors have repeatedly studied for the development of steel parts for machine structures with improved pitting resistance without harming the steel members, particularly bending fatigue characteristics. In addition to prescribing the chemical composition of the material, if a large amount of fine carbides are deposited on the surface layer part from the surface to 50 μm and the surface layer hardness is increased to HV800 or more, the pitting resistance as a steel part for machine structures is greatly improved. I found out. However, in order to ensure the high level of fatigue strength required for machine parts, the size and number of carbides in the surface layer portion within 50 μm from the surface must be strictly controlled, and the carbide has a diameter of 0.5 μm or less. With a surface density of 6.0 pieces / 10 μm 2 or more and a ratio of the number of carbides with a diameter of 0.5 μm or less in the total number of carbides of 80% or more is the required characteristics described above as steel parts for machine structures Thus, the present invention has been conceived.
[0013]
Hereinafter, the reason for limiting each numerical value defined in the present invention will be described in detail. First, the surface density of the carbide in the surface layer portion from the surface to 50 μm, the surface density of 0.5 μm or less must be 6.0 pieces / 10 μm 2 or more, and the surface density is 6.0 pieces / If it is less than 10 μm 2 , the level of pitting resistance intended by the present invention cannot be obtained. In addition, the proportion of carbides having a diameter of 0.5 μm or less in the total number of carbides must be 80% or more, and if it is less than 80%, carbides having a diameter of more than 20 μm and exceeding 20% are the origin of destruction. This adversely affects the bending fatigue strength of mechanical structural steel parts. However, if the number of carbides having a diameter of more than 0.5 μm is less than 20% in the total number of carbides, the effect on fatigue strength is small, and there is no practical problem.
[0014]
The surface density is more preferably 8.0 pieces / 10 μm 2 or more, more preferably 10.0 pieces / 10 μm 2 or more, and a diameter of 0.5 μm, in order to ensure excellent pitting resistance without deteriorating bending fatigue characteristics. A more preferable ratio of the following carbides in the total number of carbides is 90% or more, and more preferably 95% or more.
[0015]
Furthermore, in the present invention, in addition to the above-mentioned requirements, it is necessary to use a steel material having an appropriate chemical component in the core, and by combining them, the hardness of the surface layer is ensured to be HV800 or more, and excellent pitting resistance It is possible to satisfy both the properties and the bending fatigue strength. Hereinafter, the reason for limitation of each component is demonstrated about the chemical component of the steel materials defined by this invention.
[0016]
C: 0.10 to 0.30%
C is an element indispensable for securing the core hardness required as a steel member. If it is less than 0.10%, the core hardness is insufficient, and the strength is insufficient for steel parts and tools for machine structures. . However, if the amount of C becomes too large, the core hardness becomes excessively high and cold forging workability and machinability deteriorate, so it must be suppressed to 0.30% or less. From such a viewpoint, the more preferable lower limit of C is 0.15%, and the more preferable upper limit is 0.25%.
[0017]
Si: 0.15-1.0%
Si is one of the most important elements in the present invention, and has an effect of refining carbides precipitated in the surface layer portion of the steel material. When the steel material of the present invention is carburized, it is fine in the surface layer portion. This is an important requirement for precipitating a large number of carbides and causing carbides having a diameter of 0.5 μm or less to be present in an area density of 6.0 / 10 μm 2 or more. In addition, an appropriate amount of Si strengthens the steel matrix and also exhibits the effect of further increasing the hardness of the surface layer. If the Si content in the steel is less than 0.15%, such an effect is not sufficiently exerted, the surface carbide is coarsened and the surface density is decreased, and a satisfactory surface hardness cannot be obtained. On the other hand, if the amount of Si exceeds 1.0%, the hardness after spheroidizing annealing becomes too high when producing a steel member, and the machinability and cold forgeability become poor. From such a viewpoint, the more preferable lower limit of Si is 0.35%, and the more preferable upper limit is 0.6%.
[0018]
Mn: 0.20 to 1.0%
Mn acts as a deoxidizer, reduces the amount of oxide inclusions and improves the internal quality of the member, and also works effectively to ensure the effective hardened layer depth and core hardness. In order to exert such an action effectively, Mn should be contained 0.20% or more, more preferably 0.25% or more. If it is less than 0.20%, the effective hardened layer depth and the core hardness are insufficient. Therefore, sufficient fatigue strength cannot be obtained. On the other hand, when Mn exceeds 1.0%, the amount of retained austenite in the surface layer portion becomes excessively large, and the surface layer portion becomes insufficient in hardness. From such a viewpoint, the more preferable content rate of Mn is 0.25% or more and 0.60% or less.
[0019]
Cr: 1.0-2.0%
Cr is also an important element in the present invention, and by adding an appropriate amount of Cr, it becomes possible to promote precipitation of carbides during carburizing. By the way, if the Cr content is less than 1.0%, the above effect is not exhibited effectively, and the hardenability of the steel member is also reduced, and the required effective hardened layer depth and core hardness are insufficient. Fatigue strength deteriorates. However, if over 2.0% and Cr is excessively contained, the core hardness becomes too high, resulting in poor machinability. A more preferable lower limit of Cr is 1.25%, and a more preferable upper limit is 1.50%.
[0020]
Mo: 0.05-0.6%
Mo is also an important element and plays an important role in increasing the precipitation of carbides in the carburized layer in the surface layer portion, increasing the hardenability of the steel matrix, and hardening the surface layer portion. Incidentally, if Mo is less than 0.05%, not only the carbide is insufficiently generated, but also an incompletely hardened structure is generated in the surface layer portion, which causes a deterioration in fatigue strength. On the other hand, if the Mo content exceeds 0.6%, the steel member becomes excessively hard, and the machinability and cold workability become poor. A more preferable content of Mo is 0.15% or more and 0.5% or less.
[0021]
By the way, in the present invention, as described above, the surface density of the carbide having a diameter of 0.5 μm or less in the surface layer portion within 50 μm from the surface is 6.0 / 10 μm 2 or more, and the diameter accounting for the total number of carbides is 0.5 μm. In order to precipitate carbide so that the ratio of the following number of carbides is 80% or more, it is essential to secure 8.5 or more in the austenite grain size number of steel, which is a machine part, after carburizing and tempering. It becomes a requirement. This is because one of the precipitation sites where carbon that excessively penetrates during carburization precipitates as carbide is an austenite grain boundary, and by increasing the austenite crystal grain boundary by refining the crystal grain, This is because a large number of carbides can be precipitated.
[0022]
By the way, when the austenite grain size number is less than 8.5, since there are few carbide precipitation sites, a large number of coarse carbides with a diameter of more than 0.5 μm are precipitated, and the surface density of carbides with a diameter of 0.5 μm or less is reduced, resulting in pitting resistance. And bending fatigue properties are inferior.
[0023]
A more preferable austenite grain size number is 9.0 or more, and even more preferably 9.5 or more, in order to more effectively exhibit the effect of such an increase in precipitation sites.
[0024]
Thus, in order to obtain a steel with a large austenite grain size number in the core structure, it is necessary to suppress the growth of austenite grains in the heating process for carburizing. As a specific method for that purpose, One or two or more elements selected from the group consisting of: Al: 0.005-0.05%, Nb: 0.005-0.05%, Ti: 0.005-0.1%; N: The method of making 0.008-0.05% exist is mentioned. That is, by containing these elements, precipitation of AlN, NbN, TiN, etc. generated in the steel can be used to suppress the growth of austenite crystal grains during carburizing heating.
[0025]
If the amount of A1 in the steel is less than 0.005%, the amount of Nb is less than 0.005% or the amount of Ti is less than 0.005%, the effect of suppressing the coarsening of crystal grains is not effectively exhibited, and the core structure The austenite grain size number cannot be increased to 8.5 or more. On the other hand, when the Al content exceeds 0.05%, the Nb content exceeds 0.05%, or the Ti content exceeds 0.1%, the above-mentioned effects are not only saturated, but also alumina inclusions and TiN. The formation of this causes problems such as a decrease in bending fatigue strength and a decrease in cold workability.
[0026]
Further, in the present invention, in addition to the above elements, Ca: 0.0005 to 0.05%, Zr: 0.01 to 0.15%, Bi: 0.05% or less, S: 0.12% or less, If one or more elements selected from the group consisting of Pb: 0.09% or less and Mg: 0.02% or less are included, the machinability when producing a steel member can be greatly improved. preferable. Incidentally, if the content of these selected elements is less than the lower limit, the above-mentioned effects are not fully exhibited, while the above-mentioned effects of each element are saturated near the upper limit, and rather a large amount of coarse composite inclusions are generated and bent. It may cause troubles such as deterioration of fatigue strength and pitting resistance.
[0027]
Furthermore, in the present invention, the amount of retained austenite in the surface layer portion is preferably 5% or more and 35% or less, more preferably 10% or more and 20% or less. The reason for this is that if the amount of retained austenite is less than 5%, the toughness will be lowered and the compatibility with other parts when used as a machine structural part will deteriorate, causing impact fatigue failure and noise, and conversely 35%. If it exceeds, the surface hardness is lowered and the pitting resistance becomes insufficient.
[0028]
Although it is a surface hardening treatment method adopted when obtaining the steel member of the present invention, it is desirable to adopt high-concentration carburization or CD carburization in order to finely precipitate carbides.
[0029]
As a specific method of the surface curing treatment method, for example,
(1) Carburize by holding for about 8 hours at about 930 ° C in an atmosphere with a carbon potential of about 1.20% in the first step, and then hold at about 830 ° C for about 45 minutes in the second step after that. There is a method of reheating and quenching by oil quenching. In order to obtain a carbide precipitation form defined in the present invention, the surface layer is maintained at 930 ° C. for 2 hours in an atmosphere having a carbon potential of 1.15%. To 50 μm position until the average carbon concentration becomes 0.9%, then gas cooling and cooling to near room temperature, then heating at a rate of 25 ° C./min or more and again at 850 ° C. As a more specific example, there is a method in which after holding in a 0.85% atmosphere for 1 hour, quenching with cold oil and finally tempering. Other,
(2) A surface hardening treatment method that can be used in such a manner that a process of heating to about 1000 ° C. in an atmosphere having a carbon potential of about 1.30%, then cooling to about 700 ° C. and then heating to about 880 ° C. is repeated. One of them.
[0030]
As described above, the steel member of the present invention has high hardness by precipitating carbide on the surface of the member, and is excellent in wear resistance. Therefore, tools such as a hexagon wrench holder, a concrete drill holder, a forging die, etc. It can also be used as
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but may be implemented with appropriate modifications within a range that can meet the purpose described above and below. Any of these may be included in the technical scope of the present invention.
[0032]
Example 1
Steel materials having the composition shown in Tables 1 and 3 were melted in a small furnace, subjected to solution treatment and normalizing treatment after hot forging, and then machined to have a diameter of 10 mm × 130 mm (two pieces) and a diameter of 26 mm. It processed into the shape of a * 130mm round bar test piece, a rotation bending fatigue test piece, and a roller pitching test piece. FIG. 1 shows the shape of a roller pitching test piece. As the rotating bending fatigue test piece, a notched fatigue test piece having a shape factor of 2.0 was used. These test pieces were subjected to high-concentration carburizing treatment in the pattern shown in FIG. In FIG. 2, in the first stage, high-concentration carburization is performed by leaving it in an atmosphere having a carbon potential (Cp) of 1.2%. Further, in the second stage, reheating and quenching is performed, and fine carbides are formed in the carburized portion of the surface layer. And was tempered in the third stage.
[0033]
After completion of tempering, the presence or absence of an incompletely quenched structure, the number and size of carbides, and the measurement of the crystal grain size number were measured by using one round bar test piece having a diameter of 10 mm.
[0034]
(1) Presence / absence of incompletely hardened structure: After cutting and polishing a round bar test piece, SEM observation at a magnification of 8,000 times was performed at a 50 μm position from the surface to determine the presence or absence of incompletely hardened structure.
(2) Number and size of carbides: Image processing is performed on the above 8,000 times photograph to determine the number and size of carbides. In addition, the method of calculating | requiring the diameter of a carbide | carbonized_material calculates | requires as a diameter of the circle | round | yen which becomes the same area, after measuring the area | region of a carbide | carbonized_material.
[0035]
(3) Crystal grain size number: Measured according to J1S G0551.
[0036]
Furthermore, after subjecting the test piece after tempering to shot peening, the remainder of the round bar test piece having a diameter of 10 mm is taken out and the residual austenite and hardness are measured. The roller pitching test was subjected to finish polishing, the rotary bending fatigue test was used as it was, and the hardness after normalization was measured under the following conditions.
[0037]
The retained austenite was measured at a position of 50 μm depth from the surface by X-ray diffraction, and the hardness was measured at a position of 50 μm from the surface and a central position in the diameter direction in the cut section. The rotational bending fatigue test was performed at a rotational speed of 3,600 rpm, and the stress that did not break even after reaching 10 7 times was determined as the bending fatigue strength. The following conditions were adopted for the roller pitching test, and the pitching life was determined when the pitching damage occurred.
[0038]
[Roller pitching test conditions]
Surface pressure: 3.7 GPa, rotation speed: 1,500 rpm, slip rate: −40%, oil temperature: 80 ° C., mating roller: JlS G4805 high carbon chrome bearing steel SUJ2
[Hardness test after normalization]
Conducted in accordance with JIS Z2244, test load is 98N.
[0039]
The test results are shown in Tables 2, 4 and 5.
[0040]
[Table 1]
Figure 0004116787
[0041]
[Table 2]
Figure 0004116787
[0042]
[Table 3]
Figure 0004116787
[0043]
[Table 4]
Figure 0004116787
[0044]
[Table 5]
Figure 0004116787
[0045]
In Tables 1 and 2, no. Examples 1 to 18 are examples that satisfy the prescribed requirements of the present invention. The rotational bending fatigue strength is as high as 850 MPa or more, and the pitching life is also long. Furthermore, no. 2, 4, 6, 8, 9, 10, 14, 15, 18 show excellent free-cutting properties.
[0046]
On the other hand, No. Nos. 19 to 27 are comparative examples lacking any requirement defined in the present invention. 19, 21, 22, 25 to 27 have a surface density of carbides of 0.5 μm or less in diameter of less than 6.0 / 10 μm 2 , and the ratio of the number of carbides of 0.5 μm or less in diameter to the total number of carbides is 80%. Therefore, the rotational bending fatigue strength is inferior due to the presence of coarse carbides, and the surface density of carbides having a diameter of 0.5 μm or less is low, so that the pitching life is short.
[0047]
No. In No. 23, since the amount of Mo is small, the number of carbides is insufficient, the surface layer becomes insufficient in hardness, the pitching life is shortened, and the rotational bending fatigue strength is also poor. No. No. 21 has an incompletely quenched structure on the surface layer, and since the number and proportion of fine carbides are small, the pitching life is short and the rotational bending fatigue strength is poor.
[0048]
No. In 20, 22, and 24, the amount of Si, Cr, or Mo is excessive, or the hardness after normalization is high, and the machinability and cold forging workability are poor, so that the steel member is not suitable.
[0049]
【The invention's effect】
The present invention is configured as described above, defines the chemical components of the core, and determines the ratio of the austenite grain size number after carburizing and tempering, the surface density of fine carbides and the number of fine carbides in the surface layer part. By specifying, it has become possible to provide a steel member for mechanical structure that exhibits excellent pitching life while maintaining high bending fatigue strength, and a steel member that can be used as a tool that exhibits excellent wear resistance.
[0050]
In particular, the durability of the gears and shafts can be remarkably enhanced by using the steel member for gears and shafts that require high pitting resistance and fatigue strength.
[Brief description of the drawings]
FIG. 1 is a diagram showing dimensions and shapes of roller pitching test pieces used in a performance evaluation test.
FIG. 2 is a diagram showing a high-concentration carburizing treatment pattern employed in the experiment.

Claims (3)

心部がC:0.10〜0.30%(化学成分の場合は質量%の意味、以下同じ)、Si:0.35〜1.0%、Mn:0.20〜1.0%、Cr:1.0〜1.31%、Mo:0.05〜0.6%を含み、且つ、A1:0.005〜0.05%、Nb:0.005〜0.05%、Ti:0.005〜0.1%よりなる群から選択される1種または2種以上の元素と、N:0.008〜0.05%を含有し、残部鉄および不可避不純物であると共に、浸炭焼入・焼戻し後におけるオーステナイト結晶粒度番号が8.5以上であり、走査型電子顕微鏡で8000倍の倍率で観察したときに、表面から50μm以内の表層部における直径0.5μm以下の炭化物の面密度が6.0個/10μm2以上で、全炭化物数に占める直径0.5μm以下の炭化物数の割合が80%以上であり、更に鋼板表面から深さ50μmの位置の残留オーステナイト量が20%以下(0%を含まない)であることを特徴とする鋼部材。The core is C: 0.10 to 0.30% (meaning mass% in the case of chemical components, the same shall apply hereinafter), Si: 0.35 to 1.0%, Mn: 0.20 to 1.0%, Cr: 1.0 to 1.31 %, Mo: 0.05 to 0.6%, and A1: 0.005 to 0.05%, Nb: 0.005 to 0.05%, Ti: One or two or more elements selected from the group consisting of 0.005 to 0.1% and N: 0.008 to 0.05%, the balance being iron and inevitable impurities, and carburizing The austenite grain size number after quenching and tempering is 8.5 or more, and the surface density of carbides having a diameter of 0.5 μm or less in the surface layer within 50 μm from the surface when observed with a scanning electron microscope at a magnification of 8000 times in There 6.0 pieces / 10 [mu] m 2 or more, carbonization of the following diameters 0.5μm to total all the carbides And the ratio of the number of 80% or more, the steel member characterized by the amount of residual austenite at a depth of 50μm from the further surface of the steel sheet is 20% or less (not including 0%). 心部が、他の元素としてZr:0.01〜0.15%、Pb:0.09%以下よりなる群から選択される1種または2種以上の元素を含む請求項1に記載の鋼部材。The steel according to claim 1, wherein the core contains one or more elements selected from the group consisting of Zr: 0.01 to 0.15% and Pb: 0.09% or less as other elements. Element. 機械構造用部品である請求項1または2に記載の鋼部材。  The steel member according to claim 1, wherein the steel member is a machine structural component.
JP2001351980A 2000-11-17 2001-11-16 Steel member Expired - Fee Related JP4116787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351980A JP4116787B2 (en) 2000-11-17 2001-11-16 Steel member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-351533 2000-11-17
JP2000351533 2000-11-17
JP2001351980A JP4116787B2 (en) 2000-11-17 2001-11-16 Steel member

Publications (2)

Publication Number Publication Date
JP2002212672A JP2002212672A (en) 2002-07-31
JP4116787B2 true JP4116787B2 (en) 2008-07-09

Family

ID=26604211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351980A Expired - Fee Related JP4116787B2 (en) 2000-11-17 2001-11-16 Steel member

Country Status (1)

Country Link
JP (1) JP4116787B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133921A (en) * 2003-10-10 2005-05-26 Ntn Corp Steel machine part and rolling bearing
JP2006199993A (en) * 2005-01-19 2006-08-03 Nippon Steel Corp Steel material to be case-hardened superior in cold forgeability and temper softening resistance
JP4725401B2 (en) * 2006-04-14 2011-07-13 住友金属工業株式会社 Steel parts and manufacturing method thereof
JP4941252B2 (en) * 2007-11-26 2012-05-30 住友金属工業株式会社 Case-hardened steel for power transmission parts
JP5163241B2 (en) * 2008-04-07 2013-03-13 新日鐵住金株式会社 Case-hardened steel
JP5163242B2 (en) * 2008-04-07 2013-03-13 新日鐵住金株式会社 Case-hardened steel
JP5207805B2 (en) * 2008-04-08 2013-06-12 株式会社神戸製鋼所 Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP2013164168A (en) * 2013-05-24 2013-08-22 Sumitomo Heavy Ind Ltd Eccentric swing type reduction gear and method for manufacturing eccentric body shaft of the same
JP6432932B2 (en) * 2014-09-01 2018-12-05 山陽特殊製鋼株式会社 High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
CN109988883B (en) * 2019-04-09 2021-05-07 上海大学 Magnesium-calcium adding process method of magnesium-calcium containing non-quenched and tempered steel
JP7368697B2 (en) * 2019-08-09 2023-10-25 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Also Published As

Publication number Publication date
JP2002212672A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
TWI412607B (en) Carburized steel part
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5094126B2 (en) Rolling and sliding parts and manufacturing method thereof
CN112292471B (en) Mechanical component
JP4687616B2 (en) Steel carburized or carbonitrided parts
JP5299118B2 (en) Vacuum carburizing steel and vacuum carburized parts
JP4116787B2 (en) Steel member
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP5206271B2 (en) Carbonitriding parts made of steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP6055397B2 (en) Bearing parts having excellent wear resistance and manufacturing method thereof
JPH11323487A (en) Steel for machine structural use, excellent in machinability and grain coarsening resistance
JP4102866B2 (en) Gear manufacturing method
JP2007332421A (en) Method of manufacturing soft-nitride part
JP2000129347A (en) Production of high strength parts
JP5336972B2 (en) Nitriding steel and nitride parts
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
US20040182480A1 (en) High-strength carburized part and a method of the same
JP2006176863A (en) Steel for rolling bearing
JP5272609B2 (en) Carbonitriding parts made of steel
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JPH07188895A (en) Manufacture of parts for machine structure use
JP5969204B2 (en) Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same
JP4821582B2 (en) Steel for vacuum carburized gear
JP2021006659A (en) Steel component and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4116787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees