JP2006199993A - Steel material to be case-hardened superior in cold forgeability and temper softening resistance - Google Patents

Steel material to be case-hardened superior in cold forgeability and temper softening resistance Download PDF

Info

Publication number
JP2006199993A
JP2006199993A JP2005011401A JP2005011401A JP2006199993A JP 2006199993 A JP2006199993 A JP 2006199993A JP 2005011401 A JP2005011401 A JP 2005011401A JP 2005011401 A JP2005011401 A JP 2005011401A JP 2006199993 A JP2006199993 A JP 2006199993A
Authority
JP
Japan
Prior art keywords
less
temper softening
cold forgeability
softening resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005011401A
Other languages
Japanese (ja)
Inventor
Shuji Ozawa
修司 小澤
Tatsuro Ochi
達朗 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005011401A priority Critical patent/JP2006199993A/en
Publication of JP2006199993A publication Critical patent/JP2006199993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material to be case-hardened superior in cold forgeability and temper softening resistance. <P>SOLUTION: The steel material to be case-hardened superior in cold forgeability and temper softening resistance comprises, by mass%, 0.1-0.3% C, 0.45-0.9% Si, 0.2-0.5% Mn, 0.005-0.05% S, 1.0% or more but less than 1.5% Cr, 0.3% or more but less than 1.5% Mo, 0.001-0.2% Al, 0.003-0.03% N, P limited to 0.03% or less, and the balance iron with unavoidable impurities, while controlling 12Si(%)+25Mn(%)+Cr(%)+2Mo(%) to 25 or less; and has a spheroidized structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、球状化焼鈍処理を施すことによって優れた冷間鍛造性を有し、しかも浸炭や浸炭窒化等の表面硬化処理後には焼戻軟化抵抗性に優れた、自動車、建設車両、産業機械などの部品の素材として用いられる冷間鍛造性と焼戻軟化抵抗性に優れた肌焼用鋼材に関する。   The present invention has an excellent cold forgeability by performing a spheroidizing annealing treatment, and has excellent temper softening resistance after surface hardening treatment such as carburizing and carbonitriding, and is an automobile, construction vehicle, industrial machine. It is related with the steel for case hardening excellent in the cold forgeability and temper softening resistance used as a raw material of components, such as.

自動車の変速機等には、主にJIS SCr420、SCM420等の肌焼鋼を素材として用い、焼きならし、焼鈍または場合によっては球状化焼鈍の軟化処理を施した後に冷間鍛造で歯車形状に成型後、浸炭焼入れ焼戻し等による表面硬化処理を施した歯車が使用されている。このような歯車においては、自動車の高出力化および燃費向上等のため、軽量化及び歯車の高強度化が強く求められている。従来、歯車の強度を高めるために歯車の歯元曲げ疲労強度を向上させる技術の開発がなされてきたが、近年においては、ハードショットピーニングの実用化に伴い、歯車の高強度化の重点が、歯車の歯元曲げ疲労強度からピッチング強度に移行しつつある。   For car transmissions, etc., JIS SCr420, SCM420 and other case-hardened steels are mainly used as materials, and after normalizing, annealing, or in some cases spheroidizing softening, cold forging into a gear shape A gear subjected to surface hardening treatment by carburizing, quenching and tempering after molding is used. In such gears, there is a strong demand for weight reduction and gear strength enhancement in order to increase the output and fuel consumption of automobiles. Conventionally, technology for improving the gear root bending fatigue strength has been developed to increase the strength of the gear, but in recent years, with the practical application of hard shot peening, the emphasis on increasing the strength of the gear is Shifting from tooth root bending fatigue strength of gears to pitching strength.

ところで、ピッチング強度の改善には、焼戻軟化抵抗を向上させることが有効であるとされており、従来、焼戻軟化抵抗を向上させる手段としては、歯車の材料である鋼の成分を改良した技術がいくつか提案されている。例えば、特許文献1には、焼戻軟化抵抗を向上させるべく、鋼に含ませるSi、Cr、Moの含有量を適正化した鋼が開示されている。この文献によると、Si、Cr、Mo等の元素が焼戻軟化抵抗を向上させるのに有用であるとされており、これらの元素を鋼に含有させる場合には、Siの含有量を0.7%以上とすること、Crの含有量を0.1%以上とすること、Moの含有量を0.05%以上とすること、及び、これらの元素の総含有量が一定値を超えることが必要であるとされている。しかしながら、これらの元素の含有量が高くなると変形抵抗が増加し、冷間鍛造が行なえなくなり、熱間鍛造化を余儀なくされて製造コストが不利になっているのが実態である。また、従来においては、Siの含有量が0.15%を超えると変形抵抗の増大をもたらすことが報告されている(例えば、特許文献2参照)。このように、鋼の各成分(特にSi)が及ぼす焼戻軟化抵抗への影響と、冷間鍛造性への影響は二律背反となっており、両方の特性を満足させる鋼材の開発が要望されているのが現状である。
特開2003−231943号公報 特開平6−299241号公報
By the way, it is said that it is effective to improve the temper softening resistance in order to improve the pitching strength. Conventionally, as a means for improving the temper softening resistance, the component of steel which is a material of the gear is improved. Several technologies have been proposed. For example, Patent Document 1 discloses steel in which the contents of Si, Cr, and Mo included in steel are optimized in order to improve temper softening resistance. According to this document, elements such as Si, Cr, and Mo are considered to be useful for improving the temper softening resistance. When these elements are contained in steel, the content of Si is set to 0. 7% or more, Cr content of 0.1% or more, Mo content of 0.05% or more, and the total content of these elements exceed a certain value Is said to be necessary. However, when the content of these elements increases, the deformation resistance increases, cold forging cannot be performed, and hot forging is forced, resulting in a disadvantage in manufacturing costs. Conventionally, it has been reported that when the Si content exceeds 0.15%, deformation resistance is increased (see, for example, Patent Document 2). In this way, the effects of steel components (especially Si) on temper softening resistance and cold forgeability are contradictory, and there is a demand for the development of steel that satisfies both characteristics. The current situation is.
JP 2003-231943 A JP-A-6-299241

以上の情況に鑑み、本発明の目的は、冷間鍛造性と焼戻軟化抵抗性が共に優れた肌焼用鋼材を提供するものである。   In view of the above circumstances, an object of the present invention is to provide a case-hardening steel material excellent in both cold forgeability and temper softening resistance.

本発明者らは、上記課題を解決すべく、球状化焼鈍処理の適用と、それに適した成分調整に関して鋭意研究した結果、下記事項を知見し、本発明を完成するに至った。
(1) Si、Mnは、球状化焼鈍処理による冷間鍛造性の改善に与える効果が小さいこと。
(2) Cr、Moは、球状化焼鈍処理による冷間鍛造性の改善に与える効果が大きいこと。
しかし、これらの元素は一定量以上添加するとかえって焼戻軟化抵抗性を低下させること。
(3) 冷間鍛造性の限界は、上記4元素(Si、Mn、Cr、及びMo)の、各々の変形抵抗増加作用を加味した総量で決定しなければならないこと。
(4) Siを、所定量の範囲内で、かつ、他の成分(例えば、Mn、Cr、Mo等)とのバランスを考慮して、鋼に添加し、球状化焼鈍処理により鋼中の炭化物を球状化させることにより、優れた冷間鍛造性が得られること。
In order to solve the above-mentioned problems, the present inventors diligently studied the application of the spheroidizing annealing treatment and the component adjustment suitable for the spheroidizing annealing treatment. As a result, the present inventors have found the following matters and completed the present invention.
(1) Si and Mn have little effect on the improvement of cold forgeability by spheroidizing annealing.
(2) Cr and Mo have a great effect on improving cold forgeability by spheroidizing annealing.
However, when these elements are added in a certain amount or more, the temper softening resistance is lowered.
(3) The limit of cold forgeability must be determined by the total amount of the above four elements (Si, Mn, Cr, and Mo) taking into account the respective deformation resistance increasing effects.
(4) Si is added to the steel within a predetermined range and considering the balance with other components (for example, Mn, Cr, Mo, etc.), and carbides in the steel are obtained by spheroidizing annealing. Excellent cold forgeability can be obtained by spheroidizing.

本発明の要旨は以下のとおりである。
1) 質量%で、
C:0.1〜0.3%、
Si:0.45〜0.9%、
Mn:0.2〜0.5%、
S:0.005〜0.05%
Cr:1.0〜1.5%未満、
Mo:0.3〜1.5%未満、
Al:0.001〜0.2%、
N:0.003〜0.03%
を含有し、
P:0.03%以下に制限し、残部が鉄と不可避的不純物であり、
12Si(%)+25Mn(%)+Cr(%)+2Mo(%)が25以下であり、
球状化組織を有することを特徴とする冷間鍛造性と焼戻軟化抵抗性に優れた肌焼用鋼材。
The gist of the present invention is as follows.
1)% by mass
C: 0.1 to 0.3%
Si: 0.45 to 0.9%,
Mn: 0.2-0.5%
S: 0.005-0.05%
Cr: 1.0 to less than 1.5%,
Mo: 0.3 to less than 1.5%,
Al: 0.001 to 0.2%,
N: 0.003 to 0.03%
Containing
P: 0.03% or less, the balance is iron and inevitable impurities,
12Si (%) + 25Mn (%) + Cr (%) + 2Mo (%) is 25 or less,
A steel for skin hardening excellent in cold forgeability and temper softening resistance, characterized by having a spheroidized structure.

2) 前記鋼材が、更に、質量%で、
Nb:0.2%以下、
Ti:0.2%以下
の内の1種または2種を含む1)記載の冷間鍛造性と焼戻軟化抵抗性に優れた肌焼用鋼材。
2) The steel material is further mass%,
Nb: 0.2% or less,
Ti: Steel material for case hardening excellent in cold forgeability and temper softening resistance as described in 1), including one or two of 0.2% or less.

以上述べたごとく、冷間鍛造性と焼戻軟化抵抗性が共に優れた肌焼用鋼材を提供することができ、これらを用いることにより、歯車の製造コストが有利になると共に、自動車、建設車両、産業機械などの高出力化および燃費向上等に大きく寄与することが可能になる。   As described above, it is possible to provide a case-hardening steel material that is excellent in both cold forgeability and temper softening resistance. By using these, the manufacturing cost of gears becomes advantageous, and automobiles and construction vehicles are provided. In addition, it is possible to make a significant contribution to higher output and improved fuel consumption of industrial machinery.

本発明者らの研究の結果、鋼中のSi、Mn、Cr及びMoの総量が式:12Si(%)+25Mn(%)+Cr(%)+2Mo(%)において25以下である場合には、優れた冷間鍛造性を得ることができるのに対し、上記4元素の総量が上記式において25を超えると冷間鍛造性が悪いことが明らかになった。このことから、Si、Mnは、球状化焼鈍処理を施しても冷間鍛造性の改善に与える効果が小さく、Cr、Moは、球状化焼鈍処理を施すことよって冷間鍛造性の改善に与える効果が大きいことが示唆された。
この理由は、Si及びMnが鉄中に固溶する元素、いわゆる固溶強化元素であるため、球状化焼鈍処理を施しても大部分がフェライト鉄中に固溶したままとなり、軟化されないためであると考えられる。また、Cr及びMoは炭化物形成元素であるため、球状化焼鈍処理を施すことによってセメンタイト中に固溶したり、自ら炭化物を形成することによって大部分が鉄中から排出され固溶強化が無くなるためであると考えられる。もともと球状化焼鈍処理により冷間鍛造性が改善される機構は、ラメラ形状で存在しているセメンタイトを球状に分断させることによって変形抵抗を低下することによるものであるが、それと同時にCr、Mo自身も球状の炭化物を形成することによって固溶強化が無くなることにもよるものと考えられる。
以上のことから、冷間鍛造性はSi、Mn含有量に大きく影響されることが明らかになった。
As a result of the study by the present inventors, when the total amount of Si, Mn, Cr and Mo in the steel is 25 or less in the formula: 12Si (%) + 25 Mn (%) + Cr (%) + 2 Mo (%), it is excellent. However, when the total amount of the four elements exceeds 25 in the above formula, it has been clarified that the cold forgeability is poor. From this, Si and Mn have little effect on the improvement of cold forgeability even when subjected to spheroidizing annealing treatment, and Cr and Mo give the improvement of cold forgeability by applying spheroidizing annealing treatment. It was suggested that the effect is great.
The reason for this is that Si and Mn are elements that dissolve in iron, so-called solid solution strengthening elements, so that even when subjected to spheroidizing annealing, most of them remain in solution in ferrite iron and are not softened. It is believed that there is. In addition, since Cr and Mo are carbide forming elements, they are dissolved in cementite by applying spheroidizing annealing treatment, or by forming carbides themselves, most of them are discharged from iron and no solid solution strengthening occurs. It is thought that. The mechanism by which the cold forgeability is originally improved by spheroidizing annealing is due to the fact that cementite existing in a lamellar shape is divided into spheres to reduce the deformation resistance, but at the same time, Cr, Mo itself It is also considered that solid solution strengthening is eliminated by forming a spherical carbide.
From the above, it became clear that the cold forgeability is greatly influenced by the Si and Mn contents.

また、本発明者らの研究の結果、Siの含有量が一定量を下回ると焼戻軟化抵抗が低下することが明らかになった。このことから、Siの含有量が一定量以上必要であることが示唆された。   Further, as a result of the study by the present inventors, it has been clarified that the temper softening resistance is lowered when the Si content is below a certain amount. From this, it was suggested that the content of Si is required to be a certain amount or more.

さらに、本発明者らの研究の結果、Cr及びMoの含有量も一定量を下回ると焼戻軟化抵抗が低下することも明らかになった。その理由は、浸炭焼入焼戻し等の表面硬化処理時には、Cr炭化物、Mo炭化物などが鋼中に固溶し、Cr、Moは有効に合金元素として作用することによるものであると考えられた。   Furthermore, as a result of the study by the present inventors, it has been clarified that the temper softening resistance is lowered when the Cr and Mo contents are below a certain amount. The reason for this was thought to be that during surface hardening treatment such as carburizing, quenching and tempering, Cr carbide, Mo carbide and the like were dissolved in steel, and Cr and Mo effectively acted as alloying elements.

また、本発明者らの研究の結果、Crの含有量が一定量以上になるとかえって焼戻軟化抵抗が低下することが明らかになった。その理由は、Crを一定量以上添加して球状化焼鈍処理を施した際に生成した炭化物が粗大化かつ安定化し、その後、浸炭焼入焼戻し等の表面硬化処理を施してもCrが鋼中に完全に固溶できず、残存してしまうためと考えられる。このことは、Moについても同様なことがいえると考えられる。   Further, as a result of the study by the present inventors, it has been clarified that the temper softening resistance is lowered when the Cr content exceeds a certain amount. The reason is that the carbide formed when adding a certain amount or more of Cr and subjected to the spheroidizing annealing process is coarsened and stabilized, and then the Cr remains in the steel even after surface hardening treatment such as carburizing quenching and tempering. This is considered to be due to the fact that the solid solution cannot be completely dissolved. The same can be said for Mo.

以上のことをまとめると、冷間鍛造性の確保にはSi、Mn、Cr、Moの総量を制限する必要があり、具体的には 12Si(%)+25Mn(%)+Cr(%)+2Mo(%)を25以下に制限する必要がある。また、焼戻軟化抵抗性を得るためにはSi、Mn、Cr、Moを一定量の範囲内で添加する必要がある。   In summary, it is necessary to limit the total amount of Si, Mn, Cr, and Mo in order to ensure cold forgeability. Specifically, 12Si (%) + 25Mn (%) + Cr (%) + 2Mo (% ) Must be limited to 25 or less. Moreover, in order to obtain temper softening resistance, it is necessary to add Si, Mn, Cr, and Mo within a certain range.

このように鋼の成分を調整して球状化焼鈍処理を施して球状化組織を形成させた鋼材は、冷間鍛造性に優れていることから、低価格で加工できるようになる。また、本発明の鋼材を用いて鍛造後、表面硬化処理した部材(工具、刃具、及び金型、並びに、自動車、バイク、航空機、機械等の部品(例えば、歯車、軸受など)など)は、焼戻軟化抵抗に優れていることから、省資源化を図ることが可能となる。特に、本発明に係る鋼材を用いて製造された歯車は、該歯車の駆動面と被駆動面とが滑りを伴いながら高面圧で接触することにより発生する摩擦熱によって、歯面の表面近傍が300℃程度まで上昇し、結果として生じる焼戻軟化に対しても抵抗性を有し、さらには、自動車、建設車両、産業機械などの高出力化および燃費向上等に大きく貢献できると考えられる。なお、上記表面硬化処理としては、例えば、浸炭処理、浸炭浸窒処理等の公知の処理を挙げることができるがこれらに限定されるものではなく、さらにショットピーニング処理、サブゼロ処理、WPC処理、WJP処理等の処理を施すこととしてもよい。これにより、焼戻軟化抵抗をさらに増大させることが可能となる。   Thus, the steel material which adjusted the component of steel and performed the spheroidizing annealing process and formed the spheroidized structure is excellent in cold forgeability, and can be processed at low cost. In addition, after forging using the steel material of the present invention, the surface-hardened member (tools, cutting tools, and dies, and parts such as automobiles, motorcycles, aircrafts, and machines (for example, gears, bearings, etc.)) Since it has excellent resistance to temper softening, it is possible to save resources. In particular, the gear manufactured using the steel material according to the present invention has a surface near the tooth surface due to frictional heat generated by contact between the driving surface and the driven surface of the gear with high surface pressure while sliding. The temperature rises to about 300 ° C. and has resistance to temper softening as a result, and it is considered that it can greatly contribute to higher output and improved fuel consumption of automobiles, construction vehicles, industrial machines, etc. . Examples of the surface hardening treatment include known treatments such as carburizing treatment and carburizing and nitriding treatment, but are not limited thereto, and are not limited to these, and further include shot peening treatment, sub-zero treatment, WPC treatment, WJP, and the like. Processing such as processing may be performed. Thereby, it becomes possible to further increase the temper softening resistance.

次に、本発明の鋼(肌焼鋼)に含ませる各化学成分の質量%の範囲について説明する。   Next, the mass% range of each chemical component included in the steel of the present invention (skin-hardened steel) will be described.

C:0.1〜0.3%
Cは鋼の強度を保持するのに必須の元素であり、その含有量が芯部の硬さを決定し、有効硬化層深さにも影響する。そこで、本発明ではC量の下限を0.1%とし、芯部硬さを確保している。しかし、その含有量が多すぎると靭性が低下するため0.3%を上限とした。
C: 0.1 to 0.3%
C is an element essential for maintaining the strength of the steel, and its content determines the hardness of the core and also affects the effective hardened layer depth. Therefore, in the present invention, the lower limit of the C amount is set to 0.1% to ensure the core hardness. However, if the content is too large, the toughness decreases, so 0.3% was made the upper limit.

Si:0.45〜0.9%
Siは焼戻軟化抵抗を向上させるのに有効な元素であり0.45%以上の添加により効果が得られる。そこで、本発明ではSi量の下限を0.45%とした。しかし、その含有量が0.9%を超えると冷間鍛造性が悪化するため、0.9%を上限とした。
Si: 0.45-0.9%
Si is an element effective for improving the temper softening resistance, and an effect can be obtained by adding 0.45% or more. Therefore, in the present invention, the lower limit of the Si amount is set to 0.45%. However, if its content exceeds 0.9%, cold forgeability deteriorates, so 0.9% was made the upper limit.

Mn:0.2〜0.5%
Mnは焼入性を向上させるのに有効な元素であり、また焼戻軟化抵抗を向上させるのにも有効な元素である。更には鋼中に不可避的に混入する不純物元素であるSを、MnSとして固定することによって無害化させる作用も有する。従って、Mn量としては0.2%以上必要であると考えられる。そこで、本発明ではMn量の下限を0.2%とした。しかし、その含有量が0.5%を超えると冷間鍛造性が悪化するため、0.5%を上限とした。
Mn: 0.2 to 0.5%
Mn is an element effective for improving hardenability, and is also an element effective for improving temper softening resistance. Furthermore, it has the effect | action which makes it harmless by fixing S which is an impurity element inevitably mixed in steel as MnS. Therefore, it is considered that 0.2% or more is necessary as the amount of Mn. Therefore, in the present invention, the lower limit of the amount of Mn is set to 0.2%. However, if the content exceeds 0.5%, cold forgeability deteriorates, so 0.5% was made the upper limit.

S:0.005〜0.05%
Sは不可避的に混入する不純物元素であるが、被削性の観点から0.005%以上含有することが必要である。そこで、本発明ではS量の下限を0.005%とした。しかしながら、その含有量が0.05%を超えると鍛造性を阻害するため0.05%を上限とした。
S: 0.005-0.05%
S is an impurity element inevitably mixed in, but it is necessary to contain 0.005% or more from the viewpoint of machinability. Therefore, in the present invention, the lower limit of the amount of S is set to 0.005%. However, if its content exceeds 0.05%, forgeability is impaired, so 0.05% was made the upper limit.

Cr:1.0〜1.5%未満
Crは焼戻軟化抵抗を向上させるのに有効な元素であり、なおかつ球状化焼鈍処理の適用によって冷間鍛造性が改善されるため本発明において重要な元素である。焼戻軟化抵抗の効果を十分に得るためには1.0%以上が必要である。そこで、本発明ではCr量の下限を1.0%とした。しかし、その含有量が1.5%以上では球状化焼鈍処理時に生成した炭化物が粗大化かつ安定化してしまい、その後の、浸炭焼入焼戻し等の表面硬化処理時にも完全には鋼中に固溶せずに残存してしまうことに起因してかえって焼戻軟化抵抗性が劣化するため1.5%未満とした。
Cr: Less than 1.0 to 1.5% Cr is an element effective for improving the temper softening resistance, and is important in the present invention because the cold forgeability is improved by application of the spheroidizing annealing treatment. It is an element. In order to sufficiently obtain the effect of temper softening resistance, 1.0% or more is necessary. Therefore, in the present invention, the lower limit of the Cr amount is set to 1.0%. However, if the content is 1.5% or more, the carbides produced during the spheroidizing annealing process become coarse and stable, and are completely solidified in the steel even during the subsequent surface hardening treatment such as carburizing quenching and tempering. On the contrary, the temper softening resistance deteriorates due to remaining without being dissolved, so the content was made less than 1.5%.

Mo:0.3〜1.5%未満
Moは焼戻軟化抵抗を向上させるのに有効な元素であり、なおかつ球状化焼鈍処理の適用によって冷間鍛造性が改善されるため本発明において重要な元素である。焼戻軟化抵抗の効果を十分に得るためには0.3%以上が必要である。そこで、本発明ではMo量の下限を0.3%とした。しかし、その含有量が1.5%以上では球状化焼鈍処理時に生成した炭化物が粗大化かつ安定化してしまい、その後の、浸炭焼入焼戻し等の表面硬化処理時にも完全には鋼中に固溶せずに残存してしまうことに起因してかえって焼戻軟化抵抗性が劣化するため1.5%未満とした。
Mo: 0.3 to less than 1.5% Mo is an element effective for improving the temper softening resistance, and is important in the present invention because the cold forgeability is improved by application of the spheroidizing annealing treatment. It is an element. In order to sufficiently obtain the effect of temper softening resistance, 0.3% or more is necessary. Therefore, in the present invention, the lower limit of the Mo amount is set to 0.3%. However, if the content is 1.5% or more, the carbides produced during the spheroidizing annealing process become coarse and stable, and are completely solidified in the steel even during the subsequent surface hardening treatment such as carburizing quenching and tempering. On the contrary, the temper softening resistance deteriorates due to remaining without being dissolved, so the content was made less than 1.5%.

Al:0.001〜0.2%
AlはNと化合物を形成することによる結晶粒微細化の効果があるため0.001%以上は必要である。そこで、本発明ではAl量の下限を0.001%とした。しかしながら、その含有量が0.2%を超えると切削性を著しく阻害するため0.2%を上限とした。
Al: 0.001 to 0.2%
Since Al has an effect of refining crystal grains by forming a compound with N, 0.001% or more is necessary. Therefore, in the present invention, the lower limit of the Al amount is set to 0.001%. However, if its content exceeds 0.2%, the machinability is remarkably impaired, so 0.2% was made the upper limit.

N:0.003〜0.03%
Nは不可避的に混入する元素であるが、AlとNと化合物を形成することによる結晶粒微細化の効果もあるため0.003%以上は必要である。そこで、本発明ではN量の下限を0.003%とした。しかしながら、その含有量が0.03%を超えると鍛造性を著しく阻害するため0.03%を上限とした。
N: 0.003 to 0.03%
N is an element inevitably mixed, but 0.003% or more is necessary because there is an effect of crystal grain refinement by forming a compound with Al and N. Therefore, in the present invention, the lower limit of the N amount is set to 0.003%. However, if its content exceeds 0.03%, forgeability is remarkably impaired, so 0.03% was made the upper limit.

P:0.03%以下に制限
Pは不可避的に混入する不純物元素であり、粒界に偏析して靭性を低下させるため0.03%以下に制限する必要がある。そこで、本発明ではP量を0.03%以下に制限した。
P: Restricted to 0.03% or less P is an impurity element which is inevitably mixed, and needs to be limited to 0.03% or less in order to segregate at the grain boundaries and reduce toughness. Therefore, in the present invention, the P content is limited to 0.03% or less.

その他、本発明の鋼に更なる結晶粒の微細化や結晶粒の粗大化防止を目的として、上述の化学成分以外にNb、Ti等をさらに添加することとしてもよい。この場合、これらの元素は熱間圧延、熱間鍛造、切削加工等の生産性を阻害しない下記の範囲で含有することが好ましい。   In addition to the above chemical components, Nb, Ti, and the like may be further added to the steel of the present invention for the purpose of further refinement of crystal grains and prevention of crystal grain coarsening. In this case, these elements are preferably contained in the following ranges that do not impair productivity such as hot rolling, hot forging, and cutting.

Nb:0.2%以下、Ti:0.2%以下の内の1種または2種
Nb、TiはNと化合物を形成することによる結晶粒微細化の効果を有することから、Nb、Tiのうち1種または2種を含有させることが好ましい。しかしながら、各元素とも0.2%を超えて含有させても結晶粒微細化の効果は飽和して経済性を損ねるため0.2%を上限とした。
One or two of Nb: 0.2% or less and Ti: 0.2% or less Nb and Ti have the effect of crystal grain refinement by forming a compound with N. Of these, it is preferable to contain one or two of them. However, even if each element is contained in excess of 0.2%, the effect of crystal grain refinement is saturated and the economic efficiency is impaired, so 0.2% was made the upper limit.

次に、本発明の鋼におけるSi、Mn、Cr及びMoの総量について説明する。
本発明においては、Si、Mn、Cr及びMoの総量は、下記の式で25以下に制限することが必要条件となる。これは、上述のように、本発明者らが鋭意研究開発した結果、Si、Mn、Cr及びMoの総量が、下記の式で25以下に制限して球状化焼鈍処理を施した場合に冷間鍛造性確保の必要条件となることを知見したからである。なお、下式左辺でSi、Mn、Cr及びMoの各元素の係数が異なるのは、元素によって冷間鍛造性への影響に寄与する程度が異なるからである。
12Si(%)+25Mn(%)+Cr(%)+2Mo(%) ≦ 25
Next, the total amount of Si, Mn, Cr and Mo in the steel of the present invention will be described.
In the present invention, it is a necessary condition that the total amount of Si, Mn, Cr and Mo is limited to 25 or less by the following formula. As described above, as a result of intensive research and development by the present inventors, the total amount of Si, Mn, Cr, and Mo is limited to 25 or less by the following formula, and the spheroidizing annealing treatment is performed. This is because it has been found that this is a necessary condition for ensuring the forgeability. The coefficient of each element of Si, Mn, Cr, and Mo is different on the left side of the following equation because the degree of contribution to the cold forgeability varies depending on the element.
12Si (%) + 25Mn (%) + Cr (%) + 2Mo (%) ≦ 25

次に、球状化組織を有することを条件とした理由について説明する。
球状化焼鈍処理を行なわない鋼材、例えば焼きならし処理材や焼鈍処理材ではラメラ形状で存在しているセメンタイトが多く、冷間鍛造時に該セメンタイトが分断される際に大きな変形抵抗を要するため、冷間鍛造性が悪化する。そのため、球状化焼鈍処理の適用によりラメラ形状で存在しているセメンタイトを球状化して無害化させる必要がある。好ましくは上述の式を満足させつつ球状化組織の程度をJIS G 3545の付図1に示された区分(No.1〜No.4)において、No.2以下にさせ、変形抵抗を700MPa以下にするとよい。
Next, the reason for having a spheroidized structure is described.
Steel materials that are not subjected to spheroidizing annealing treatment, such as normalization treatment materials and annealing treatment materials, have a lot of cementite that exists in a lamellar shape, and require large deformation resistance when the cementite is divided during cold forging, Cold forgeability deteriorates. Therefore, it is necessary to spheroidize the cementite existing in a lamellar shape by applying a spheroidizing annealing treatment. Preferably, the degree of the spheroidized structure is satisfied in the section (No. 1 to No. 4) shown in FIG. The deformation resistance is preferably 700 MPa or less.

以下に本発明を実施例によって具体的に説明する。なお、これらの実施例は本発明を説明するためのものであって、本発明の範囲を限定するものではない。   Hereinafter, the present invention will be specifically described by way of examples. These examples are for explaining the present invention, and do not limit the scope of the present invention.

表1に示す化学成分を有する熱間圧延素材を、760℃で400分間保持後、660℃まで600分間かけて徐冷し、その後、放冷による球状化焼鈍処理を施した後、機械加工によりφ14mm×21mmの変形抵抗評価試験片(試験No.1〜18)を製作した。   The hot-rolled material having the chemical components shown in Table 1 is held at 760 ° C. for 400 minutes, then gradually cooled to 660 ° C. over 600 minutes, and then subjected to spheroidizing annealing treatment by allowing to cool, followed by machining. φ14 mm × 21 mm deformation resistance evaluation test pieces (test Nos. 1 to 18) were produced.

<表1>

Figure 2006199993
<Table 1>
Figure 2006199993

上述の製作した各変形抵抗評価試験片を用いて、歪速度10/sにて相当歪1の圧下を加えることにより変形抵抗を測定した。また、光学顕微鏡により各試験片の組織観察を行い、JIS G 3545の付図1に示された区分(No.1〜No.4)に従って、球状化組織の程度を分類した。   The deformation resistance was measured by applying a reduction of equivalent strain 1 at a strain rate of 10 / s using each of the deformation resistance evaluation test pieces manufactured as described above. Moreover, the structure | tissue observation of each test piece was performed with the optical microscope, and the grade of the spheroidization structure | tissue was classified according to the division (No.1-No.4) shown by the attached FIG. 1 of JISG3545.

次に、上述のように球状化焼鈍処理を施した各熱間圧延素材を用いて、ローラーピッチング疲労試験用に直径が26mm、幅28mmの円筒部を有する小ローラー試験片(試験No.1〜18)と、素材を据込鍛造後、直径130mm、幅18mmの大ローラー試験片(試験No.1〜18)を製作した。なお、試験No.13及び14においては、冷間鍛造ができなかったので、これらの試験片を用いたローラーピッチング試験は行わなかった。また、小ローラーおよび大ローラー試験片の表面硬化処理は、試験No.1〜3およびNo.5〜18においては950℃で120分間のガス浸炭処理の後に焼入を行い、その後150℃で90分間の焼戻しを行った。なお、試験No.4においては950℃で120分間のガス浸炭処理と860℃で30分間の浸炭浸窒処理とを順次行なった後に焼入を行い、その後150℃で90分間の焼戻しを行った。このように処理した小ローラーおよび大ローラーを用いて、ヘルツ応力3000MPa、すべり率40%、ATF油温80℃の条件にてローラーピッチング疲労試験を行い、小ローラーの耐久評価を行なった。以上の結果を表2に示す。   Next, using each hot-rolled material subjected to spheroidizing annealing as described above, a small roller test piece having a cylindrical portion with a diameter of 26 mm and a width of 28 mm (test No. 1 to No. 1) for a roller pitching fatigue test. 18) And after rolling the material upside down, large roller test pieces (test Nos. 1 to 18) having a diameter of 130 mm and a width of 18 mm were produced. In addition, Test No. In 13 and 14, since cold forging could not be performed, a roller pitching test using these test pieces was not performed. In addition, the surface hardening treatment of the small roller and large roller test pieces was conducted according to Test No. 1-3 and no. In Nos. 5 to 18, quenching was performed after gas carburizing treatment at 950 ° C. for 120 minutes, followed by tempering at 150 ° C. for 90 minutes. In addition, Test No. In No. 4, a gas carburizing treatment at 950 ° C. for 120 minutes and a carburizing and nitriding treatment at 860 ° C. for 30 minutes were sequentially performed, followed by quenching, followed by tempering at 150 ° C. for 90 minutes. Using the small roller and the large roller treated in this manner, a roller pitching fatigue test was performed under the conditions of a Hertz stress of 3000 MPa, a slip rate of 40%, and an ATF oil temperature of 80 ° C., and durability evaluation of the small roller was performed. The results are shown in Table 2.

<表2>

Figure 2006199993
<Table 2>
Figure 2006199993

表2に示すように、本発明例のNo.1〜12の試験片は700MPa未満の変形抵抗を示し、冷間鍛造性に優れることが明らかになった。また、本発明例のNo.1〜12のローラー試験片は、寿命が600万回以上であり、優れたピッチング強度を有していることが明らかになった。   As shown in Table 2, No. of the present invention example. The test pieces 1 to 12 exhibited a deformation resistance of less than 700 MPa, and were found to be excellent in cold forgeability. In addition, No. of the present invention example. It was revealed that the roller test pieces 1 to 12 have a life of 6 million times or more and have excellent pitching strength.

これに対し、比較例No.13及び14の試験片は変形抵抗が700MPa以上であり、冷間鍛造ができないことが明らかになった。これは、Si、Mn、Cr及びMoの総量が式、12Si(%)+25Mn(%)+Cr(%)+2Mo(%)で25を上回っていたためであると考えられた。また、比較例No.13においては、Mn量が本発明例より比較的に多かったことに起因するのではないかと考えられた。   In contrast, Comparative Example No. The specimens 13 and 14 had a deformation resistance of 700 MPa or more, and it was revealed that cold forging was not possible. This was thought to be because the total amount of Si, Mn, Cr and Mo exceeded 25 in the formula: 12Si (%) + 25 Mn (%) + Cr (%) + 2 Mo (%). Comparative Example No. In No. 13, it was considered that the Mn content was relatively higher than that of the examples of the present invention.

また、比較例No.15の試験片は700MPa未満の変形抵抗を示すものの、比較例のNo.15のローラー試験片は寿命が500万回以下と短かいことが明らかになった。試験後の調査の結果、比較例のNo.15のローラー試験片においては、Cr炭化物の残存が多数確認された。このことから、Cr量が多すぎると寿命の低下をもたらすのではないかと考えられた。   Comparative Example No. Although the test piece of No. 15 shows a deformation resistance of less than 700 MPa, No. 15 in the comparative example. The 15 roller test pieces were found to have a short life of 5 million cycles or less. As a result of the investigation after the test, the comparative example No. In 15 roller test pieces, many residual Cr carbides were confirmed. From this, it was considered that if the amount of Cr is too large, the lifetime may be reduced.

さらに、比較例No.16、No.17及びNo.18の試験片も700MPa未満の変形抵抗を示すものの、比較例No.16〜18のローラー試験片は寿命が500万回以下と短かいことが明らかになった。これらの結果から、Si、Cr、Mo量が少なすぎると、軟化抵抗の低下をもたらすのではないかと考えられた。   Further, Comparative Example No. 16, no. 17 and no. Although the test piece of 18 also exhibits a deformation resistance of less than 700 MPa, the comparative example No. 18 It was revealed that the 16-18 roller test pieces had a short life of 5 million times or less. From these results, it was considered that if the amounts of Si, Cr, and Mo are too small, the softening resistance may be lowered.

以上のことから、優れた冷間鍛造性を得るためには、Si、Mn、Cr及びMoの総量が式、12Si(%)+25Mn(%)+Cr(%)+2Mo(%)で25以下であることと、Mn量を一定の範囲内(少なくとも0.2〜0.5%)とすることが必要であり、また、優れた焼戻軟化抵抗を得るためには、Si、Cr、Mo量を一定の範囲内(少なくとも、Siは0.45〜0.9%、Crは1.0〜1.5%未満、Moは0.3〜1.5%未満)とすることが必要であることが示された。   From the above, in order to obtain excellent cold forgeability, the total amount of Si, Mn, Cr and Mo is 25 or less in the formula, 12Si (%) + 25Mn (%) + Cr (%) + 2Mo (%) In order to obtain an excellent temper softening resistance, it is necessary to set the amount of Mn within a certain range (at least 0.2 to 0.5%). It must be within a certain range (at least Si is 0.45 to 0.9%, Cr is 1.0 to less than 1.5%, Mo is less than 0.3 to 1.5%) It has been shown.

Claims (2)

質量%で、
C:0.1〜0.3%、
Si:0.45〜0.9%、
Mn:0.2〜0.5%、
S:0.005〜0.05%
Cr:1.0〜1.5%未満、
Mo:0.3〜1.5%未満、
Al:0.001〜0.2%、
N:0.003〜0.03%
を含有し、
P:0.03%以下に制限し、残部が鉄と不可避的不純物であり、
12Si(%)+25Mn(%)+Cr(%)+2Mo(%)が25以下であり、
球状化組織を有することを特徴とする冷間鍛造性と焼戻軟化抵抗性に優れた肌焼用鋼材。
% By mass
C: 0.1 to 0.3%
Si: 0.45 to 0.9%,
Mn: 0.2-0.5%
S: 0.005-0.05%
Cr: 1.0 to less than 1.5%,
Mo: 0.3 to less than 1.5%,
Al: 0.001 to 0.2%,
N: 0.003 to 0.03%
Containing
P: limited to 0.03% or less, the balance is iron and inevitable impurities,
12Si (%) + 25Mn (%) + Cr (%) + 2Mo (%) is 25 or less,
A steel for skin hardening excellent in cold forgeability and temper softening resistance, characterized by having a spheroidized structure.
前記鋼材が、更に、質量%で、
Nb:0.2%以下、
Ti:0.2%以下
の内の1種または2種を含む請求項1記載の冷間鍛造性と焼戻軟化抵抗性に優れた肌焼用鋼材。

The steel material is further in mass%,
Nb: 0.2% or less,
The steel for case hardening excellent in cold forgeability and temper softening resistance according to claim 1, comprising one or two of Ti: 0.2% or less.

JP2005011401A 2005-01-19 2005-01-19 Steel material to be case-hardened superior in cold forgeability and temper softening resistance Pending JP2006199993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011401A JP2006199993A (en) 2005-01-19 2005-01-19 Steel material to be case-hardened superior in cold forgeability and temper softening resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011401A JP2006199993A (en) 2005-01-19 2005-01-19 Steel material to be case-hardened superior in cold forgeability and temper softening resistance

Publications (1)

Publication Number Publication Date
JP2006199993A true JP2006199993A (en) 2006-08-03

Family

ID=36958253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011401A Pending JP2006199993A (en) 2005-01-19 2005-01-19 Steel material to be case-hardened superior in cold forgeability and temper softening resistance

Country Status (1)

Country Link
JP (1) JP2006199993A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185389A (en) * 2013-03-25 2014-10-02 Kobe Steel Ltd Steel material for case hardening and gear excellent in surface fatigue strength and cold forgeability
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP7383437B2 (en) 2019-09-26 2023-11-20 山陽特殊製鋼株式会社 Simplified spheroidizing annealing method for case hardened steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299241A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Production of carburizing steel excellent in cold workability and fatigue resistance
JPH11335732A (en) * 1998-05-19 1999-12-07 Sumitomo Metal Ind Ltd Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material
JP2001073072A (en) * 1999-08-30 2001-03-21 Kobe Steel Ltd Carbo-nitrided parts excellent in pitching resistance
JP2001089830A (en) * 1999-09-17 2001-04-03 Kobe Steel Ltd Steel wire rod and bar steel excellent in cold forgeability after spheroidizing and its manufacture
JP2002212672A (en) * 2000-11-17 2002-07-31 Kobe Steel Ltd Steel member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299241A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Production of carburizing steel excellent in cold workability and fatigue resistance
JPH11335732A (en) * 1998-05-19 1999-12-07 Sumitomo Metal Ind Ltd Manufacture of steel material for soft-nitriding, and soft-nitrided parts using the steel material
JP2001073072A (en) * 1999-08-30 2001-03-21 Kobe Steel Ltd Carbo-nitrided parts excellent in pitching resistance
JP2001089830A (en) * 1999-09-17 2001-04-03 Kobe Steel Ltd Steel wire rod and bar steel excellent in cold forgeability after spheroidizing and its manufacture
JP2002212672A (en) * 2000-11-17 2002-07-31 Kobe Steel Ltd Steel member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185389A (en) * 2013-03-25 2014-10-02 Kobe Steel Ltd Steel material for case hardening and gear excellent in surface fatigue strength and cold forgeability
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP7368697B2 (en) 2019-08-09 2023-10-25 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7383437B2 (en) 2019-09-26 2023-11-20 山陽特殊製鋼株式会社 Simplified spheroidizing annealing method for case hardened steel

Similar Documents

Publication Publication Date Title
JP5862802B2 (en) Carburizing steel
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP4581966B2 (en) Induction hardening steel
KR20130004307A (en) Steel component having excellent temper softening resistance
US20060137766A1 (en) Case-hardening steel superior in tooth surface fatigue strength, gear using the same, and method of production of the same
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
JP2006199993A (en) Steel material to be case-hardened superior in cold forgeability and temper softening resistance
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
WO2018180342A1 (en) Shaft member
JP4757831B2 (en) Induction hardening part and manufacturing method thereof
KR20150074645A (en) Material for high carburizing steel and method for producing gear using the same
JP2006183095A (en) Method for producing gear excellent in fatigue strength on tooth surface
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP5969204B2 (en) Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same
JP6160054B2 (en) High surface pressure resistant parts
WO2020138432A1 (en) Steel material
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JP4821582B2 (en) Steel for vacuum carburized gear
JP4486881B2 (en) Gears with excellent tooth surface fatigue strength
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6569650B2 (en) Case-hardened steel
JP3607583B2 (en) Steel for power transmission parts and power transmission parts
JP6394844B1 (en) Shaft member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100106

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A02