JP2009074110A - Gear part excellent in fitness - Google Patents

Gear part excellent in fitness Download PDF

Info

Publication number
JP2009074110A
JP2009074110A JP2007241498A JP2007241498A JP2009074110A JP 2009074110 A JP2009074110 A JP 2009074110A JP 2007241498 A JP2007241498 A JP 2007241498A JP 2007241498 A JP2007241498 A JP 2007241498A JP 2009074110 A JP2009074110 A JP 2009074110A
Authority
JP
Japan
Prior art keywords
less
gear
gear part
concentration
tooth surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007241498A
Other languages
Japanese (ja)
Other versions
JP4874199B2 (en
Inventor
Katsuhiro Iwasaki
克浩 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007241498A priority Critical patent/JP4874199B2/en
Publication of JP2009074110A publication Critical patent/JP2009074110A/en
Application granted granted Critical
Publication of JP4874199B2 publication Critical patent/JP4874199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear part having excellent pitting resistance and fitness by reducing any abnormal layer and adequately controlling the distribution of carbide on a surface layer part in a gear. <P>SOLUTION: The gear part is obtained by forming steel having the predetermined composition of chemical components into a predetermined shape, and allowing the steel to be subjected to the carburization or nitrocarburizing. The depth of a surface abnormal layer is ≤5 μm, and the carbide area ratio Fm at the 50 μm depth position from a gear surface is 3-20%. Further, the ratio of the carbide area ratio Fs at the 25 μm depth position from the gear surface to the carbide area ratio Fm (Fs/Fm) is satisfied to be <1.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、歯車部品に関するものであり、殊に動力伝達部で使用される場合に、優れたなじみ性を発揮すると共に耐ピッチング性も良好な歯車部品に関するものである。   The present invention relates to a gear component, and particularly to a gear component that exhibits excellent conformability and good pitting resistance when used in a power transmission section.

例えば自動車のトランスミッション等の動力伝達部で使用される歯車部品は、JIS G4104、JIS G4105、JIS G4103等に規定されているCr肌焼鋼(SCr材)、Cr−Mo肌焼鋼(SCM材)、Ni−Cr―Mo肌焼鋼(SNCM材)等の機械構造用鋼を用いて所定の形状に成形加工した後、浸炭処理や浸炭窒化処理(以下、単に「浸炭・浸炭窒化処理」と呼ぶことがある)等の表面硬化処理を施して作製されるのが一般的である。   For example, gear parts used in power transmission parts such as automobile transmissions are Cr case-hardened steel (SCr material) and Cr-Mo case-hardened steel (SCM material) specified in JIS G4104, JIS G4105, JIS G4103, etc. , Ni-Cr-Mo case-hardened steel (SNCM material) and other mechanical structural steels are formed into a predetermined shape and then carburized or carbonitrided (hereinafter simply referred to as “carburizing / carbonitriding”). In general, it is produced by performing a surface hardening treatment.

近年、高出力化や小型軽量化に対する要望が高くなっていることから、動力伝達部に使用される歯車などの鋼材部品への負荷応力がますます増大する傾向にある。こうした状況の下、上述したような従来の機械構造用鋼や表面硬化処理鋼では、上記のような厳しい使用環境に対応し難いものとなっている。   In recent years, demands for higher output and smaller and lighter weight have increased, and therefore, the load stress on steel parts such as gears used in the power transmission section tends to increase. Under such circumstances, the conventional mechanical structural steel and surface-hardened steel as described above are difficult to cope with the above severe use environment.

こうしたことから、特にすべりを伴う接触環境下において、接触面圧の増加による接触面の剥離損傷(即ちピッチング損傷)を抑制するために、Siを添加して成分の適正化を図ったり、浸炭・浸炭窒化処理条件の最適化等によって鋼材表面硬さの向上を図る等が検討されている。   For this reason, especially in a contact environment with slip, in order to suppress contact surface peeling damage (ie, pitching damage) due to an increase in contact surface pressure, Si is added to optimize components, It has been studied to improve the surface hardness of steel by optimizing carbonitriding conditions.

また上記浸炭・浸炭窒化処理においては、通常はその条件を制御することによって、鋼材表層部に炭化物が生成しないようにされているのであるが、例えば浸炭・浸炭窒化処理において鋼材表面へのC供給を増加させる雰囲気とすることによって、鋼材表層部の炭素濃度を高めて炭化物をあえて析出させて鋼材表層硬さを高める、いわゆる高濃度浸炭処理や高濃度浸炭窒化処理(以下、単に「高濃度浸炭・高濃度浸炭窒化処理」と呼ぶことがある)も提案されている(例えば、特許文献1)。   In the carburizing / carbonitriding process, normally, the conditions are controlled so that carbide is not generated in the steel surface layer. For example, in the carburizing / carbonitriding process, C is supplied to the steel surface. By increasing the carbon concentration in the steel surface layer, the carbide is intentionally precipitated to increase the steel surface hardness, so-called high-concentration carburizing treatment or high-concentration carbonitriding (hereinafter simply referred to as “high-concentration carburizing”). (Sometimes referred to as “high-concentration carbonitriding treatment”) (for example, Patent Document 1).

一方、歯車の表面硬さの増加と共に、歯車対の勘合する歯面の「なじみ性」の低下という問題も生じている。通常では、歯車対の勘合による摩擦によって、歯面の加工誤差や熱処理歪みによる歯形の変形が修正され、過剰な歯車への歯面への面圧力上昇が抑制されることになる。   On the other hand, with the increase in the surface hardness of the gear, there is a problem that the “familiarity” of the tooth surfaces engaged with the gear pair is lowered. Normally, the friction caused by the engagement of the gear pair corrects the tooth surface processing error and the deformation of the tooth profile due to heat treatment distortion, and suppresses an increase in surface pressure on the tooth surface due to excessive gears.

しかしながら、上記のようなピッチング損傷を抑制するために、表面硬さを上昇させると、そのなじみ性に対する作用が低下してしまい、歯面の一部に過剰な面圧上昇が起こり、却ってピッチング損傷が早期に発生することがある。   However, if the surface hardness is increased in order to suppress the above-mentioned pitching damage, the effect on the conformability is reduced, and an excessive increase in the surface pressure occurs on a part of the tooth surface. May occur early.

ところで、通常の浸炭・浸炭窒化処理や高濃度浸炭・高濃度浸炭窒化処理では、粒界酸化層や不完全焼入れ層からなる浸炭異常層(以下、単に「異常層」と呼ぶことがある)が生成し、これが歯車の特性劣化(歯元曲げ疲労強度や耐ピッチング性等の低下)となって現れることになる。上記なじみ性を改善するという観点から、上記浸炭異常層を積極的に利用する技術も提案されているが(例えば特許文献2)、上記特性劣化を抑制するための根本的な対策となっているとはいえない。   By the way, in normal carburizing / carbonitriding treatment or high-concentration carburizing / high-concentration carbonitriding treatment, there is a carburizing abnormal layer (hereinafter, sometimes simply referred to as “abnormal layer”) consisting of a grain boundary oxide layer or an incompletely quenched layer. This will appear as deterioration of the gear characteristics (decrease in tooth root bending fatigue strength, pitting resistance, etc.). From the viewpoint of improving the conformability, a technique for actively using the carburized abnormal layer has also been proposed (for example, Patent Document 2), which is a fundamental measure for suppressing the characteristic deterioration. That's not true.

従来の浸炭・浸炭窒化処理や高濃度浸炭・高濃度浸炭窒化処理に対して、減圧下での浸炭・浸炭窒化処理または高濃度浸炭・高濃度浸炭窒化処理(以下、「真空浸炭・浸炭窒化処理」と呼ぶことがある)を行うことも提案されている(例えば、非特許文献1、2)。こうした真空浸炭・浸炭窒化処理では、上記異常層が歯車表層に実質的に生成せず、表層の焼入れ性が確保できるので、表層硬さが向上して耐ピッチング性が改善されたものとなる。   Compared to conventional carburizing / carbonitriding and high-concentration carburizing / high-concentrating carbonitriding, carburizing / carbonitriding under reduced pressure or high-concentration / high-concentrating carbonitriding (hereinafter referred to as “vacuum carburizing / carbonitriding” Is also proposed (for example, Non-Patent Documents 1 and 2). In such a vacuum carburizing / carbonitriding process, the abnormal layer is not substantially formed on the gear surface layer, and the hardenability of the surface layer can be secured, so that the surface layer hardness is improved and the pitting resistance is improved.

しかしながら、これまで提案されている真空浸炭・窒化処理条件では、「なじみ性」が良好となるような表面性状の歯車が必ずしも得られているとは限らず、特に表層部のC量が過剰になることによるなじみ性劣化の傾向があるのが実情である。また減圧下での高濃度浸炭・高濃度浸炭窒化処理においても、これまで報告されている条件では、表層部の炭化物面積率が過剰となって、なじみ性の低下につながっている。
特開2004−285384号公報 特開2000−322536号公報 「熱処理」 37巻第3号、P154〜159、平成9年6月、日本熱処理技術協会発行 「石川島播磨技報」 Vol.45 No.1、P15〜20(2005−3)、石川島播磨重工業株式会社発行
However, under the conditions of the vacuum carburizing and nitriding treatments that have been proposed so far, a gear having a surface property that provides good “fitability” is not always obtained, and in particular, the amount of C in the surface layer is excessive. In reality, there is a tendency for compatibility to deteriorate. Also in high-concentration carburization and high-concentration carbonitriding under reduced pressure, the carbide area ratio of the surface layer is excessive under the conditions reported so far, leading to a decrease in conformability.
JP 2004-285384 A JP 2000-322536 A "Heat treatment", Volume 37, No. 3, P154-159, June 1997, published by Japan Heat Treatment Technology Association "Ishikawajima Harima Technical Report" Vol. 45 No. 1, P15-20 (2005-3), issued by Ishikawajima-Harima Heavy Industries Ltd.

本発明はこの様な事情に鑑みてなされたものであって、その目的は、異常層を低減すると共に、歯車における表層部の炭化物分布を適切に制御することによって、耐ピッチング性と共になじみ性をも改善した歯車部品を提供することにある。   The present invention has been made in view of such circumstances. The purpose of the present invention is to reduce the abnormal layer and appropriately control the carbide distribution in the surface layer portion of the gear, thereby improving the compatibility with the pitting resistance. It is also to provide an improved gear part.

上記目的を達成することのできた本発明の歯車部品とは、C:0.10〜0.30%(質量%の意味、以下同じ)、Si:1.5%以下(0%を含まない)、Mn:1.5%以下(0%を含まない)、Cr:0.5〜2.5%、Mo:0.5%以下(0%を含まない)を夫々含有し、残部:鉄および不可避不純物からなる鋼材を所定形状に成形した後、浸炭処理または浸炭窒化処理した歯車部品であって、表面異常層の深さが5μm以下であると共に、歯面から50μm深さ位置での炭化物面積率Fmが3〜20%であり、且つ歯面から25μm深さ位置での炭化物面積率Fsと前記炭化物面積率Fmとの比(Fs/Fm)が1.0未満を満足するものである点に要旨を有するものである。この歯車部品においては、歯面から50μm深さ位置でのN濃度[Nm]が0.05〜1.0%であることが好ましい。   The gear parts of the present invention that could achieve the above-mentioned object are: C: 0.10 to 0.30% (meaning of mass%, the same shall apply hereinafter), Si: 1.5% or less (not including 0%) , Mn: 1.5% or less (excluding 0%), Cr: 0.5 to 2.5%, Mo: 0.5% or less (excluding 0%), respectively, the balance: iron and A gear part obtained by forming a steel material made of inevitable impurities into a predetermined shape and then carburizing or carbonitriding, and having a surface abnormal layer depth of 5 μm or less and a carbide area at a depth of 50 μm from the tooth surface The rate Fm is 3 to 20%, and the ratio (Fs / Fm) of the carbide area ratio Fs and the carbide area ratio Fm at a position 25 μm deep from the tooth surface satisfies less than 1.0. It has a gist. In this gear part, the N concentration [Nm] at a depth of 50 μm from the tooth surface is preferably 0.05 to 1.0%.

本発明の歯車部品を構成する鋼材には、必要によって更に他の元素として、(a)Ni:2.0%以下(0%を含まない)、(b)B:0.005%以下(0%を含まない)、(c)Al:0.05%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選択される1種以上、(d)N:0.03%以下(0%を含まない)(e)S:0.04%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)、Pb:0.1%以下(0%を含まない)およびBi:0.05%以下(0%を含まない)よりなる群から選択される1種以上、等を含有させることも有効であり、含有させる元素の種類に応じて歯車部品の特性が更に改善されることになる。   In the steel material constituting the gear part of the present invention, if necessary, as another element, (a) Ni: 2.0% or less (not including 0%), (b) B: 0.005% or less (0 %), (C) Al: 0.05% or less (not including 0%), Nb: 0.1% or less (not including 0%), Ti: 0.1% or less (0% 1) or more selected from the group consisting of 0.1% or less (not including 0%) and (d) N: 0.03% or less (not including 0%) (e) S : 0.04% or less (not including 0%), Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), Pb: 0.1% It is also effective to include one or more selected from the group consisting of the following (not including 0%) and Bi: 0.05% or less (not including 0%). So that the characteristics of the gear part is further improved according to the type of elements to be.

本発明によれば、鋼材の化学成分組成を特定すると共に、高濃度浸炭・高濃度窒化処理条件を適切に制御することによって、表層異常層の深さを低減し、且つ歯面表層における炭化物分布を最適化することによって、耐ピッチング性と共になじみ性をも改善した歯車部品が実現でき、こうした歯車部品は動力伝達部で使用される歯車部品として極めて有用である。   According to the present invention, the chemical component composition of the steel material is specified, and the depth of the abnormal surface layer is reduced by appropriately controlling the high-concentration carburizing / high-concentration nitriding treatment conditions, and the carbide distribution in the tooth surface layer. By optimizing the gear ratio, it is possible to realize a gear part that improves not only the pitching resistance but also the conformability, and such a gear part is extremely useful as a gear part used in a power transmission unit.

本発明者は、真空浸炭・浸炭窒化処理を適用して異常層を低減する着想の下で、歯車部品における「なじみ性」を向上させるべく、かねてより検討を重ねてきた。そして、所定の化学成分組成を有する鋼材を用いると共に、真空浸炭・窒化処理の条件を適正化して処理し、歯面表層における炭素濃度分布を適切に制御してやれば、「なじみ性」を向上しえた歯車部品が実現できることを見出し、その技術的意義が認められたので先に出願している(特願2006−307093号)。   The present inventor has long studied to improve the “familiarity” of gear parts under the idea of applying vacuum carburizing / carbonitriding to reduce abnormal layers. And, while using a steel material having a predetermined chemical composition, it was possible to improve the “familiarity” if the carbon concentration distribution on the tooth surface surface layer was appropriately controlled by appropriately adjusting the conditions of vacuum carburizing / nitriding treatment. It has been found that gear parts can be realized and its technical significance has been recognized, so it has been filed earlier (Japanese Patent Application No. 2006-307093).

先に提案した技術では、鋼材表層部に炭化物を形成させないことを前提とし、鋼材表層部(特に、歯面表層部)の炭素濃度分布を適正化することによって、「なじみ性」を向上した歯車部品を実現したものである。本発明者は、通常の真空浸炭・浸炭窒化処理よりも高硬度が得られる減圧下での高濃度浸炭・高濃度浸炭窒化処理(以下、「真空高濃度浸炭・高濃度浸炭窒化処理」と呼ぶことがある)を適用し、鋼材表層部に積極的に炭化物を形成することを前提とし、その上で優れた「なじみ性」を発揮させる要件について検討した。その結果、所定の化学成分組成を有する鋼材を用いると共に、真空高濃度浸炭・高濃度浸炭窒化処理の条件を適正化して処理し、歯面表層における炭化物分布を上記のように制御してやれば、上記目的に適う歯車部品が実現できることを見出し、本発明を完成した。   The previously proposed technology is based on the premise that carbide is not formed on the steel surface layer, and the gear density is improved by optimizing the carbon concentration distribution in the steel surface layer (particularly the tooth surface layer). It is a part realized. The present inventor calls high-concentration carburization / high-concentration carbonitriding under reduced pressure (hereinafter referred to as “vacuum high-concentration carburizing / high-concentration carbonitriding”), which provides higher hardness than ordinary vacuum carburizing / carbonitriding. And on the premise of positively forming carbides on the steel surface layer, we examined the requirements for exhibiting excellent “familiarity”. As a result, while using a steel material having a predetermined chemical composition, processing by optimizing the conditions of vacuum high-concentration carburization / high-concentration carbonitriding, and controlling the carbide distribution in the tooth surface layer as described above, The present invention has been completed by finding that gear parts suitable for the purpose can be realized.

本発明の歯車部品においては、基本的には、歯面から50μm深さ位置での炭化物面積率Fmが3〜20%であり、且つ歯面から25μm深さ位置での炭化物面積率Fsと前記炭化物面積率Fmとの比(Fs/Fm)が1.0未満を満足するものであるが、これらの要件を規定した理由は次の通りである。   In the gear part of the present invention, basically, the carbide area ratio Fm at the position of 50 μm depth from the tooth surface is 3 to 20%, and the carbide area ratio Fs at the position of 25 μm depth from the tooth surface is The ratio of the carbide area ratio Fm (Fs / Fm) satisfies less than 1.0. The reason for defining these requirements is as follows.

歯面から25μm深さ位置は、歯車対の勘合による摩耗で除去されやすく、ピッチング損傷等に影響する歯面の強度は、歯面から50μm深さ位置の炭化物面積率Fmに左右されることになる。こうした観点から、歯面から50μm深さ位置での炭化物面積率Fmを少なくとも3%以上として、歯面の強度を確保する必要がある。但し、上記炭化物面積率Fmが20%を超えると炭化物が粗大化し、却って歯面の強度を低下させることになる。尚、上記炭化物面積率Fmの好ましい下限は5%であり、好ましい上限は17%である。   The 25 μm depth position from the tooth surface is easily removed by wear due to the engagement of the gear pair, and the tooth surface strength that affects pitching damage and the like depends on the carbide area ratio Fm at the 50 μm depth position from the tooth surface. Become. From such a viewpoint, it is necessary to ensure the strength of the tooth surface by setting the carbide area ratio Fm at a depth of 50 μm from the tooth surface to at least 3% or more. However, if the carbide area ratio Fm exceeds 20%, the carbides are coarsened, and the strength of the tooth surface is lowered. The preferable lower limit of the carbide area ratio Fm is 5%, and the preferable upper limit is 17%.

また歯車部品におけるピッチング損傷を更に低減するという観点からして、歯面から50μm深さ位置のN濃度[Nm]が0.05〜1.0%となるように制御することが好ましい(その範囲設定理由はCの場合と同等)。歯面から50μm深さ位置のN濃度[Nm]を0.05%以上とすることによって、歯面の強度を更に高めることができる。但し、上記N濃度[Nm]が1.0%を超えると、粗大な窒化物が析出し、却って歯面の強度を低下させることになる。   Further, from the viewpoint of further reducing the pitching damage in the gear part, it is preferable to control the N concentration [Nm] at a depth of 50 μm from the tooth surface to be 0.05 to 1.0% (the range thereof). The reason for setting is the same as in C). By setting the N concentration [Nm] at a depth of 50 μm from the tooth surface to 0.05% or more, the strength of the tooth surface can be further increased. However, if the N concentration [Nm] exceeds 1.0%, coarse nitrides are precipitated, and the strength of the tooth surface is lowered.

一方、歯車のなじみ性については、歯車対の勘合による摩耗で除去されやすい位置(歯面から25μm深さ位置)での性状に影響されることになる。即ち、機械加工等で生じた凹凸が勘合による摩耗で少なくなり(即ち、表面粗さが小さくなり)、表面で生じる過剰な応力が低減され、その結果としてなじみ性が良好なものとなると考えられる。こうした状態を確保するためには、歯面から25μm深さ位置での炭化物面積率Fsと前記炭化物面積率Fmとの比(Fs/Fm)は、少なくとも1.0未満とする必要がある。尚、上記比(Fs/Fm)の好ましい下限は0.3であり、好ましい上限は0.9である。   On the other hand, the conformability of the gear is influenced by the properties at a position (25 μm depth position from the tooth surface) that is easily removed by wear due to the engagement of the gear pair. That is, it is considered that unevenness caused by machining or the like is reduced by wear due to fitting (that is, the surface roughness is reduced), excessive stress generated on the surface is reduced, and as a result, conformability is improved. . In order to ensure such a state, the ratio (Fs / Fm) between the carbide area ratio Fs and the carbide area ratio Fm at a position 25 μm deep from the tooth surface needs to be at least less than 1.0. In addition, the preferable minimum of the said ratio (Fs / Fm) is 0.3, and a preferable upper limit is 0.9.

本発明の歯車部品は、ピッチング損傷を低減するという観点から、異常層は極力低減したものであるが、こうした効果を発揮するためには、表面異常層の深さが5μm以下であることも必要である。但し、本発明の歯車部品を製造するには、真空高濃度浸炭・高濃度浸炭窒化処理を行うものであるので(詳細については、後述する)、基本的に表面異常層の深さが5μmよりも深くなることはない。尚、上記した「歯面から25μm(または50μm)深さ位置」とは、表面異常層が存在するときは、その厚さをも含めた趣旨である。   In the gear part of the present invention, the abnormal layer is reduced as much as possible from the viewpoint of reducing pitching damage. However, in order to exert such an effect, the depth of the surface abnormal layer must be 5 μm or less. It is. However, since the gear part of the present invention is manufactured by vacuum high-concentration carburization / high-concentration carbonitriding (details will be described later), the depth of the surface abnormal layer is basically less than 5 μm. Will not be deep. The above-described “depth position of 25 μm (or 50 μm) from the tooth surface” is intended to include the thickness of the abnormal surface layer.

本発明の歯車部品では、その素材となる鋼材の化学成分組成も適切に制御する必要があるが、基本的な成分の範囲限定理由は下記の通りである。   In the gear part of the present invention, it is necessary to appropriately control the chemical component composition of the steel material as the raw material. The reason for limiting the basic component range is as follows.

[C:0.10〜0.30%]
Cは、機械構造用鋼部品としての芯部の硬さを確保するために必要な元素であり、こうした効果を発揮させるためには、少なくとも0.10%含有させる必要がある。しかしながら、C含有量が過剰になると、芯部の硬さが過大となって歯車の靭性を劣化させることになる。こうしたことから、C含有量は0.30%以下とする必要がある。C含有量の好ましい下限は0.15%であり、好ましい上限は0.25%である。
[C: 0.10 to 0.30%]
C is an element necessary for ensuring the hardness of the core portion as the steel part for machine structural use. In order to exert such an effect, it is necessary to contain at least 0.10%. However, when the C content is excessive, the hardness of the core is excessive and the toughness of the gear is deteriorated. For these reasons, the C content needs to be 0.30% or less. The minimum with preferable C content is 0.15%, and a preferable upper limit is 0.25%.

[Si:1.5%以下(0%を含まない)]
Siは、鋼の溶製時に脱酸性元素として有効に作用する他、耐摩耗性や耐ピッチング性を良好にする上でも有効に作用する。これらの作用はその含有量が増加するにつれて増大するが、Si含有量が過剰になると、それらの効果が飽和するばかりか被削性が悪化するので1.5%以下にするのが良い。Si含有量の好ましい下限は0.3%であり、好ましい上限は1.0%である。
[Si: 1.5% or less (excluding 0%)]
Si effectively acts as a deoxidizing element during the melting of steel, and also effectively acts to improve wear resistance and pitting resistance. These effects increase as the content increases. However, if the Si content is excessive, not only the effects are saturated but also the machinability deteriorates. The minimum with preferable Si content is 0.3%, and a preferable upper limit is 1.0%.

[Mn:1.5%以下(0%を含まない)]
Mnは、脱酸剤・脱硫剤および焼入れ性向上元素として有効に作用する。これらの作用はその含有量が増加するにつれて増大するが、Mn含有量が過剰になると、高濃度浸炭・高濃度浸炭窒化処理後の残留オーステナイト量が増加し、硬さが低下するので、1.5%以下にする必要がある。Mn含有量の好ましい下限は0.3%であり、好ましい上限は1.2%である。
[Mn: 1.5% or less (excluding 0%)]
Mn acts effectively as a deoxidizer / desulfurizer and a hardenability improving element. These effects increase as the content increases. However, if the Mn content is excessive, the amount of retained austenite after the high-concentration carburizing / high-concentration carbonitriding treatment increases and the hardness decreases. It is necessary to make it 5% or less. The minimum with preferable Mn content is 0.3%, and a preferable upper limit is 1.2%.

[Cr:0.5〜2.5%]
Crは、焼入れ性を向上させる上で有効な元素であり、こうした効果を発揮させるためには0.5%以上含有させる必要がある。しかしながら、Cr含有量が過剰になると、最表面の硬さが増大して良好ななじみ性が確保できなくなるので、2.5%以下とする必要がある。Cr含有量の好ましい下限は0.8%であり、好ましい上限は1.7%である。
[Cr: 0.5 to 2.5%]
Cr is an element effective for improving the hardenability, and in order to exert such an effect, it is necessary to contain 0.5% or more. However, if the Cr content is excessive, the hardness of the outermost surface increases and good conformability cannot be ensured, so 2.5% or less is necessary. The minimum with preferable Cr content is 0.8%, and a preferable upper limit is 1.7%.

[Mo:0.5%以下(0%を含まない)]
Moは、Crと同様に、焼入れ性を向上させる上で有効な元素であり、また歯車表層部における異常層を低減する効果も認められる。こうした効果はその含有量が増加するにつれて増大するが、Mo含有量が過剰になると、最表面の硬さが増大して良好ななじみ性が確保できなくなるので、0.5%以下とする必要がある。Mo含有量の好ましい下限は0.05%であり、好ましい上限は0.3%である。
[Mo: 0.5% or less (excluding 0%)]
Mo, like Cr, is an element effective in improving hardenability, and an effect of reducing abnormal layers in the gear surface layer is also recognized. These effects increase as the content increases, but if the Mo content becomes excessive, the hardness of the outermost surface increases and good conformability cannot be secured, so it is necessary to make it 0.5% or less. is there. The minimum with preferable Mo content is 0.05%, and a preferable upper limit is 0.3%.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避不純物(例えば、P,O等)であるが、必要によって、下記元素を積極的に含有させて特性を一段と高めることも有効である。これらの元素を含有させるときの範囲限定理由は、次の通りである。   The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities (for example, P, O, etc.). If necessary, the following elements are actively contained to further enhance the characteristics. Is also effective. The reasons for limiting the range when these elements are contained are as follows.

[Ni:2.0%以下(0%を含まない)]
Niは、歯車部品の疲労強度を向上させるのに有効な元素であり、必要によって含有させる。しかしながら、Ni含有量が過剰になると、最表層のなじみ性が低下するので、2.0%以下(より好ましくは1.0%以下)とすることが好ましい。尚、上記効果を発揮させるための好ましい下限は0.4%程度である。
[Ni: 2.0% or less (excluding 0%)]
Ni is an element effective for improving the fatigue strength of gear parts, and is contained if necessary. However, if the Ni content is excessive, the conformability of the outermost layer is lowered, so that it is preferably 2.0% or less (more preferably 1.0% or less). In addition, the preferable minimum for exhibiting the said effect is about 0.4%.

[B:0.005%以下(0%を含まない)]
Bは、焼入性向上元素であり、表層部の粒界強化に働き、疲労強度向上に有効な成分である。しかしながら、B含有量が過剰になると、粒界を脆化させるので、0.005%以下(より好ましくは0.003%以下)とすることが好ましい。尚、上記効果を発揮させるための好ましい下限は0.001%程度である。
[B: 0.005% or less (excluding 0%)]
B is a hardenability improving element, works for strengthening the grain boundary of the surface layer portion, and is an effective component for improving fatigue strength. However, if the B content is excessive, the grain boundaries are embrittled, so it is preferable to set the content to 0.005% or less (more preferably 0.003% or less). In addition, the preferable minimum for exhibiting the said effect is about 0.001%.

[Al:0.05%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選択される1種以上]
Al,Nb,TiおよびVは、微細な炭窒化物を形成することによって、結晶粒を微細化する効果があり、歯車部品の疲労強度向上に寄与する。しかしながら、これらの元素の含有量が過剰になると、炭窒化物が粗大になって上記効果が低下するので、夫々上記の範囲で含有させることが好ましい。
[Al: 0.05% or less (not including 0%), Nb: 0.1% or less (not including 0%), Ti: 0.1% or less (not including 0%), and V: 0.0. 1 or more selected from the group consisting of 1% or less (excluding 0%)]
Al, Nb, Ti, and V have the effect of refining crystal grains by forming fine carbonitrides, and contribute to improving the fatigue strength of gear parts. However, when the content of these elements is excessive, the carbonitride becomes coarse and the above effect is lowered. Therefore, it is preferable that the content is within the above range.

[N:0.03%以下(0%を含まない)]
Nは、上記炭窒化物形成元素(Al,Nb,TiおよびV)等と炭窒化物を形成し、結晶粒を微細化する効果がある。しかしながら、N含有量が過剰になると、その効果が飽和するばかりか、靭性が低下するので0.03%以下とすることが好ましい。
[N: 0.03% or less (excluding 0%)]
N forms carbonitride with the carbonitride-forming elements (Al, Nb, Ti and V) and the like, and has the effect of refining crystal grains. However, if the N content is excessive, not only the effect is saturated but also the toughness is lowered, so 0.03% or less is preferable.

[S:0.04%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)、Pb:0.1%以下(0%を含まない)およびBi:0.05%以下(0%を含まない)よりなる群から選択される1種以上]
S,Ca,Mg,PbおよびBiは、被削性を向上させる元素であり、必要によって含有される。しかしながら、これらの元素の含有量が過剰になると、その効果が飽和するばかりか、疲労強度が低下するので、夫々上記の範囲で含有させることが好ましい。
[S: 0.04% or less (not including 0%), Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (not including 0%), Pb: 0.0. 1% or less (not including 0%) and Bi: one or more selected from the group consisting of 0.05% or less (not including 0%)]
S, Ca, Mg, Pb and Bi are elements that improve the machinability and are contained if necessary. However, when the content of these elements is excessive, not only the effect is saturated, but also the fatigue strength is lowered.

本発明の歯車部品では、歯面表層における炭化物分布を適切に制御したものであるが、こうした歯車部品を製造するには、例えば次のように行えば良い。上記した化学成分組成を満足する鋼材を所定の形状(歯車形状)に成形した後、高温(例えば、1000℃程度)での真空高濃度浸炭・高濃度浸炭窒化処理時に、浸炭ガス(例えば、アセチレンガス)を炉内に流す時間(浸炭時間:Cx)と、浸炭ガスを流した後に炭素を内部に拡散させる目的で高温状態のままで浸炭ガスを流さない時間(拡散時間:Dx)の時間比(Dx/Cx)を2.7よりも大きな値として操業する。   In the gear part of the present invention, the carbide distribution in the tooth surface layer is appropriately controlled. To manufacture such a gear part, for example, the following may be performed. After forming a steel material satisfying the above chemical composition into a predetermined shape (gear shape), carburizing gas (for example, acetylene) during vacuum high-concentration carburizing / high-concentration carbonitriding at a high temperature (for example, about 1000 ° C.) The time ratio between the time when the gas is flown into the furnace (carburizing time: Cx) and the time when the carburizing gas is not flowed in the high temperature state for the purpose of diffusing carbon after flowing the carburizing gas (diffusion time: Dx) (Dx / Cx) is operated as a value larger than 2.7.

通常の真空浸炭・浸炭窒化処理では、処理温度が900〜950℃程度で行われており、処理温度を高くすると炭化物を形成するので、ガス流量を少なくしたり、処理時間を短くしたりして、炭化物の析出を回避するようにしている。これに対して本発明では、ガス流量や処理時間を調整し、高温状態で処理することになる。また、通常の真空浸炭・浸炭窒化処理では、その雰囲気は「カーボンポテンシャル」の概念を用いずに、ガス流量等を設定するようにしている(後記実施例ご参照)。   In normal vacuum carburizing and carbonitriding, the processing temperature is about 900 to 950 ° C, and if the processing temperature is increased, carbides are formed, so the gas flow rate can be reduced or the processing time can be shortened. In this way, precipitation of carbides is avoided. On the other hand, in the present invention, the gas flow rate and the processing time are adjusted and the processing is performed in a high temperature state. Further, in the normal vacuum carburizing / carbonitriding process, the gas flow rate is set for the atmosphere without using the concept of “carbon potential” (see Examples below).

一方、上記時間比(Dx/Cx)は、従来では、浸炭効率化(浸炭時間の短縮・適正化)の観点から、1.5〜2.5程度にされていたが(例えば、前記非特許文献2)、拡散時間Dxの比率を大きくすることで、目的とする炭素物分布を得ることができる。即ち、拡散時間Dxの比率を大きくすることによって、歯面からより深い位置(歯面から50μm深さ位置)での炭化物面積率Fmを高くすると共に、比較的浅い位置(歯面から25μm深さ位置)での炭化物面積率Fsを少なくして、これらの比(Fs/Fm)を1.0未満とすることができる。   On the other hand, the time ratio (Dx / Cx) has conventionally been set to about 1.5 to 2.5 from the viewpoint of carburization efficiency (carburization time shortening and optimization) (for example, the non-patent document). The target carbon distribution can be obtained by increasing the ratio of the literature 2) and the diffusion time Dx. That is, by increasing the ratio of the diffusion time Dx, the carbide area ratio Fm at a deeper position from the tooth surface (50 μm depth position from the tooth surface) is increased and a relatively shallow position (25 μm depth from the tooth surface). By reducing the carbide area ratio Fs at the position), the ratio (Fs / Fm) can be made less than 1.0.

尚、本発明の歯車部品においては、歯面からより深い位置(歯面から50μm深さ位置)でのN濃度[Nm]を0.05〜1.0%程度にすることも好ましいが、こうしたN濃度を達成するには、上記拡散時にアンモニア(NH3)を適正に導入すれば良い(他の条件については上記と同様:後記実施例における「真空浸炭窒化処理」)。 In the gear part of the present invention, the N concentration [Nm] at a position deeper than the tooth surface (50 μm depth position from the tooth surface) is preferably about 0.05 to 1.0%. In order to achieve the N concentration, ammonia (NH 3 ) may be appropriately introduced at the time of diffusion (other conditions are the same as described above: “vacuum carbonitriding treatment” in Examples described later).

上記のような真空高濃度浸炭・高濃度浸炭窒化処理を行った後は、熱処理歪抑制等の観点から、一旦860℃程度まで冷却した後(このときの温度を「焼入れ温度」と呼ぶ)、油冷等によって焼入れすれば良い。また、結晶粒の粗大化を防止するため、一旦600℃まで冷却し、再度860℃程度まで加熱し、油冷等によって焼入れしても良い。   After performing vacuum high-concentration carburization / high-concentration carbonitriding as described above, from the viewpoint of suppressing heat treatment strain, etc., once cooled to about 860 ° C. (the temperature at this time is referred to as “quenching temperature”), It may be quenched by oil cooling or the like. Further, in order to prevent the coarsening of crystal grains, it may be once cooled to 600 ° C., heated again to about 860 ° C., and quenched by oil cooling or the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼材を真空溶製炉で溶製し、鍛造、焼きならしを行い、部品に近い形状にブランク加工した後に、歯切り等の機械加工を行って、歯車部品を作製した。   Steel materials with the chemical composition shown in Table 1 below are melted in a vacuum melting furnace, forged and normalized, blanked into a shape close to the parts, machined such as gear cutting, and gear parts Was made.

Figure 2009074110
Figure 2009074110

得られた歯車部品に、種々の真空高濃度浸炭・高濃度浸炭窒化処理を施した。このときの真空高濃度浸炭・高濃度浸炭窒化処理条件[浸炭炉、浸炭方法、浸炭雰囲気(ガス種、ガス流量)、浸炭温度、浸炭時間[Cx]、拡散時間[Dx]、比([Dx]/[Cx])]を下記表2に示す。   The obtained gear parts were subjected to various vacuum high-concentration carburizing and high-concentration carbonitriding processes. Vacuum high-concentration carburization / high-concentration carbonitriding conditions [carburizing furnace, carburizing method, carburizing atmosphere (gas type, gas flow rate), carburizing temperature, carburizing time [Cx], diffusion time [Dx], ratio ([Dx ] / [Cx])] is shown in Table 2 below.

Figure 2009074110
Figure 2009074110

そして歯車歯面の表層部における炭化物面積率(Fm、Fs)を走査顕微鏡(SEM)解析(2000倍)によって求めると共に、N濃度[Nm]をEPMA(Electron Probe Microanalyzer)を用いた分析によって測定した。また異常層の深さは歯面断面の走査型顕微鏡(SEM)観察によって求めた。   Then, the carbide area ratio (Fm, Fs) in the surface layer portion of the gear tooth surface was obtained by scanning microscope (SEM) analysis (2000 times), and N concentration [Nm] was measured by analysis using EPMA (Electron Probe Microanalyzer). . The depth of the abnormal layer was determined by observing the tooth surface cross section with a scanning microscope (SEM).

試験歯車(上記で作製した歯車部品)と相手歯車を組み合わせた動力循環式歯車試験を行った。このときの用いた歯車対の諸元と、歯車試験条件は下記の通りである。   A power circulation gear test was performed in which the test gear (the gear part produced above) and the mating gear were combined. The specifications of the gear pair used at this time and the gear test conditions are as follows.

[歯車対の諸元]
モジュール:試験歯車(2.5mm)、相手歯車(2.5mm)
圧力角 :試験歯車(20°)、相手歯車(20°)
歯数 :試験歯車(22)、相手歯車(25)
歯幅 :試験歯車(12mm)、相手歯車(25mm)
ねじれ角 :試験歯車(30°)、相手歯車(30°)
[Specifications of gear pair]
Module: Test gear (2.5mm), mating gear (2.5mm)
Pressure angle: Test gear (20 °), mating gear (20 °)
Number of teeth: Test gear (22), mating gear (25)
Tooth width: Test gear (12 mm), mating gear (25 mm)
Helix angle: Test gear (30 °), mating gear (30 °)

[歯車試験条件]
入力軸トルク:300N・m
入力軸回転数:1000rpm
油種 :ATF(オートマチック用トランスミッションオイル)
油温 :80℃
[Gear test conditions]
Input shaft torque: 300 N · m
Input shaft speed: 1000rpm
Oil type: ATF (automatic transmission oil)
Oil temperature: 80 ° C

規定回数である200万回回転させた試験歯車の90°毎(軸芯に対して90°)の歯の歯面において、歯幅の1/4、2/4、3/4の各位置での表面粗さRa(算術平均粗さ)を測定した。このときの、幅方向の測定位置を図1に示す(1/4位置=A、2/4位置=B、3/4位置=Cに対応)。そして、これらの平均値を歯面粗さRaとした。   At each tooth position of 1/4, 2/4, and 3/4 of the tooth width on the tooth surface of the tooth every 90 ° (90 ° with respect to the axis) of the test gear rotated 2 million times which is the specified number of times. The surface roughness Ra (arithmetic average roughness) was measured. The measurement position in the width direction at this time is shown in FIG. 1 (corresponding to 1/4 position = A, 2/4 position = B, and 3/4 position = C). And these average values were made into tooth surface roughness Ra.

更に、継続して歯車試験を実施し、ピッチング寿命を求めた。このとき、ピッチング寿命は、いずれか1歯の面に1mm2以上のピッチングが生じたときの回数とした。これらの試験結果を、N濃度[Nm]および異常層深さと共に、下記表3に示す。 Furthermore, the gear test was continuously carried out to determine the pitching life. At this time, the pitching life was defined as the number of times when pitching of 1 mm 2 or more occurred on any one tooth surface. These test results are shown in Table 3 below together with the N concentration [Nm] and the abnormal layer depth.

Figure 2009074110
Figure 2009074110

これらの結果から明らかなように、製造条件を適切にして表層部における炭化物分布を適切にしたもの(試験No.1〜7)では、いずれも表面粗さRaが小さくなっており、摩耗によるなじみ性向上が確認できる。またピッチング寿命も良好な結果となっている。   As is apparent from these results, the surface roughness Ra is small in all of the products (test Nos. 1 to 7) in which the production conditions are appropriate and the carbide distribution in the surface layer part is appropriate. Can be confirmed. The pitching life is also good.

これに対して、試験No.8〜17のものでは、本発明で規定するいずれかの要件を満足しておらず、表面粗さRaは大きな値を示しており、またピッチング寿命も低下している。   In contrast, test no. 8 to 17 do not satisfy any of the requirements defined in the present invention, the surface roughness Ra shows a large value, and the pitching life is also reduced.

これらの結果に基づいて、上記比(Fs/Fm)が、歯面表面粗さRa(200万回回転後の表面粗さRa)とピッチング寿命に与える影響を、図2に示す。図2から明らかなように、上記比(Fs/Fm)を適切な範囲(1.0未満)とすることによって、なじみ性と共に耐ピッチング性も良好になっていることが分かる。   Based on these results, FIG. 2 shows the influence of the ratio (Fs / Fm) on the tooth surface roughness Ra (surface roughness Ra after 2 million rotations) and the pitching life. As can be seen from FIG. 2, by adjusting the ratio (Fs / Fm) to an appropriate range (less than 1.0), it is understood that the adaptability and the pitting resistance are improved.

歯面に表面粗さRaを測定するときの幅方向の測定位置を示した模式図である。It is the schematic diagram which showed the measurement position of the width direction when measuring surface roughness Ra on a tooth surface. 比(Fs/Fm)が、歯面表面粗さRaとピッチング寿命に与える影響を示すグラフである。It is a graph which shows the influence which ratio (Fs / Fm) has on tooth surface surface roughness Ra and pitching lifetime.

Claims (7)

C:0.10〜0.30%(質量%の意味、以下同じ)、Si:1.5%以下(0%を含まない)、Mn:1.5%以下(0%を含まない)、Cr:0.5〜2.5%、Mo:0.5%以下(0%を含まない)を夫々含有し、残部:鉄および不可避不純物からなる鋼材を所定形状に成形した後、浸炭処理または浸炭窒化処理した歯車部品であって、表面異常層の深さが5μm以下であると共に、歯面から50μm深さ位置での炭化物面積率Fmが3〜20%であり、且つ歯面から25μm深さ位置での炭化物面積率Fsと前記炭化物面積率Fmとの比(Fs/Fm)が1.0未満を満足するものであることを特徴とするなじみ性に優れた歯車部品。   C: 0.10 to 0.30% (meaning mass%, the same shall apply hereinafter), Si: 1.5% or less (not including 0%), Mn: 1.5% or less (not including 0%), Each of Cr: 0.5 to 2.5%, Mo: 0.5% or less (not including 0%) is contained, and the balance: steel material composed of iron and inevitable impurities is formed into a predetermined shape, and then carburized or A carbonitrided gear part having a surface abnormal layer depth of 5 μm or less, a carbide area ratio Fm at a depth of 50 μm from the tooth surface of 3 to 20%, and a depth of 25 μm from the tooth surface. A gear part having excellent conformability, characterized in that the ratio (Fs / Fm) of the carbide area ratio Fs at the vertical position and the carbide area ratio Fm satisfies less than 1.0. 歯面から50μm深さ位置でのN濃度[Nm]が0.05〜1.0%である請求項1に記載の歯車部品。   The gear part according to claim 1, wherein the N concentration [Nm] at a depth of 50 µm from the tooth surface is 0.05 to 1.0%. 前記鋼材は、更に他の元素として、Ni:2.0%以下(0%を含まない)を含有するものである請求項1または2に記載の歯車部品。   The gear part according to claim 1 or 2, wherein the steel material further contains Ni: 2.0% or less (not including 0%) as another element. 前記鋼材は、更に他の元素として、B:0.005%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の歯車部品。   The gear part according to any one of claims 1 to 3, wherein the steel material further contains B: 0.005% or less (not including 0%) as another element. 前記鋼材は、更に他の元素として、Al:0.05%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、Ti:0.1%以下(0%を含まない)およびV:0.1%以下(0%を含まない)よりなる群から選択される1種以上を含有するものである請求項1〜4のいずれかに記載の歯車部品。   The steel material further contains, as other elements, Al: 0.05% or less (not including 0%), Nb: 0.1% or less (not including 0%), Ti: 0.1% or less (0%) And V: 0.1% or less (not including 0%) and at least one selected from the group consisting of 0.1% and 5%. 前記鋼材は、更に他の元素として、N:0.03%以下(0%を含まない)を含有するものである請求項1〜5のいずれかに記載の歯車部品。   The gear part according to any one of claims 1 to 5, wherein the steel material further contains N: 0.03% or less (not including 0%) as another element. 前記鋼材は、更に他の元素として、S:0.04%以下(0%を含まない)、Ca:0.01%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)、Pb:0.1%以下(0%を含まない)およびBi:0.05%以下(0%を含まない)よりなる群から選択される1種以上を含有するものである請求項1〜6のいずれかに記載の歯車部品。   The steel material further contains, as other elements, S: 0.04% or less (not including 0%), Ca: 0.01% or less (not including 0%), Mg: 0.01% or less (0%) ), Pb: 0.1% or less (not including 0%), and Bi: 0.05% or less (not including 0%). The gear part in any one of Claims 1-6.
JP2007241498A 2007-09-18 2007-09-18 Gear parts with excellent compatibility Expired - Fee Related JP4874199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241498A JP4874199B2 (en) 2007-09-18 2007-09-18 Gear parts with excellent compatibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241498A JP4874199B2 (en) 2007-09-18 2007-09-18 Gear parts with excellent compatibility

Publications (2)

Publication Number Publication Date
JP2009074110A true JP2009074110A (en) 2009-04-09
JP4874199B2 JP4874199B2 (en) 2012-02-15

Family

ID=40609376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241498A Expired - Fee Related JP4874199B2 (en) 2007-09-18 2007-09-18 Gear parts with excellent compatibility

Country Status (1)

Country Link
JP (1) JP4874199B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866333A (en) * 2014-03-05 2014-06-18 辽宁工业大学 Nitrocarburizing process of Cr12MoV steel
CN109628834A (en) * 2018-12-29 2019-04-16 中国第汽车股份有限公司 A kind of nickelic niobium-containing high-strength carburizing Steel material of heavy-duty transmission axis tooth part
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234767A (en) * 1988-07-25 1990-02-05 Mazda Motor Corp Carburizing and hardening method
JP2004285384A (en) * 2003-03-20 2004-10-14 Daido Steel Co Ltd High strength carburized component
JP2005113168A (en) * 2003-10-03 2005-04-28 Kobe Steel Ltd Steel component for machine structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234767A (en) * 1988-07-25 1990-02-05 Mazda Motor Corp Carburizing and hardening method
JP2004285384A (en) * 2003-03-20 2004-10-14 Daido Steel Co Ltd High strength carburized component
JP2005113168A (en) * 2003-10-03 2005-04-28 Kobe Steel Ltd Steel component for machine structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866333A (en) * 2014-03-05 2014-06-18 辽宁工业大学 Nitrocarburizing process of Cr12MoV steel
CN109628834A (en) * 2018-12-29 2019-04-16 中国第汽车股份有限公司 A kind of nickelic niobium-containing high-strength carburizing Steel material of heavy-duty transmission axis tooth part
JP2021028415A (en) * 2019-08-09 2021-02-25 日本製鉄株式会社 Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP7368697B2 (en) 2019-08-09 2023-10-25 日本製鉄株式会社 Steel for carburized gears, carburized gears, and method for manufacturing carburized gears

Also Published As

Publication number Publication date
JP4874199B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
WO2011114836A1 (en) Steel for case-hardening treatment, case-hardened steel component, and method for producing same
JP5503344B2 (en) High-strength case-hardened steel parts and manufacturing method thereof
JP4819201B2 (en) Soft nitriding steel, soft nitriding steel component and manufacturing method thereof
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
TWI507540B (en) Anti-coking excellent gear
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
JPWO2006118243A1 (en) Carburized induction hardening parts
JP4964001B2 (en) Gears with excellent low cycle fatigue strength
JP5068065B2 (en) Gear parts with excellent compatibility
JP4874199B2 (en) Gear parts with excellent compatibility
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
JP4000616B2 (en) Gear having excellent pitting resistance and method for producing the same
JP2008291298A (en) Steel for carburizing, carburized component, and method for producing carburized component
JP4050512B2 (en) Manufacturing method of carburizing and quenching member and carburizing and quenching member
JP5177517B2 (en) Hardened steel for shafts with excellent low cycle torsional fatigue strength
JP2016188421A (en) Carburized component
JP2019104972A (en) Carburized component
JPH07188895A (en) Manufacture of parts for machine structure use
JP6160054B2 (en) High surface pressure resistant parts
JP2017179434A (en) Carbonitrided component excellent in surface fatigue strength and bending fatigue strength, and method for manufacturing the same
CN109415789B (en) Steel material for CVT pulley, and method for manufacturing CVT pulley
JP2021006659A (en) Steel component and method for producing the same
JP3975699B2 (en) High-strength gear excellent in tooth root bending strength and pitting resistance and manufacturing method thereof
JP2016222982A (en) Case hardened steel for machine construction excellent in pitching resistance and component raw material for machine construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4874199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees