JP4188307B2 - Carburized parts and manufacturing method thereof - Google Patents

Carburized parts and manufacturing method thereof Download PDF

Info

Publication number
JP4188307B2
JP4188307B2 JP2004358617A JP2004358617A JP4188307B2 JP 4188307 B2 JP4188307 B2 JP 4188307B2 JP 2004358617 A JP2004358617 A JP 2004358617A JP 2004358617 A JP2004358617 A JP 2004358617A JP 4188307 B2 JP4188307 B2 JP 4188307B2
Authority
JP
Japan
Prior art keywords
carbide
carburizing
concentration
point
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004358617A
Other languages
Japanese (ja)
Other versions
JP2006161141A5 (en
JP2006161141A (en
Inventor
篤 服部
隆 狩野
友子 芹川
孝樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004358617A priority Critical patent/JP4188307B2/en
Priority to US11/296,566 priority patent/US20060130935A1/en
Priority to DE102005058903.0A priority patent/DE102005058903B4/en
Publication of JP2006161141A publication Critical patent/JP2006161141A/en
Publication of JP2006161141A5 publication Critical patent/JP2006161141A5/ja
Application granted granted Critical
Publication of JP4188307B2 publication Critical patent/JP4188307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は、浸炭部品及びその製造方法に関する。   The present invention relates to a carburized component and a manufacturing method thereof.

自動車等の動力伝達部品としての歯車は、曲げ応力が作用する歯元で生じる歯元破壊と、すべりによりピッチ点近傍で生じる破壊(ピッティング現象)とが問題となる部品である。これらに耐え得る特性を充足させるために、部品表面に浸炭処理を施す手法が従来より広く用いられており、また種々の材料や熱処理を組み合わせることによる更なる改善が図られている。   A gear as a power transmission component of an automobile or the like is a component in which a root fracture that occurs at the root where a bending stress acts and a fracture (pitting phenomenon) that occurs near the pitch point due to sliding are problems. In order to satisfy the characteristics that can withstand these, a method of carburizing the surface of the component has been widely used, and further improvements have been made by combining various materials and heat treatments.

特に近年では、歯元破壊で有害とされる浸炭時の粒界酸化層や浸炭異常層を抑制するための材料が開発され、またショットピーニングなどによって高強度化が達成されている。   In particular, in recent years, materials have been developed to suppress grain boundary oxide layers and carburized abnormal layers during carburizing, which are harmful to tooth root destruction, and high strength has been achieved by shot peening and the like.

一方、ピッティング現象に関しても研究が盛んに実施され、材料の軟化防止が強度改善には有効であることが見出されている。歯車の歯面ではすべりが生じ、繰り返し接触によって歯面の直下部が発熱する。この際の温度は200℃〜300℃程度の温度域であるとされており、この発熱によって材料が軟化するためにピッティング破壊を生じると考えられる。従って、200〜300℃程度の温度域での材料の軟化防止がピッティング破壊の改善には有効とされ、この温度域の軟化抵抗性に優れる合金元素としてSi・Cr・Moなどを添加した材料が開発されている。   On the other hand, research on the pitting phenomenon has been actively conducted, and it has been found that prevention of softening of the material is effective in improving the strength. Slip occurs on the tooth surface of the gear, and heat is generated immediately below the tooth surface due to repeated contact. The temperature at this time is considered to be in a temperature range of about 200 ° C. to 300 ° C., and it is considered that the material is softened by this heat generation, and thus pitting destruction occurs. Therefore, prevention of softening of the material in the temperature range of about 200 to 300 ° C. is effective in improving the pitting failure, and material added with Si, Cr, Mo or the like as an alloy element having excellent softening resistance in this temperature range Has been developed.

特開平6−158266号公報JP-A-6-158266

しかしながら、近年における自動車等の高出力化に伴って歯車には更なる高強度化が求められているが、上記した材料ではそれに対応しきれないのが現状である。   However, with the recent increase in output of automobiles and the like, the gears are required to have higher strength, but the above-described materials cannot cope with them.

本発明は、上記問題を鑑みて為されたものであり、歯車等の動力伝達部品について高強度化を実現する浸炭部品及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a carburized component and a method of manufacturing the same that achieve high strength of a power transmission component such as a gear.

課題を解決するための手段・発明の効果Means for solving the problems / effects of the invention

上記課題を解決するため、本発明の浸炭部品は、
質量%で、C:0.01〜0.30%,Si:0.80〜1.50%,Mn:0.30〜1.20%,Cr:2.12〜5.5%を含有し、残部がFe及び不可避不純物からなる鋼にて構成され、
Acm点以上の温度にて1次浸炭処理を行った後、A1点以下に急冷し、その後A1点以上Acm点以下の温度にて2次浸炭処理を行なう真空浸炭処理を施したとき、前記鋼の表面から0.2mm深さまでの平均C濃度が1.61%以上3.0%以下、表面から50μm深さまでの炭化物面積率が15%以上60%以下であり、且つ寸法10μm以下の炭化物が全体の90%以上を占めるように炭化物が微細分散析出してなり、更に粒界酸化層深さが1μm以下であることを特徴とする。
In order to solve the above problems, the carburized parts of the present invention are:
In mass%, C: 0.01 to 0.30%, Si: 0.80 to 1.50%, Mn: 0.30 to 1.20%, Cr: 2.12 to 5.5% , The balance is made of steel consisting of Fe and inevitable impurities ,
When the primary carburizing process is performed at a temperature not lower than the Acm point, the steel is rapidly cooled to the A1 point or lower, and then subjected to the secondary carburizing process at a temperature not lower than the A1 point and not higher than the Acm point. A carbide having an average C concentration from the surface of 0.2 mm to a depth of 0.2 mm to 1.61 % to 3.0%, a carbide area ratio from the surface to a depth of 50 μm of 15% to 60%, and a size of 10 μm or less. Carbides are finely dispersed and deposited so as to occupy 90% or more of the total, and the grain boundary oxide layer depth is 1 μm or less.

また、鋼成分として更に、Mo:0.2〜1.0%,V:0.2〜1.0%のうち1種または2種を含有させることができる。   Further, one or two of Mo: 0.2 to 1.0% and V: 0.2 to 1.0% can be added as a steel component.

上記本発明は、次の基本的な特徴を有する。すなわち、高濃度真空浸炭を施すことにより、部品の表面に炭化物を微細かつ大量に析出させ、また表面の粒界酸化層を実質的に無くして表面硬度・強度を高めている。また、真空浸炭により可能となる高Si化によって200℃〜300℃域での焼戻し軟化抵抗性を高め、良好な面疲労強度を得ている。これらの特徴を得るためには、以下詳細に説明する適正範囲の成分及び条件が必要となる。   The present invention has the following basic features. That is, by performing high-concentration vacuum carburization, carbides are precipitated in a fine and large amount on the surface of the part, and the surface grain boundary oxide layer is substantially eliminated to increase the surface hardness and strength. Moreover, the temper softening resistance in the 200 ° C. to 300 ° C. region is enhanced by high Si, which is made possible by vacuum carburization, and good surface fatigue strength is obtained. In order to obtain these characteristics, components and conditions in an appropriate range described in detail below are required.

・C:0.10〜0.30%
Cは、部品の強度を確保するために必須の元素であり、0.10%以上含有させる必要がある。他方、過度の含有は素材硬さを増加させるため、機械加工性が劣化してしまい部品加工が困難となるので、上限を0.30%とする。
C: 0.10 to 0.30%
C is an essential element for securing the strength of the component, and needs to be contained by 0.10% or more. On the other hand, excessive content increases the material hardness, so that the machinability deteriorates and it becomes difficult to process parts. Therefore, the upper limit is made 0.30%.

・Si:0.80〜1.52
Siは、溶製時の脱酸剤として含有させる元素であるとともに、本発明において重要な役割を果たす元素である。すなわち、マトリックスへ固溶することで200℃〜300℃域での焼戻し軟化抵抗性を高めるため、高い面疲労強度を得ることができる。また、炭化物中への固溶度が低く、母材のSi濃度を高めるため炭化物の粗大成長を抑制する。さらには、炭化物を大量に析出させると炭化物中への固溶度の低いSiはマトリックスに濃化して、マトリックスの焼戻し軟化抵抗性をさらに向上させる。これらの効果を得るためには、0.80%以上含有させる必要がある。他方、過度の含有は、炭化物の析出及び浸炭表面反応が阻害されて著しく浸炭性を低下するとともに、延性を低下させて塑性加工時における割れを発生しやすくなるので、上限を1.52%とする。
なお、Siは、通常のガス浸炭の場合に粒界酸化を促進する元素であり、この粒界酸化層が歯元の衝撃強度や疲労強度が低下する原因となる。そのため、ガス浸炭の場合はSiを多量に添加することはできないが、上記のように真空浸炭を用いることで、粒界酸化の問題が無くなるので高Si化が可能となる。
・ Si: 0.80 to 1.52 %
Si is an element to be contained as a deoxidizer during melting and an element that plays an important role in the present invention. That is, since the temper softening resistance in the 200 ° C. to 300 ° C. region is increased by dissolving in the matrix, high surface fatigue strength can be obtained. Moreover, since the solid solubility in the carbide is low and the Si concentration of the base material is increased, the coarse growth of the carbide is suppressed. Furthermore, when a large amount of carbide is precipitated, Si having a low solid solubility in the carbide is concentrated in the matrix, and the temper softening resistance of the matrix is further improved. In order to acquire these effects, it is necessary to contain 0.80% or more. On the other hand, the excessive content hinders the precipitation of carbides and the carburized surface reaction and significantly lowers the carburizability, and also lowers the ductility and easily causes cracking during plastic working, so the upper limit is 1.52 %. To do.
Si is an element that promotes grain boundary oxidation in the case of normal gas carburization, and this grain boundary oxidation layer causes the impact strength and fatigue strength at the tooth base to decrease. Therefore, in the case of gas carburizing, a large amount of Si cannot be added. However, by using vacuum carburizing as described above, the problem of grain boundary oxidation is eliminated, so that high Si can be achieved.

・Mn:0.30〜1.20%
Mnは、溶製時の脱酸剤として含有させるとともに、焼入性を改善する効果を有するため、0.30%以上含有させる必要がある。本発明においては、Cr等の焼入性を改善する効果を有する元素も同時に含有させるが、Cr等の元素は炭化物を形成することから、炭化物の量によってはCr含有量などを高めても十分な焼入性を確保できない場合がある。そのため、必要とする焼入性を得るためにはMn含有量の調整が有効である。他方、過度の含有は素材硬さの増加により機械加工性を低下させてしまうので、上限を1.20%とする。
Mn: 0.30 to 1.20%
Mn is contained as a deoxidizer at the time of melting, and has an effect of improving hardenability, so it is necessary to contain 0.30% or more. In the present invention, an element having an effect of improving the hardenability such as Cr is also contained at the same time. However, since the element such as Cr forms a carbide, it is sufficient to increase the Cr content depending on the amount of the carbide. Hardenability may not be ensured. Therefore, adjustment of the Mn content is effective for obtaining the required hardenability. On the other hand, excessive content decreases the machinability by increasing the material hardness, so the upper limit is made 1.20%.

・Cr:2.0〜5.5%
Crは、本発明において重要な役割を果たす元素である。炭化物形成元素として、また焼入性を向上させる元素として2.0%以上含有させる必要がある。他方、過度の含有は、素材硬さの増加によって機械加工性を低下させるとともに、粒界に網目状炭化物を生成させやすくするので、上限を5.5%とする。
・ Cr: 2.0-5.5%
Cr is an element that plays an important role in the present invention. It is necessary to contain 2.0% or more as a carbide forming element or as an element for improving hardenability. On the other hand, excessive inclusion reduces the machinability by increasing the material hardness and facilitates the formation of network carbides at the grain boundaries, so the upper limit is made 5.5%.

・Mo:0.2〜1.0%
Moは、Crと同様にCと結合して炭化物を生成するとともに、200℃〜300℃の温度域における軟化抵抗性を上げてピッティング強度を改善する効果を有している。これらの効果を得るためには0.2%以上含有させることが好ましい。他方、過度の含有は、素材硬さの増加により機械加工性を低下させるとともに、材料コストを増加させるので、上限を1.0%とするのが好ましい。
Mo: 0.2 to 1.0%
Mo, like Cr, combines with C to form carbides, and has an effect of improving the softening resistance in the temperature range of 200 ° C. to 300 ° C. and improving the pitting strength. In order to acquire these effects, it is preferable to make it contain 0.2% or more. On the other hand, excessive content reduces the machinability by increasing the material hardness and increases the material cost, so the upper limit is preferably made 1.0%.

・V:0.2〜1.0%
Vは、Cr・Moと同様にCと結合して炭化物を生成するとともに、MC系炭化物の生成により軟化抵抗性を向上させてピッティング特性を改善する効果を有する。これらの効果を得るためには、0.2%以上含有させることが好ましい。他方、過度の含有は素材硬さの増加により機械加工性を低下させるので、上限を1.0%とするのが好ましい。
・ V: 0.2-1.0%
V, like Cr · Mo, combines with C to generate carbides, and has the effect of improving softening resistance and improving pitting characteristics by generating MC-based carbides. In order to acquire these effects, it is preferable to make it contain 0.2% or more. On the other hand, excessive content reduces the machinability by increasing the material hardness, so the upper limit is preferably made 1.0%.

・浸炭処理:真空浸炭処理(1000Pa以下)
本発明の浸炭部品には真空浸炭処理が施される。真空浸炭処理により粒界酸化層の低減が可能となるため、浸炭部品の高強度化が図れる。
上記の通り、本発明ではSiが必須成分として添加される。Siは通常のガス浸炭の際に粒界酸化を促進する元素であり、この粒界酸化は歯元の衝撃強度や疲労強度が低下する一因となる。従って、通常のガス浸炭の場合は高Si化が大変困難である。しかし、真空浸炭処理によれば、粒界酸化層の生成が抑制されるので、高Si化を容易に実現することができる。
・ Carburizing treatment: Vacuum carburizing treatment (1000 Pa or less)
The carburized component of the present invention is subjected to vacuum carburizing treatment. Since the grain boundary oxide layer can be reduced by the vacuum carburizing treatment, the strength of the carburized component can be increased.
As described above, Si is added as an essential component in the present invention. Si is an element that promotes grain boundary oxidation during normal gas carburization, and this grain boundary oxidation contributes to a decrease in impact strength and fatigue strength at the tooth base. Therefore, in the case of normal gas carburization, it is very difficult to increase the Si content. However, according to the vacuum carburizing treatment, the formation of the grain boundary oxide layer is suppressed, and therefore, high Si can be easily realized.

・粒界酸化層深さ:1μm以下
粒界酸化層は、疲労強度・耐ピッチング強度の低下を招き、その深さが深くなるに従って低下の程度が大きくなる。そのため、本発明の浸炭部品では、真空浸炭処理後における鋼の表面からの粒界酸化層深さを1μm以下とする。
-Grain boundary oxide layer depth: 1 μm or less The grain boundary oxide layer causes a decrease in fatigue strength and pitting resistance, and the degree of decrease increases as the depth increases. Therefore, in the carburized part of the present invention, the depth of the grain boundary oxide layer from the surface of the steel after the vacuum carburizing process is set to 1 μm or less.

・表面から0.2mm深さまでの平均C濃度:1.2%以上3.0%以下
通常の浸炭処理では、鋼材表面を共析C量である0.8%狙いで処理する共析浸炭処理が一般的である。しかし、本発明は鋼材表層に炭化物を析出させ軟化抵抗性を高めることで耐ピッチング性を改善するものであるから、共析C量(0.8%)以上のCを含有させる必要がある。さらには、炭化物を析出させても軟化抵抗性を高めるのに必要な炭化物量が得られなければ面疲労強度を改善することはできないので、かかる改善を図るのに十分な量のCを含有させる必要もある。
これらの観点から、鋼の表面から0.2mm深さまでの平均C濃度(以下、表面C濃度ともいう)を1.2%以上とする。なお、鋼の表面から0.2mm深さまでとしたのは、耐ピッチング性の観点からは当該領域における硬さが重要だからである。他方、過度の含有は大型の炭化物を生成させることになり、また素地の焼入性の不足を生じさせて強度低下を招くこととなる。よって、表面C濃度の上限を3.0%とする。
・ Average C concentration from surface to 0.2mm depth: 1.2% or more and 3.0% or less In normal carburizing treatment, eutectoid carburizing treatment is aimed at 0.8% which is the amount of eutectoid C. Is common. However, since the present invention improves the pitting resistance by precipitating carbides on the surface layer of the steel material and increasing the softening resistance, it is necessary to contain C in the amount of eutectoid C (0.8%) or more. Furthermore, even if the carbide is precipitated, the surface fatigue strength cannot be improved unless the amount of carbide necessary for enhancing the softening resistance is obtained. Therefore, a sufficient amount of C is included to achieve such improvement. There is also a need.
From these viewpoints, the average C concentration (hereinafter also referred to as surface C concentration) from the steel surface to a depth of 0.2 mm is set to 1.2% or more. The reason why the depth is 0.2 mm from the surface of the steel is that the hardness in the region is important from the viewpoint of pitting resistance. On the other hand, excessive inclusion will produce large carbides, and will cause a lack of hardenability of the substrate, leading to a decrease in strength. Therefore, the upper limit of the surface C concentration is set to 3.0%.

・表面から50μm深さまでの炭化物面積率:15%以上60%以下
炭化物の析出は、表面硬度を上昇させ、200〜300℃域の軟化抵抗性を改善し、耐ピッチング強度を向上させる。但し、表面から50μm深さまでの炭化物面積率が15%未満では、軟化抵抗性は十分に改善されず、十分な強度向上の効果が得られない。他方、炭化物の面積率が60%を超過すると、軟化抵抗性は改善されるものの、炭化物が大型化に伴い結晶粒界に沿って網目状に析出しやすくなるため、面疲労強度に加えて曲げ疲労強度を低下させてしまう。得られた炭化物の観察例を図4に示す。
Carbide area ratio from the surface to a depth of 50 μm: 15% or more and 60% or less Precipitation of carbide increases the surface hardness, improves softening resistance in the 200 to 300 ° C. region, and improves pitting resistance. However, when the carbide area ratio from the surface to a depth of 50 μm is less than 15%, the softening resistance is not sufficiently improved, and a sufficient strength improvement effect cannot be obtained. On the other hand, if the area ratio of carbide exceeds 60%, the softening resistance is improved, but the carbide tends to precipitate in a network form along the grain boundary as the size increases, so bending in addition to the surface fatigue strength Reduces fatigue strength. An observation example of the obtained carbide is shown in FIG.

・寸法10μm以下の炭化物が全体の90%以上を占めるように炭化物が微細分散析出
炭化物は硬質粒子であり、Al酸化物やTi窒化物などの非金属介在物と同様に疲労破壊の起点となることがある。そのため、炭化物は小さい方が望ましく、疲労破壊の起点として存在させないためには10μm以下の寸法に制御する必要がある。従って、寸法10μm以下の炭化物が全体の90%以上を占めるように炭化物が微細分散析出するように制御する。得られた炭化物の観察例を図4に示す。
・ Carbide is finely dispersed and precipitated so that carbides with dimensions of 10 μm or less occupy 90% or more of the whole. Carbides are hard particles, and are the starting point of fatigue fracture like non-metallic inclusions such as Al oxide and Ti nitride. Sometimes. Therefore, it is desirable that the carbide is small, and it is necessary to control the size to 10 μm or less in order not to exist as a starting point of fatigue fracture. Therefore, the carbides are controlled to be finely dispersed and precipitated so that carbides having a size of 10 μm or less occupy 90% or more of the whole. An observation example of the obtained carbide is shown in FIG.

以上に記載した浸炭部品を製造するため、本発明の浸炭部品の製造方法は、上記鋼成分を含む鋼に対しAcm点以上の温度にて1次浸炭処理を行った後、A1点以下に急冷し、その後A1点以上Acm点以下の温度にて2次浸炭処理を行うことを特徴とする。すなわち、図1(a)・(b)に示すように、まず1次浸炭処理をCの固溶限が大きく且つ炭化物の析出しないAcm点以上の高温で炭化物を析出させないように行う(ab間)。次に、A1点以下に急冷してCを過飽和に固溶させた状態にする(bc間)。その後、再びA1点以上の温度に加熱して、Cの過飽和な素地から炭化物の微細な析出核を均一に析出させ(de間:図2上段参照)、続いてさらに2次浸炭処理を施して析出核を成長させる(ef間:図2下段参照)。このような多段的な浸炭処理を行うことにより、網目状炭化物を析出させることなく、炭化物を微細分散制御した高C濃度の浸炭を行うことができる。これに対し、図3に示すように、Acm点未満となる高C濃度域まで浸炭すると、網目状の粗大炭化物が非常に生成しやすくなる。なお、浸炭処理は、上記したように真空浸炭処理(1000Pa以下)により行われる。   In order to manufacture the carburized parts described above, the carburized part manufacturing method of the present invention is such that after the primary carburizing treatment is performed on the steel containing the steel components at a temperature of Acm point or higher, it is rapidly cooled to A1 point or lower. Then, a secondary carburizing process is performed at a temperature not lower than the A1 point and not higher than the Acm point. That is, as shown in FIGS. 1 (a) and 1 (b), first, the primary carburizing process is performed so as not to precipitate carbide at a temperature higher than the Acm point where the solid solubility limit of C is large and carbide does not precipitate (between ab and ab). ). Next, it is rapidly cooled below the A1 point to bring C into a supersaturated state (between bc). After that, it is heated again to a temperature higher than the A1 point to uniformly precipitate fine carbide nuclei from the supersaturated substrate of C (between de: see the upper part of FIG. 2), followed by further secondary carburizing treatment. Precipitation nuclei are grown (between ef: see the lower part of FIG. 2). By performing such a multi-stage carburizing process, carburization at a high C concentration in which carbides are finely dispersed can be performed without causing precipitation of network carbides. On the other hand, as shown in FIG. 3, when carburizing to a high C concentration region that is less than the Acm point, a net-like coarse carbide is very easily generated. Note that the carburizing process is performed by the vacuum carburizing process (1000 Pa or less) as described above.

また、上記2次浸炭処理後には、必要に応じてピーニング処理を施すことができ、これにより更なる高強度化を図ることができる。ピーニング処理は、例えばショットピーニング(S/P)やウォータージェットピーニング(W/J)を適用できる。   Moreover, after the said secondary carburizing process, a peening process can be performed as needed, and thereby further strengthening can be achieved. For example, shot peening (S / P) or water jet peening (W / J) can be applied to the peening process.

以下、本発明の効果を確認するために行った試験について説明する。
まず、表1に示す化学組成を有する鋼を150kg高周波真空誘導炉にて溶製した。得られた鋼塊は、直径90mmの丸棒に圧延或いは熱間鍛造し、さらに必要に応じてφ22〜32の棒鋼に熱間鍛造し、試験用の素材とした。
なお、表1中の比較例の組成において、本発明で規定する組成範囲を逸脱しているものには、下限を下回る場合は下向矢印(↓)、上限を上回る場合は上向矢印(↑)を付している。
Hereinafter, tests conducted for confirming the effects of the present invention will be described.
First, steel having the chemical composition shown in Table 1 was melted in a 150 kg high frequency vacuum induction furnace. The obtained steel ingot was rolled or hot-forged into a round bar having a diameter of 90 mm, and further hot-forged into a steel bar having a diameter of 22 to 32 as necessary to obtain a test material.
In addition, in the composition of the comparative example in Table 1, those that deviate from the composition range specified in the present invention include a downward arrow (↓) when lower than the lower limit, and an upward arrow (↑) when higher than the upper limit. ) Is attached.

Figure 0004188307
Figure 0004188307

得られた試験材に対して以下の評価を行った。
(1)製造性評価
焼鈍後の硬さを評価することで製造性を評価した。
φ32×100Lの丸棒試験片を920℃×1時間の焼鈍処理を施し、その後さらに760℃×5時間の焼鈍処理を施して、横断面〜R/2位置の硬さを測定した。なお、硬さ測定はJIS
Z 2245に準拠(Bスケール)し、HRB90以下であることを指標とした。
The following evaluation was performed on the obtained test materials.
(1) Manufacturability evaluation Manufacturability was evaluated by evaluating the hardness after annealing.
A φ32 × 100 L round bar test piece was subjected to an annealing treatment of 920 ° C. × 1 hour, and further subjected to an annealing treatment of 760 ° C. × 5 hours, and the hardness of the cross section to the R / 2 position was measured. The hardness measurement is JIS
It was based on Z 2245 (B scale), and the index was HRB 90 or less.

(2)浸炭基礎特性評価
(2−1)浸炭処理方法
φ22の鍛造棒鋼よりφ10×100Lの丸棒試験片を作製し、浸炭性試験片とした。
浸炭処理は真空浸炭炉を用い、浸炭ガスとしてプロパンを使用して、プロパンガス流量・拡散時間・浸炭温度を調整することで表面C濃度を制御した。浸炭処理は、表面C濃度が1.5%と2.5%となるような2水準の条件で行った。
さらに実施例3については、表面C濃度の影響を調査するために0.8〜3.2%の範囲で浸炭処理を行った。
浸炭条件は以下の通りである。
・1次浸炭処理:最表面のC濃度が1.2%程度になるように、1100℃で70分間浸炭処理を行った後、500℃以下の温度域までガス冷却によって急冷して、炭化物が析出しない程度の高濃度域までCを鋼中に浸入させた。
・2次浸炭処理:目標浸炭濃度に応じて、850〜900℃の温度域で保持して析出処理を行った後、さらに目標のC濃度に応じて850〜1000℃の温度範囲でさらに60〜90分間浸炭処理を行い、130℃の油槽に焼入れ処理を実施した。また焼入れ処理後に180℃×120minの焼戻し処理を実施した。
(2) Carburizing Basic Characteristic Evaluation (2-1) Carburizing Treatment Method A round bar test piece of φ10 × 100 L was produced from a forged steel bar of φ22 and used as a carburizing test piece.
The carburization process was performed using a vacuum carburizing furnace, using propane as the carburizing gas, and controlling the propane gas flow rate, diffusion time, and carburizing temperature to control the surface C concentration. The carburizing treatment was performed under two levels of conditions such that the surface C concentration was 1.5% and 2.5%.
Further, in Example 3, carburizing treatment was performed in the range of 0.8 to 3.2% in order to investigate the influence of the surface C concentration.
The carburizing conditions are as follows.
-Primary carburization treatment: Carburizing treatment is performed at 1100 ° C for 70 minutes so that the C concentration on the outermost surface is about 1.2%, and then quenched by gas cooling to a temperature range of 500 ° C or less, so that the carbide C was infiltrated into the steel to a high concentration range where it did not precipitate.
-Secondary carburizing treatment: After carrying out the precipitation treatment in a temperature range of 850 to 900 ° C. depending on the target carburizing concentration, and further in the temperature range of 850 to 1000 ° C. depending on the target C concentration. Carburizing treatment was performed for 90 minutes, and quenching treatment was performed in an oil bath at 130 ° C. Moreover, the tempering process of 180 degreeC * 120min was implemented after the quenching process.

(2−2)評価項目
以下、評価を行った項目について説明する。評価結果を表2に示す。また、実施例3について表面C濃度を変化させたものは、評価結果を表3に示す。
・表面C濃度
浸炭処理後、処理試験片の表面から0.2mmの位置までのダライ粉からC濃度を測定した。
・炭化物面積率
浸炭焼入・焼戻し処理を行った丸棒試験片の横断面を研磨し、ピクラルで腐食をした後、最表面から50μmの位置をSEMで写真撮影し(観察倍率3000倍)、画像解析をすることにより面積率の測定を行った。
・炭化物サイズ
上記と同じ条件で観察し、10μm以下の炭化物の占める面積率を測定した。
・網目状炭化物の有無
上記と同じ条件で観察し、網目状炭化物の有無を調査した。
・不完全焼入組織の有無
浸炭焼入・焼戻し処理を行った丸棒試験片の横断面を研磨し、ナイタールで腐食させた後、最表面から50μmの位置を光学顕微鏡で観察し、不完全焼入組織の有無を調査した。
・粒界酸化層深さ
浸炭焼入・焼戻し処理を行った丸棒試験片の横断面を研磨し、未腐食の状態を光学顕微鏡で観察し、最表面の粒界に沿って黒く見える層の深さを測定した。
・焼戻し軟化抵抗性
浸炭焼入・焼戻し処理を行った丸棒試験片をさらに300℃×180minの焼戻し処理を行い、横断面を研磨して、最表面から50μmの位置の硬さを測定した。なお、硬さ測定はJIS
Z 2244に準拠(HV0.3)し、Hv750以上を十分な強度向上効果(≧30%:SCR420−ガス共析浸炭対比)が見込める指標とした。
(2-2) Evaluation items Hereinafter, the evaluated items will be described. The evaluation results are shown in Table 2. Table 3 shows the evaluation results of Example 3 in which the surface C concentration was changed.
-Surface C density | concentration After carburizing process, C density | concentration was measured from the Dalai powder to the position of 0.2 mm from the surface of a process test piece.
・ Carbide area ratio After polishing the cross section of the round bar test piece that had been carburized and quenched and tempered, and corroded with picral, photographed the position of 50 μm from the outermost surface with SEM (observation magnification 3000 times), The area ratio was measured by image analysis.
-Carbide size It observed on the same conditions as the above, and measured the area ratio which the carbide | carbonized_material of 10 micrometers or less occupies.
-Presence / absence of reticulated carbide Observed under the same conditions as above, the presence / absence of reticulated carbide was investigated.
-Existence of incompletely hardened structure After polishing the cross section of the round bar test piece that had been carburized and quenched and tempered and corroded with nital, the position of 50 μm from the outermost surface was observed with an optical microscope, and incomplete The presence or absence of a hardened structure was investigated.
・ Depth of grain boundary oxide layer The cross section of a round bar test piece that has been carburized and quenched and tempered is polished, the uncorroded state is observed with an optical microscope, and the layer that appears black along the outermost grain boundary The depth was measured.
-Temper softening resistance The round bar test piece which performed the carburizing quenching and tempering process was further tempered at 300 degreeC x 180 minutes, the cross section was grind | polished, and the hardness of the position of 50 micrometers from the outermost surface was measured. The hardness measurement is JIS
In accordance with Z 2244 (HV 0.3), Hv 750 or more was set as an index that can be expected to have a sufficient strength improvement effect (≧ 30%: SCR420—gas eutectoid carburization contrast).

Figure 0004188307
Figure 0004188307

表2によると、実施例1〜10は、いずれも製造性(焼鈍硬さ≦HRB90)に問題無く、強度劣化を招く不完全焼入組織や網目上炭化物・粒界酸化なども見られず、十分な300℃での焼戻し硬度(≧750Hv)が得られる。これに対し、比較例2・4・6・8〜10は焼鈍後の硬さが高く、製造性に問題がある。比較例3・8は、Siが低い又はCrが高いため炭化物の微細分散制御が十分でなく、網目状炭化物やその他の粗大な炭化物が生成し、強度低下が懸念される。比較例4はSiが高すぎて、製造性に問題があるとともに、浸炭性が阻害され十分な浸炭を行うことが出来ない。比較例5・7は、Cr・Mn量が低く、焼入性が不足し、不完全焼入組織が見られており、強度低下が懸念される。   According to Table 2, all of Examples 1 to 10 have no problem in manufacturability (annealing hardness ≦ HRB90), and incompletely hardened structure and carbide on the network, grain boundary oxidation, etc. causing strength deterioration are not seen, A sufficient tempering hardness (≧ 750 Hv) at 300 ° C. is obtained. On the other hand, Comparative Examples 2, 4, 6, 8 to 10 have high hardness after annealing, and have a problem in manufacturability. In Comparative Examples 3 and 8, since Si is low or Cr is high, fine dispersion control of carbides is not sufficient, and network carbides and other coarse carbides are generated, and there is a concern about strength reduction. In Comparative Example 4, since Si is too high, there is a problem in manufacturability, and the carburizing property is hindered and sufficient carburizing cannot be performed. In Comparative Examples 5 and 7, the amount of Cr · Mn is low, the hardenability is insufficient, an incompletely hardened structure is seen, and there is a concern about strength reduction.

Figure 0004188307
Figure 0004188307

表3によると、表面C濃度が1.2%未満の浸炭では、面疲労強度は向上するものの、十分な強度改善効果(≧30%)は得られない。一方、表面C濃度が3.0%を超える浸炭では、十分な300℃焼戻し硬さは得られるものの、網目状炭化物および粗大な炭化物が見られ、十分な強度改善効果が得られていない。   According to Table 3, carburization with a surface C concentration of less than 1.2% improves the surface fatigue strength but does not provide a sufficient strength improvement effect (≧ 30%). On the other hand, when carburization with a surface C concentration exceeding 3.0%, a sufficient tempering hardness of 300 ° C. is obtained, but network carbides and coarse carbides are seen, and a sufficient strength improvement effect is not obtained.

(3)面疲労強度評価
面疲労強度の評価はローラーピッティング試験機によって行い、107サイクルでピッティングを生じない負荷面圧を面疲労強度と定義して評価した。具体的には、まずφ32mmの丸棒を950℃で加熱保持後に徐冷して軟化させた後、試験部直径26mmのローラーピッティング試験片を機械加工によって作製した。また、試験片の相手ローラーにはSUJ2を用い、HRC61の硬さとなるように焼入れ焼戻し処理を施した。なお、大ローラーの曲率半径は150Rおよび700Rである。
浸炭処理は、発明鋼の基礎評価試験を行うために実施した浸炭処理と同時に行ったものである。なお、浸炭処理後のローラーピッティング試験片の一部を300℃×3時間保持の焼戻しを行い、炭素濃度・炭化物面積率・最大炭化物寸法・焼戻し硬さなども合せて評価した。
面疲労強度は、JIS−SCR420のガス共析浸炭材の面疲労強度を1.0とし、各々の材料の強度を指数で記載した。なお、JIS−SCR420Hガス共析浸炭鋼と対比して30%以上の十分な強度改善効果があることを指標とした。
以上の評価結果を表4に示す。
(3) Surface fatigue strength evaluation The surface fatigue strength was evaluated by a roller pitting tester, and the load surface pressure at which no pitting was generated in 107 cycles was defined as the surface fatigue strength. Specifically, first, a φ32 mm round bar was heated and held at 950 ° C. and then gradually cooled and softened, and then a roller pitting test piece having a test part diameter of 26 mm was produced by machining. Moreover, SUJ2 was used for the counter roller of the test piece, and a quenching and tempering treatment was performed so as to have a hardness of HRC61. In addition, the curvature radius of a large roller is 150R and 700R.
The carburizing treatment is performed at the same time as the carburizing treatment performed for conducting the basic evaluation test of the invention steel. In addition, a part of the roller pitting test piece after the carburizing treatment was tempered by holding at 300 ° C. for 3 hours, and the carbon concentration, the carbide area ratio, the maximum carbide size, the tempering hardness, and the like were also evaluated.
As for the surface fatigue strength, the surface fatigue strength of the gas eutectoid carburized material of JIS-SCR420 is defined as 1.0, and the strength of each material is described by an index. In addition, it was set as the parameter | index that there exists a sufficient strength improvement effect of 30% or more compared with JIS-SCR420H gas eutectoid carburized steel.
The above evaluation results are shown in Table 4.

Figure 0004188307
Figure 0004188307

表4によると、実施例1〜10は、いずれも十分な強度改善効果(≧30%)が得られている。これに対し、比較例1は、芯部の強度が不足し強度が低い。また、比較例2・4・6・9・10は、強度は十分に改善されるが、製造性に問題がある。比較例3・8は、網目状炭化物やその他の粗大な炭化物が生成し、十分な強度改善効果が得られない。比較例5・7はCr・Mn量が低く、焼入性が不足し、不完全焼入組織が見られており、十分な強度改善効果が得られていない。   According to Table 4, Examples 1 to 10 all have a sufficient strength improvement effect (≧ 30%). On the other hand, in Comparative Example 1, the strength of the core is insufficient and the strength is low. In Comparative Examples 2, 4, 6, 9, and 10, the strength is sufficiently improved, but there is a problem in manufacturability. In Comparative Examples 3 and 8, mesh-like carbides and other coarse carbides are generated, and a sufficient strength improvement effect cannot be obtained. In Comparative Examples 5 and 7, the Cr / Mn amount is low, the hardenability is insufficient, an incompletely hardened structure is observed, and a sufficient strength improvement effect is not obtained.

以上の試験によって、本発明は、表面に炭化物が微細かつ大量に析出し、また表面の粒界酸化層が実質的に存在せず、表面硬度・強度が高いことが確認された。   From the above tests, it was confirmed that the present invention had a fine and large amount of carbides precipitated on the surface, substantially no grain boundary oxide layer on the surface, and high surface hardness and strength.

本発明の浸炭部品の製造方法に係る浸炭処理の説明図Explanatory drawing of the carburizing process which concerns on the manufacturing method of the carburized component of this invention 図1の浸炭処理中における鋼の断面模式図及び断面観察図Cross-sectional schematic view and cross-sectional observation view of steel during the carburizing process of FIG. 本発明とは異なる浸炭処理の例を説明する図及び断面観察図The figure explaining the example of the carburizing process different from this invention, and a cross-sectional observation figure 本発明の浸炭部品の断面観察図Cross-sectional observation view of carburized parts of the present invention

Claims (3)

質量%で、C:0.01〜0.30%,Si:0.80〜1.50%,Mn:0.30〜1.20%,Cr:2.12〜5.5%を含有し、残部がFe及び不可避不純物からなる鋼にて構成され、
Acm点以上の温度にて1次浸炭処理を行った後、A1点以下に急冷し、その後A1点以上Acm点以下の温度で、1次浸炭後の表面C濃度よりも高い表面C濃度となるように2次浸炭処理を行なう真空浸炭処理を施したとき、前記鋼の表面から0.2mm深さまでの平均C濃度が1.61%以上3.0%以下、表面から50μm深さまでの炭化物面積率が15%以上60%以下であり、且つ寸法10μm以下の炭化物が全体の90%以上を占めるように炭化物が微細分散析出してなり、更に粒界酸化層深さが1μm以下であることを特徴とする浸炭部品。
In mass%, C: 0.01 to 0.30%, Si: 0.80 to 1.50%, Mn: 0.30 to 1.20%, Cr: 2.12 to 5.5% , The balance is made of steel consisting of Fe and inevitable impurities ,
After performing the primary carburizing treatment at a temperature not lower than the Acm point, it is rapidly cooled below the A1 point, and then at a temperature not lower than the A1 point and not higher than the Acm point, the surface C concentration is higher than the surface C concentration after the primary carburizing. Thus, when the carburizing treatment is performed, the average C concentration from the steel surface to the depth of 0.2 mm is 1.61 % to 3.0%, and the carbide area from the surface to the depth of 50 μm. The carbide is finely dispersed and precipitated so that the carbide is not less than 15% and not more than 60%, and the carbide having a size of 10 μm or less accounts for 90% or more of the whole, and the grain boundary oxide layer depth is 1 μm or less. Features carburized parts.
鋼成分として更に、Mo:0.2〜1.0%,V:0.2〜1.0%のうち1種または2種を含有することを特徴とする請求項1に記載の浸炭部品。   The carburized component according to claim 1, further comprising one or two of Mo: 0.2 to 1.0% and V: 0.2 to 1.0% as a steel component. 質量%で、C:0.01〜0.30%,Si:0.80〜1.50%,Mn:0.30〜1.20%,Cr:2.12〜5.5%を含有し、残部がFe及び不可避不純物からなる鋼に対し、In mass%, C: 0.01 to 0.30%, Si: 0.80 to 1.50%, Mn: 0.30 to 1.20%, Cr: 2.12 to 5.5% , Against the steel whose balance is Fe and inevitable impurities,
Acm点以上の温度にて1次浸炭処理を行った後、A1点以下に急冷し、その後A1点以上Acm点以下の温度で、1次浸炭後の表面C濃度よりも高い表面C濃度となるように2次浸炭処理を行なう真空浸炭処理を施すことにより、前記鋼の表面から0.2mm深さまでの平均C濃度が1.61%以上3.0%以下、表面から50μm深さまでの炭化物面積率が15%以上60%以下であり、且つ寸法10μm以下の炭化物が全体の90%以上を占めるように炭化物が微細分散析出してなり、更に粒界酸化層深さが1μm以下となすことを特徴とする浸炭部品の製造方法。  After performing the primary carburizing treatment at a temperature not lower than the Acm point, it is rapidly cooled below the A1 point, and then at a temperature not lower than the A1 point and not higher than the Acm point, the surface C concentration is higher than the surface C concentration after the primary carburizing. Thus, by performing the vacuum carburizing process in which the secondary carburizing process is performed, the average C concentration from the surface of the steel to the depth of 0.2 mm is 1.61% to 3.0%, and the carbide area from the surface to the depth of 50 μm The carbide is finely dispersed and precipitated so that the carbide having a rate of 15% to 60% and occupying 90% or more of the size is 10 μm or less, and further the grain boundary oxide layer depth is 1 μm or less. A method for manufacturing a carburized part.
JP2004358617A 2004-12-10 2004-12-10 Carburized parts and manufacturing method thereof Active JP4188307B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004358617A JP4188307B2 (en) 2004-12-10 2004-12-10 Carburized parts and manufacturing method thereof
US11/296,566 US20060130935A1 (en) 2004-12-10 2005-12-08 Carburized component and method of manufacturing the same
DE102005058903.0A DE102005058903B4 (en) 2004-12-10 2005-12-09 Carburized component and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358617A JP4188307B2 (en) 2004-12-10 2004-12-10 Carburized parts and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2006161141A JP2006161141A (en) 2006-06-22
JP2006161141A5 JP2006161141A5 (en) 2006-11-02
JP4188307B2 true JP4188307B2 (en) 2008-11-26

Family

ID=36590721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358617A Active JP4188307B2 (en) 2004-12-10 2004-12-10 Carburized parts and manufacturing method thereof

Country Status (3)

Country Link
US (1) US20060130935A1 (en)
JP (1) JP4188307B2 (en)
DE (1) DE102005058903B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076535B2 (en) 2006-04-20 2012-11-21 大同特殊鋼株式会社 Carburized parts and manufacturing method thereof
JP4971751B2 (en) * 2006-11-06 2012-07-11 本田技研工業株式会社 Manufacturing method of high-concentration carburized steel
WO2008124238A2 (en) * 2007-04-05 2008-10-16 Swagelock Company Diffusion promoters for low temperature case hardening
EP2142680A1 (en) * 2007-04-06 2010-01-13 Swagelok Company Hybrid carburization with intermediate rapid quench
JP2010007117A (en) * 2008-06-25 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
US20100159235A1 (en) * 2008-12-18 2010-06-24 Scott Alan Johnston Wear component with a carburized case
WO2010071014A1 (en) * 2008-12-19 2010-06-24 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, transportation apparatus, and method of producing connecting rod
JP2011179026A (en) * 2010-02-26 2011-09-15 Sanyo Special Steel Co Ltd Steel for large toothed gear superior in repeating-shock resistance
JP5569588B2 (en) 2010-09-09 2014-08-13 トヨタ自動車株式会社 gear
JP6432932B2 (en) * 2014-09-01 2018-12-05 山陽特殊製鋼株式会社 High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP7270343B2 (en) 2018-06-18 2023-05-10 株式会社小松製作所 Method for manufacturing mechanical parts

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006034B2 (en) * 1990-05-30 2000-02-07 日産自動車株式会社 High strength mechanical structural members with excellent surface pressure strength
JP3219167B2 (en) * 1992-11-17 2001-10-15 大同特殊鋼株式会社 Manufacturing method of high surface pressure parts
JP3308377B2 (en) * 1994-03-09 2002-07-29 大同特殊鋼株式会社 Gear with excellent tooth surface strength and method of manufacturing the same
JP2004285384A (en) * 2003-03-20 2004-10-14 Daido Steel Co Ltd High strength carburized component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Also Published As

Publication number Publication date
DE102005058903A1 (en) 2006-07-06
JP2006161141A (en) 2006-06-22
DE102005058903B4 (en) 2017-04-27
US20060130935A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR100514120B1 (en) High-strength spring steel and spring steel wire
US20060130935A1 (en) Carburized component and method of manufacturing the same
EP2530178A1 (en) Case-hardened steel and carburized material
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP4687616B2 (en) Steel carburized or carbonitrided parts
CN112292471B (en) Mechanical component
JP6628014B1 (en) Steel for parts to be carburized
JP5076535B2 (en) Carburized parts and manufacturing method thereof
JP2009263763A (en) Method for manufacturing steel material to be carburized
JP4853366B2 (en) Steel carburized or carbonitrided parts with shot peening
JP5397308B2 (en) Hot-worked steel for case hardening
JP6766362B2 (en) Skin-baked steel with excellent coarse grain prevention characteristics, fatigue characteristics, and machinability during carburizing and its manufacturing method
JP4102866B2 (en) Gear manufacturing method
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
US11952668B2 (en) Carburized part and method for manufacturing same
JP7270343B2 (en) Method for manufacturing mechanical parts
JP2004285384A (en) High strength carburized component
KR20100077250A (en) High-strength spring steel and
JP6680406B1 (en) Machine parts and method of manufacturing machine parts
JP5969204B2 (en) Induction hardened gear having excellent wear resistance and surface fatigue characteristics and method for producing the same
JP6705344B2 (en) Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method
JP6922415B2 (en) Carburized parts
JP2004027305A (en) Case hardening member for rolling part
JP4821582B2 (en) Steel for vacuum carburized gear
JP6828593B2 (en) Carburized parts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Ref document number: 4188307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250