JP2004283731A - Method for treating boron-containing wastewater - Google Patents

Method for treating boron-containing wastewater Download PDF

Info

Publication number
JP2004283731A
JP2004283731A JP2003079404A JP2003079404A JP2004283731A JP 2004283731 A JP2004283731 A JP 2004283731A JP 2003079404 A JP2003079404 A JP 2003079404A JP 2003079404 A JP2003079404 A JP 2003079404A JP 2004283731 A JP2004283731 A JP 2004283731A
Authority
JP
Japan
Prior art keywords
boron
wastewater
treating
containing wastewater
calcium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079404A
Other languages
Japanese (ja)
Inventor
Junichi Hirota
淳一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003079404A priority Critical patent/JP2004283731A/en
Publication of JP2004283731A publication Critical patent/JP2004283731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating boron-containing wastewater which can efficiently remove boron from wastewater such as wastewater discharged from various manufacturing processes, smoke cleaning wastewater from a refuse incineration plant, and flue gas desulfurization wastewater. <P>SOLUTION: In the method for treating the boron-containing wastewater, an aluminum salt, a sparingly soluble calcium salt, and slaked lime are added to the boron-containing wastewater to adjust its pH to ≥8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、各種製造工程等から出る排水やゴミ焼却場の洗煙排水や排煙脱硫排水等の排水から効率よくホウ素を除去することができるホウ素を含んだ排水の処理方法に関するものである。
【0002】
【従来の技術】
【非特許文献1】「朝田裕之、恵藤良弘:用水と排水」Vol.29 NO.4(p.283−289)2000年
【0003】
最近では、排水の規制強化に伴いホウ素も環境基準健康項目に移行されたため、各種製造工程等から出る排水やゴミ焼却場の洗煙排水や排煙脱硫排水等のホウ素を含有した排水もホウ素の基準をクリヤするように除去処理する必要が生じてきた。このホウ素の除去方法としては、非特許文献1に示されるように、(1)硫酸バンドと消石灰を用いる凝集沈殿法、(2)イオン交換樹脂を用いるイオン交換法、(3)有機溶媒を用いる溶媒抽出法、(4)逆浸透(RO)処理法等が知られている。
【0004】
しかしながら、凝集沈殿法では汚泥発生量が多いという問題点があり、イオン交換法ではホウ素の選択性が低いため除去率に劣るとともに処理コストが高くなるという問題点があった。また、溶媒抽出法では溶媒の漏出による汚染の危険性があるとともに処理コストが高くなるという問題点があり、逆浸透(RO)処理法ではホウ素の除去率に劣るという問題点があった。更に、排水中にはホウ素の他フッ素も含まれている場合があり、ホウ素とフッ素を同時に除去処理する有効な技術は存在しておらず、その開発が待たれているのが現状であった。
【0005】
【発明のが解決しようとする課題】
本発明は上記のような従来の問題点を解決して、排水から効率よくホウ素を除去することができるとともに、汚泥発生量が少なくかつ処理コストも低減することができ、更にはホウ素とフッ素の2つを同時に除去処理することができるホウ素を含んだ排水の処理方法を提供することを目的して完成されたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明のホウ素を含んだ排水の処理方法は、ホウ素を含んだ排水に、アルミニウム塩、難溶性のカルシウム塩及び消石灰を添加しpHが8以上となるように調整することを特徴とするものである。
【0007】
【発明の実施の形態】
以下に、本発明の好ましい形態を示す。
本発明では、ホウ素を含んだ排水にアルミニウム塩、難溶性カルシウム塩及び消石灰を添加することでpH8以上に調整する。
ホウ素は水中においては、ホウ酸あるいはフルオロホウ酸になっている場合が多い。また、ホウ酸はpHによって形が変わり、高pHの場合はB(OH) になるといわれている。また、pH6〜11では低濃度の場合、HBOあるいはB(OH) で存在し、高濃度の場合、B(OH) 、B(OH)、B(OH) 、B(OH) のようにポリマーが形成される。本発明では、これらの様々な形態をとるホウ素を、アルカリ性域でアルミニウム塩と消石灰により生成される各種のアルミン酸カルシウム(xCaO・yAl・zHO:x,y,z>0)に吸着させることにより凝集沈殿除去する。
なお、アルミニウム塩としては塩化アルミニウムのような塩素化合物より硫酸バンドが効果的である。これは、塩化物イオンの共存(5000mg/L程度以上)が悪影響を及ぼすためと考えられる。
【0008】
また、従来のアルミニウム塩と消石灰を添加することでpHをアルカリ性域に調整する方法でもホウ素はある程度除去可能であるが、本発明では、さらに難溶性のカルシウム塩を添加する事を特徴とする。この難溶性のカルシウム塩の添加により、上記のホウ素を吸着するアルミン酸カルシウムの沈降性を向上させることができる。しかも、消石灰の添加量を少なくすることができることから、汚泥発生量を削減でき、かつ発生する汚泥の含水率を従来より低いものとすることができる。
【0009】
第一の理由は、難溶性カルシウム塩を添加することで、上記のアルミン酸カルシウムの見かけの比重が大きくなり、従来法である添加なしでは沈殿させることが出来なかったアルミン酸カルシウムの微細な結晶をも沈殿・除去させることが可能となるため、結果としてホウ素除去率の向上がはかられ、また沈殿した汚泥の含水率を低くすることが出来るので、発生汚泥量(含水分)を低減させることが出来る。
また、難溶性カルシウム塩を添加することで、従来よりも比重が大きく沈降性のよいアルミン酸カルシウム結晶を効率よく生成できるようになることから、従来の消石灰添加量よりも少ない添加量でホウ素除去が可能となる。なお、難溶性カルシウム塩を添加する代わりに、同じく難溶性カルシウム塩である消石灰自体を増量するとpHが13程度まで上昇し、逆にホウ素除去率が減少するので効果はない。
【0010】
次いで、第二の理由として、難溶性カルシウム塩として例えば硫酸カルシウム二水和物を用いた場合、アルミン酸カルシウムだけでなくエトリンガイド(3CaO・Al・3CaSO・32HO)等が生成し、これにホウ素を除去する効果がある事があげられる。すなわち、難溶性カルシウム塩を添加することにより、エトリンガイド等のアルミン酸カルシウム以外のホウ素除去物質が生成され、従来法よりもホウ素除去率が向上するのである。
なお、難溶性のカルシウム塩としては、炭酸カルシウム(CaCO)、硫酸カルシウム二水和物(CaSO・2HO)、フッ化カルシウム(CaF)、フルオロアパタイト(Ca10(PO)、ヒドロキシアパタイト(Ca10(PO(OH))等を用いることができる。
【0011】
さらに排水がフッ素を含んでいる場合には、一段目としてカルシウム塩の添加等によりフッ化カルシウム、もしくはフルオロアパタイトを生成させてフッ素を除去した後、その汚泥を二段目で、本発明における難溶性カルシウム塩として添加しホウ素除去に利用することで、二段目におけるホウ素除去率の向上が図られる。この結果、排水中に含まれたホウ素とフッ素の2つを同時に除去処理することができることとなりフッ素除去汚泥を有効にホウ素除去に利用することで、フッ素・ホウ素除去全体としても、フッ素、ホウ素を別々に処理するよりもさらに発生汚泥量を削減することが出来るのである。
なお、フッ素・ホウ素が共存する排水ではホウ素とフッ素が化合してフッ素の一部がフルオロホウ酸イオン(BH )の形態になっている場合があり、従来の凝集沈殿法では除去することができない。その場合はカルシウム塩および/またはアルミニウム塩を添加することにより、次式のようにフッ化カルシウムまたはフッ化アルミニウムとホウ酸に分解した後、本発明を適用することで除去可能となる。
【0012】
【化1】

Figure 2004283731
【化2】
Figure 2004283731
【0013】
【実施例】
ホウ素含有排水:70mg−B/L:500mlに対して硫酸バンド(工業用8%)を500mg−Al/L添加した後、難溶性カルシウム塩(炭酸カルシウム(CaCO))、硫酸カルシウム二水和物(CaSO・2HO)、フッ化カルシウム(CaF)、フルオロアパタイト(Ca10(PO)、ヒドロキシアパタイト(Ca10(PO(OH))のいずれかを、それぞれ0.5g/500ml、1.0g/500ml、1.5g/500ml添加し、消石灰(Ca(OH))を2g/500ml添加した時の凝集沈殿結果を表1に示す。
なお、硫酸バンド(工業用8%)を500mg−Al/L添加した後、消石灰のみを2g/500ml、および3g/500mlした添加した時の凝集沈殿結果を比較例として示す。
凝集条件は、
急速撹拌120rpm:5分間
緩速撹拌 30rpm:35分間
静置 30分間
である。
本発明の処理方法によればホウ素除去率はいずれも80%以上であり、比較例の70%前後であったのに比べて向上していることが判った。また、汚泥発生量についても、第1番目の比較例の場合を100とすると、本発明の処理方法の場合はCaCO、フルオロアパタイト、ヒドロキシアパタイト併用の3番目のデータを除いて他は全て減少していることが確認できた。
【0014】
【表1】
Figure 2004283731
【0015】
【発明の効果】
以上の説明からも明らかなように、本発明は排水から効率よくホウ素を除去することができるとともに、汚泥発生量が少なくかつ処理コストも低減することができ、更にはホウ素とフッ素の2つを同時に除去処理することができるものである。
よって、本発明は従来の問題点を一掃したホウ素を含んだ排水の処理方法として、産業の発展に寄与するところは極めて大である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating boron-containing wastewater that can efficiently remove boron from wastewater discharged from various manufacturing processes and the like, such as smoke washing wastewater from a waste incineration plant and flue gas desulfurization wastewater.
[0002]
[Prior art]
[Non-Patent Document 1] "Hiroyuki Asada, Yoshihiro Keito: Water and drainage," Vol. 29 NO. 4 (pp. 283-289) 2000
Recently, with the tightening of wastewater regulations, boron has also been transferred to environmental standard health items, so that wastewater containing boron, such as wastewater from various manufacturing processes, smoke washing wastewater from garbage incineration plants, and flue gas desulfurization wastewater, is also used. It has become necessary to perform a removal process so as to clear the reference. As a method of removing boron, as described in Non-Patent Document 1, (1) a coagulation precipitation method using a sulfate band and slaked lime, (2) an ion exchange method using an ion exchange resin, and (3) an organic solvent are used. Solvent extraction, (4) reverse osmosis (RO) treatment, and the like are known.
[0004]
However, the coagulation sedimentation method has a problem that a large amount of sludge is generated, and the ion exchange method has a problem that the selectivity of boron is low and thus the removal rate is low and the treatment cost is high. Further, the solvent extraction method has a problem that there is a risk of contamination due to leakage of the solvent and the processing cost is high, and the reverse osmosis (RO) processing method has a problem that the boron removal rate is poor. Furthermore, wastewater may contain fluorine in addition to boron, and there is no effective technology to remove boron and fluorine at the same time, and development has been awaited at present. .
[0005]
[Problems to be solved by the invention]
The present invention solves the conventional problems as described above, can efficiently remove boron from wastewater, can reduce the amount of sludge generated and reduce the treatment cost, and can further reduce the amount of boron and fluorine. The present invention has been completed for the purpose of providing a method for treating wastewater containing boron, which can remove two of them at the same time.
[0006]
[Means for Solving the Problems]
The method of treating wastewater containing boron according to the present invention, which has been made to solve the above-mentioned problem, is characterized in that an aluminum salt, a sparingly soluble calcium salt and slaked lime are added to wastewater containing boron so that the pH becomes 8 or more. It is characterized by adjusting to.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, the pH is adjusted to 8 or more by adding an aluminum salt, a sparingly soluble calcium salt and slaked lime to wastewater containing boron.
Boron often becomes boric acid or fluoroboric acid in water. Also, boric acid will change the shape by pH, in the case of high pH B (OH) 4 - it is said to be. At a pH of 6 to 11, when the concentration is low, H 3 BO 3 or B (OH) 4 is present, and when the concentration is high, B 3 O 3 (OH) 4 , B 5 O 6 (OH) , B 3 O 3 (OH) 5 2 -, B 4 O 5 (OH) 4 2 - polymer is formed as. In the present invention, the boron taking these various forms, various calcium aluminate produced by aluminum salts and hydrated lime in an alkaline region (xCaO · yAl 2 O 3 · zH 2 O: x, y, z> 0) Agglomerated sediment is removed by adsorbing to the surface.
As the aluminum salt, a sulfuric acid band is more effective than a chlorine compound such as aluminum chloride. This is probably because the coexistence of chloride ions (about 5000 mg / L or more) has an adverse effect.
[0008]
Although boron can be removed to some extent by a conventional method of adjusting the pH to an alkaline range by adding an aluminum salt and slaked lime, the present invention is characterized by adding a sparingly soluble calcium salt. The addition of the hardly soluble calcium salt can improve the sedimentation of the above-mentioned calcium aluminate that adsorbs boron. Moreover, since the amount of slaked lime can be reduced, the amount of sludge generated can be reduced, and the water content of the generated sludge can be made lower than before.
[0009]
The first reason is that by adding a sparingly soluble calcium salt, the apparent specific gravity of the above-mentioned calcium aluminate increases, and fine crystals of calcium aluminate that could not be precipitated without the conventional method of addition. Can also be precipitated and removed, so that the boron removal rate can be improved as a result, and the water content of the settled sludge can be reduced, so that the amount of generated sludge (water content) can be reduced. I can do it.
In addition, by adding a sparingly soluble calcium salt, it becomes possible to efficiently generate calcium aluminate crystals having a large specific gravity and a good sedimentation property compared to the conventional one, so that boron is removed with a smaller addition amount than the conventional slaked lime addition amount. Becomes possible. It should be noted that increasing the amount of slaked lime itself, which is also a sparingly soluble calcium salt, instead of adding the sparingly soluble calcium salt, raises the pH to about 13 and conversely decreases the boron removal rate, so that there is no effect.
[0010]
Next, as a second reason, when, for example, calcium sulfate dihydrate is used as the hardly soluble calcium salt, not only calcium aluminate but also ethrin guide (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) and the like Is generated, which has the effect of removing boron. That is, by adding the hardly soluble calcium salt, a boron removing substance other than calcium aluminate, such as ettrine guide, is generated, and the boron removing rate is improved as compared with the conventional method.
The poorly soluble calcium salts include calcium carbonate (CaCO 3 ), calcium sulfate dihydrate (CaSO 4 .2H 2 O), calcium fluoride (CaF 2 ), and fluoroapatite (Ca 10 (PO 4 ) 6 F 2 ), hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) or the like can be used.
[0011]
Furthermore, when the wastewater contains fluorine, the first step is to remove calcium by generating calcium fluoride or fluorapatite by adding a calcium salt or the like, and then removing the sludge in the second step. By adding it as a soluble calcium salt and using it for boron removal, the boron removal rate in the second stage can be improved. As a result, it is possible to simultaneously remove two of boron and fluorine contained in the wastewater, and by effectively utilizing the fluorine-removed sludge for boron removal, fluorine and boron can be removed as a whole by removing fluorine and boron. The amount of generated sludge can be further reduced as compared with the case of treating separately.
In the wastewater in which fluorine and boron coexist, boron and fluorine may be combined to form part of fluorine in the form of fluoroborate ion (BH 4 ). Can not. In that case, by adding a calcium salt and / or an aluminum salt, it is decomposed into calcium fluoride or aluminum fluoride and boric acid as in the following formula, and then can be removed by applying the present invention.
[0012]
Embedded image
Figure 2004283731
Embedded image
Figure 2004283731
[0013]
【Example】
Boron-containing wastewater: 70 mg-B / L: After adding 500 mg-Al / L of a sulfate band (8% for industrial use) to 500 ml, a sparingly soluble calcium salt (calcium carbonate (CaCO 3 )), calcium sulfate dihydrate things (CaSO 4 · 2H 2 O) , calcium fluoride (CaF 2), fluorapatite (Ca 10 (PO 4) 6 F 2), any one of hydroxyapatite (Ca 10 (PO 4) 6 (OH) 2) Are added at 0.5 g / 500 ml, 1.0 g / 500 ml, and 1.5 g / 500 ml, respectively, and the results of aggregation and precipitation when slaked lime (Ca (OH) 2 ) is added at 2 g / 500 ml are shown in Table 1.
As a comparative example, the results of aggregation and precipitation when adding 500 mg-Al / L of a sulfuric acid band (8% for industrial use) and then adding 2 g / 500 ml and 3 g / 500 ml of slaked lime alone are shown as comparative examples.
Aggregation conditions are:
Rapid stirring 120 rpm: 5 minutes Slow stirring 30 rpm: 35 minutes standing 30 minutes.
According to the treatment method of the present invention, the boron removal rate was 80% or more in each case, and it was found that the boron removal rate was improved compared to about 70% in the comparative example. Also, regarding the amount of sludge generated, when the case of the first comparative example is set to 100, in the case of the treatment method of the present invention, all the others except the third data of the combined use of CaCO 3 , fluorapatite and hydroxyapatite are reduced. I was able to confirm that.
[0014]
[Table 1]
Figure 2004283731
[0015]
【The invention's effect】
As is clear from the above description, the present invention can efficiently remove boron from wastewater, reduce the amount of generated sludge and reduce the treatment cost, and further reduce the amount of boron and fluorine. The removal process can be performed at the same time.
Therefore, the present invention greatly contributes to the development of industry as a method for treating wastewater containing boron that has eliminated the conventional problems.

Claims (1)

ホウ素を含んだ排水に、アルミニウム塩、難溶性のカルシウム塩、及び消石灰を添加しpHが8以上となるように調整することを特徴とするホウ素を含んだ排水の処理方法。A method for treating wastewater containing boron, comprising adding an aluminum salt, a sparingly soluble calcium salt, and slaked lime to the wastewater containing boron to adjust the pH to 8 or more.
JP2003079404A 2003-03-24 2003-03-24 Method for treating boron-containing wastewater Pending JP2004283731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079404A JP2004283731A (en) 2003-03-24 2003-03-24 Method for treating boron-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079404A JP2004283731A (en) 2003-03-24 2003-03-24 Method for treating boron-containing wastewater

Publications (1)

Publication Number Publication Date
JP2004283731A true JP2004283731A (en) 2004-10-14

Family

ID=33293523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079404A Pending JP2004283731A (en) 2003-03-24 2003-03-24 Method for treating boron-containing wastewater

Country Status (1)

Country Link
JP (1) JP2004283731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262186A (en) * 2004-03-22 2005-09-29 Nec Facilities Ltd Method for treating boron-containing waste water
JP2007144405A (en) * 2005-10-27 2007-06-14 Okutama Kogyo Co Ltd Method for treating boron-containing waste water and agent therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262186A (en) * 2004-03-22 2005-09-29 Nec Facilities Ltd Method for treating boron-containing waste water
JP4583786B2 (en) * 2004-03-22 2010-11-17 Necファシリティーズ株式会社 Treatment method for boron-containing wastewater
JP2007144405A (en) * 2005-10-27 2007-06-14 Okutama Kogyo Co Ltd Method for treating boron-containing waste water and agent therefor
JP4607847B2 (en) * 2005-10-27 2011-01-05 奥多摩工業株式会社 Treatment method and treatment agent for boron-containing wastewater

Similar Documents

Publication Publication Date Title
US20020023882A1 (en) Remover of fluoride ion and treatment method for wastewater containing fluoride ion using the same
JP2007301456A (en) Treatment method and treatment apparatus of boron containing waste water
JP2006218354A (en) Method for treating fluorine-containing waste water
JP2006055728A (en) Method and apparatus for treating fluorine-containing wastewater
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
TWI263623B (en) Effluent water treatment method
KR20210088799A (en) Apparatus and method for treating fluorine-containing wastewater
JP2004283731A (en) Method for treating boron-containing wastewater
JP2008168273A (en) Method for treating selenium-containing waste water
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP4034218B2 (en) Wastewater treatment method
JP3019009B2 (en) Treatment method for wastewater containing fluorine
JP2005324137A (en) Method for removing fluoride ion in wastewater
KR101802859B1 (en) Method and apparatus of treating fluoric wastewater
JPH06320168A (en) Treatment of waste water containing fluorine
JPH11267662A (en) Method of removing fluorine in waste water of flue gas desulfurization
JP2014184370A (en) Method for treating fluorine-containing effluent
KR0142932B1 (en) Treatment of fluorine-containing wastewater
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP3888534B2 (en) Treatment method for fluorine-containing wastewater
JP2751875B2 (en) Treatment method for wastewater containing fluorine
JP2005028246A (en) Treatment method for heavy metal-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A711 Notification of change in applicant

Effective date: 20080331

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080514

A521 Written amendment

Effective date: 20080604

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20080619

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080627

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20081017

Free format text: JAPANESE INTERMEDIATE CODE: A02