KR0142932B1 - Treatment of fluorine-containing wastewater - Google Patents

Treatment of fluorine-containing wastewater

Info

Publication number
KR0142932B1
KR0142932B1 KR1019950019976A KR19950019976A KR0142932B1 KR 0142932 B1 KR0142932 B1 KR 0142932B1 KR 1019950019976 A KR1019950019976 A KR 1019950019976A KR 19950019976 A KR19950019976 A KR 19950019976A KR 0142932 B1 KR0142932 B1 KR 0142932B1
Authority
KR
South Korea
Prior art keywords
fluorine
wastewater
rare earth
containing wastewater
treatment
Prior art date
Application number
KR1019950019976A
Other languages
Korean (ko)
Other versions
KR970006194A (en
Inventor
홍영호
양성훈
우상모
Original Assignee
이정성
주식회사엘지금속
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정성, 주식회사엘지금속 filed Critical 이정성
Priority to KR1019950019976A priority Critical patent/KR0142932B1/en
Publication of KR970006194A publication Critical patent/KR970006194A/en
Application granted granted Critical
Publication of KR0142932B1 publication Critical patent/KR0142932B1/en

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 불소가 함유된 폐수를 처리함에 있어서, 폐수의 PH를 중성이하로 조절한 후 가용성 희토류 화합물을 첨가시켜 불소제거 효율을 증대시키는 것에 관한 것으로, 불소함유 폐수를 가용성 희토류 화합물로 처리함에 이어서, 폐수에 무기산을 투입하여 PH를 중성이하로 조절 후 가용성 희토류 화합물을 첨가하여 폐수중의 불소를 제거시키는 것을 특징으로 하는 불소함유 폐수의 처리방법에 관한 기술이다.The present invention relates to increasing the efficiency of fluorine removal by adjusting the pH of wastewater to neutrality and then adding soluble rare earth compounds in treating wastewater containing fluorine, and then treating fluorine-containing wastewater with soluble rare earth compounds. , A method for treating fluorine-containing wastewater, characterized in that fluorine is removed from the wastewater by adding an inorganic acid to the wastewater to adjust the pH to neutral and then adding a soluble rare earth compound.

Description

[명의 명칭][Name]

불소함유 폐수의 처리방법Treatment of fluorine-containing wastewater

[발명의 상세한 설명]Detailed description of the invention

본 발명은 불소가 함유된 폐수의 처리방법에 관한 것으로, 보다 상세하게는 무기산을 투입하여 PH를 중성이하로 조절한 후 가용성 희토류 화합물을 첨가하므로서 불소제거 효율을 증대시키는 것에 관한 것이다.The present invention relates to a method for treating fluorine-containing wastewater, and more particularly, to increasing the fluorine removal efficiency by adding a soluble rare earth compound after adding an inorganic acid to adjust the pH to neutral.

불소를 함유하고 있는 폐수는 반도체 제조공장,금속표면 처리공장, 세라믹스 제조공장등 불소화합물을 사용하는 모든 공장에서 배출되는데 환경규제가 점진적으로 강화될 것으로 볼 때 효과적이며 경제적인 방법으로 불소를 저농도로 제거할 수 있는 방법의 개발이 요구되고 있다. 이와관련하여 여러 가지 방법이 알려지고 있다. 가장 일반적인 방법으로서는 Ca 화합물, Al 화합물을 폐수중에 가하여 불소이온을 불용화하여 고액분리 하는 방법(일본공개특허, 소60-117호,소62-125894호)이 제안되고 있는데, 이 방법은 약품사용량 및 잔사(Sludge)발생량이 많으며 또한 Ca 화합물로서 불소를 제거시 이론적으로 최대 8mg/ℓ 정도의 불소이온이 용액중에 잔류하므로 불소를 저농도로 제거시는 부적합하다. 또, 침전법이 아닌 흡착법으로 불소를 제거하는 방법이 한국특허 89-3882에 제안되었으나, 이 흡착식 제거법은 사용하는 흡착제가 불용성 희토류 화합물이므로 원료로부터 희토류 수산화물의 제조비용이 고가이고 투입되는 량이 과량이므로 이온교환 작용이 산성의 용액에서만 이루어진다는 단점이 있으며, 탈착시 이온교환 반응에 의존해야 하기 때문에 반응속도가 느리다. 또한, 이 방법을 적용시 기존설비를 사용하지 못하며 대용량의 흡착제가 담긴 다수의 용기에서 단속적인 작업을 해야하는 번거로움이 발생되며, 생성된 알카리불화물을 Ca(OH)2로 처리시 상당히 많은 량이 CaF2잔사가 발생하며 Ca(OH)2로 처리시 용액속에 잔류하는 F가 항상 8mg/ℓ 정도로 농도 이상으로 존재하게 된다는 단점이 있다. 또, 한국 93-12855의 경우 가용성 희토류 화합물을 이용하여 용존불소를 제거하는 경우인데, 불소가 함유된 폐수중 불소의 농도가 30ppm(mg/ℓ) 이상의 고농도 불소 함유 폐수의 경우에는 경제적인 측면에서 상당히 불리하게 되어진다. 그러므로, 가용성 희토류 화합물을 불소폐수 처리에 사용시 경제성이 있는 양을 효율적으로 사용해야 한다. 본 발명은 이러한 효율적인 방법을 제시하기 위한 것으로, 불소폐수 처리시 폐수에 무기산을 투입하여 PH를 중성이하로 하고 이어서 가용성 희토류 화합물을 투입하므로서 불소제거 효율을 증대시키는 처리방법을 제공하고자 하는데 그 목적이 있다. 이와같은 목적달성을 위한 본 발명은 불소함유 폐수를 가용성 희토류 화합물로 처리함에 있어서, 폐수에 무기산을 투입하여 PH를 중성이하로 조절한 후 가용성 희토류 화합물을 첨가하여 폐수중의 불소를 제거시키는 처리방법이다. 본 발명에서 무기산은 질산,염산,황산등이고 본 발명에서 적용하고 있는 불소함유 폐수는 폐수의 원수또는 소석회등에 의한 1차 처리수를 포함한다. 상기한 무기산으로 처리한 PH의 범위는 7이하, 바람직하게는 PH 3~7이 적당하다. 본 발명에서 가용성 희토류 화합물은 폐수의 PH가 중성이상인 상태에서 투입될 경우 그 자체가 불소이온과 반응하지 못하고 수산화 이온과 결합하여 희토류 수산화물로 침전되어 불소제거 효율이 떨어지게 된다. 또한, 이러한 경우 희토류 이온이 수산화 이온 및 불소이온과 Comlex를 형성하여 콜로이드화 되어 탁도를 유발하기도 한다. 그러므로, 희토류 화합물을 폐수에 투입하는 시점 전이나 후에 무기산 즉,염산, 질산 또는 황산을 투입하여 PH를 중성이하 바람직하게는 5이하로 떨어뜨려서 희토류 이온이 수산화되는 것을 방지하여 불소이온과 선택적, 효율적으로 반응할 수 있게 하여야 한다. 이것은 폐수원수에 직접 희토류 화합물을 투입할 때 또는 소석회 등으로 1차 처리한 여액에 투입할 때 모두 적용되는 것이다. 특히 소석회를 이용하여 1차 처리를 하는 경우, 소석회의 반응성을 높이고 그 다음 처리의 편의를 위해 PH를 8~9정도로 낮추는 것이 일반적이나, 여기에 희토류 화합물을 투입하여 2차 처리를 하는 경우는 무기산을 이용하여 PH를 이보다 더 낮은 중성이하로 떨어뜨리는 것이 반응효율 면에서 보다 바람직한 처리방법이라 할수 있다. 이하 실시예를 통해서 보다 상세히 설명한다. 본 실시예에 나타난 수치들은 예를 제시한데 불과하므로 본 발명은 이에 국한하지 않는다.Wastewater containing fluorine is emitted from all factories that use fluorine compounds, such as semiconductor manufacturing plants, metal surface treatment plants, and ceramic manufacturing plants. There is a need for development of a method that can be removed. Several methods are known in this regard. As the most common method, a method of solid-liquid separation by dissolving fluorine ions by adding a Ca compound or an Al compound to wastewater (Japanese Patent Laid-Open No. 60-117, No. 62-125894) has been proposed. And a large amount of sludge generation, and when removing fluorine as a Ca compound, theoretically, up to 8 mg / l of fluorine ions remain in the solution, which is not suitable for removing fluorine at low concentrations. In addition, the method of removing fluorine by adsorption method rather than precipitation method has been proposed in Korean Patent 89-3882. However, since the adsorbent used is an insoluble rare earth compound, the production cost of the rare earth hydroxide from the raw material is high and the amount to be added is excessive. There is a disadvantage that the ion exchange action is performed only in an acidic solution, and the reaction rate is slow because it has to rely on the ion exchange reaction when desorption. In addition, this method does not use the existing equipment, it is cumbersome to intermittently work in a large number of vessels containing a large amount of adsorbent, and a considerable amount of CaF when treating the produced alkali fluoride with Ca (OH) 2 2 residues are generated, and when treated with Ca (OH) 2 , F remaining in the solution is always present at a concentration of about 8 mg / l or more. In Korea, 93-12855 is used to remove dissolved fluorine using soluble rare earth compounds.In the case of high concentration fluorine-containing wastewater containing 30 ppm (mg / l) or more of fluorine in wastewater, It is quite disadvantageous. Therefore, economically effective amounts of soluble rare earth compounds in the treatment of fluorine wastewater should be used. The present invention is to provide such an efficient method, and to provide a treatment method for increasing the efficiency of fluorine removal by adding an inorganic acid to the wastewater to neutralize the pH in the fluorine wastewater treatment and then adding a soluble rare earth compound. have. In order to achieve the above object, the present invention treats fluorine-containing wastewater with a soluble rare earth compound, by adding an inorganic acid to the wastewater to adjust the pH to neutral and then adding a soluble rare earth compound to remove fluorine from the wastewater. to be. In the present invention, the inorganic acid is nitric acid, hydrochloric acid, sulfuric acid and the like, and the fluorine-containing wastewater applied in the present invention includes raw water of wastewater or primary treated water by slaked lime. The range of PH treated with the above inorganic acid is 7 or less, preferably PH 3-7. In the present invention, when the soluble rare earth compound is introduced in a state where the pH of the waste water is neutral, the soluble rare earth compound itself does not react with fluorine ions and binds with hydroxide ions to precipitate as a rare earth hydroxide, thereby reducing fluorine removal efficiency. Also, in this case, rare earth ions may form a comlex with hydroxide ions and fluorine ions to colloid to cause turbidity. Therefore, the inorganic acid, ie hydrochloric acid, nitric acid or sulfuric acid, is added before or after the time of introducing the rare earth compound into the wastewater, so that the pH is lowered to a neutral value, preferably 5 or less, thereby preventing the rare earth ions from being hydroxylated. It should be able to react. This applies both when the rare earth compound is added directly to the wastewater source, or when the filtrate is first treated with slaked lime. In particular, in the case of primary treatment using slaked lime, it is common to increase the reactivity of slaked lime and lower the pH to about 8-9 for the convenience of subsequent treatment, but in the case of secondary treatment by adding rare earth compounds to the mineral acid, Dropping the PH to lower than neutral using this can be said to be a more preferable treatment method in terms of reaction efficiency. It will be described in more detail through the following examples. The numerical values shown in the present embodiment are merely examples, and thus the present invention is not limited thereto.

[실시예1 및 비교예1]Example 1 and Comparative Example 1

반도체 Wafer 제조업체에서 발생되는 폐수의 1차처리를 대상으로 실험을 행하였다. 이때, 1차 처리수의 PH는 9.5 , 불소농도는 35ppm이었다. 투입하는 가용성 희토류 화합물은 그 함량이 전 희토류 산화물로 할 때 200g/ℓ인 것을 사용하였다. 먼저 상기의 폐수에 바로 가용성 희토류 화합물을 0.6ml/ℓ 투입한 후 10분간 반응시키고 응집제를 투입한 후 불소농도를 측정하였다(비교예1). 다음은 동일한 폐수에 황산을 투입하여 PH를 4.5로 조절한 후 가용성 희토류 화합물을 같은 양 넣고 비교예1과 동일하게 반응시킨 후 불소농도를 측정하였다(실시예1). 그 결과, 비교예 1의 경우 처리수의 불소농도를 12.5ppm이었고, 실시예 1의 경우는 불소농도가 5.3ppm으로 비교예 1에비해 불소제거 효과가 우수함을 알수 있었다.Experiments were conducted on the primary treatment of wastewater from semiconductor wafer manufacturers. At this time, the pH of the primary treated water was 9.5, and the fluorine concentration was 35 ppm. As the soluble rare earth compound to be added, a content of 200 g / L was used when the content of all rare earth oxides was used. First, 0.6ml / L of a soluble rare earth compound was directly added to the wastewater, reacted for 10 minutes, and a flocculant was added, followed by measuring fluorine concentration (Comparative Example 1). Next, sulfuric acid was added to the same wastewater to adjust the pH to 4.5, and then the same amount of soluble rare earth compound was added to the reaction as in Comparative Example 1, followed by measurement of fluorine concentration (Example 1). As a result, it was found that in Comparative Example 1, the fluorine concentration of the treated water was 12.5 ppm, and in Example 1, the fluorine concentration was 5.3 ppm, which was superior to that of Comparative Example 1.

[실시예2]Example 2

반도체 제조업체에서 발생되는 폐수의 1차 처리수를 대상으로 가용성 희토류 화합물의 투입시 폐수의 PH조건에 따른 효율을 살펴보기 위한 실험을 행하였다. 이때, 1차처리수의 PH는 9.13, 불소농도는 26ppm 이었다. 투입되는 가용성 희토류 화합물은 그 함량이 전 희토류 산화물로 할 때 200g/ℓ 인 것을 사용하였다. 투입시 폐수의 PH는 황산을 투입하여 조절시켜 주었다. 그 실험결과를 아래표에 나타내었다.An experiment was conducted to investigate the efficiency according to the pH conditions of the wastewater when the soluble rare earth compound was added to the first treatment water of the wastewater generated by the semiconductor manufacturer. At this time, the pH of the primary treated water was 9.13, and the fluorine concentration was 26 ppm. As the soluble rare earth compound to be added, a content of 200 g / L was used when the content of all rare earth oxides was used. The pH of the wastewater was controlled by adding sulfuric acid. The experimental results are shown in the table below.

[실시예3]Example 3

반도체 제조업체에서 발생되는 폐수의 1차 처리수를 대상으로 가용성 희토류 화합물의 투입시 폐수의 PH조건을 조절하기 위하여 사용되는 산종류의 영향을 살펴보기 위한 실험을 행하였다. 이때 1차 처리수의 PH는 9.13, 불소농도는 26ppm이었다. 투입되는 가용성 희토류 화합물은 그 함량이 전 희토류 산화물로 할 때 200g/ℓ 인 것을 사용하였다. 투입시 폐수의 PH는 각각 황산,염산,질산을 사용하여 3.0으로 하였다. 그 실험결과를 아래 표에 나타내었다.An experiment was conducted to investigate the effect of acid type used to control the pH conditions of wastewater when the soluble rare earth compounds were injected into the first treatment water of wastewater generated by semiconductor manufacturers. At this time, the pH of the primary treated water was 9.13, and the fluorine concentration was 26 ppm. As the soluble rare earth compound to be added, a content of 200 g / L was used when the content of all rare earth oxides was used. The pH of the wastewater at the time of introduction was set to 3.0 using sulfuric acid, hydrochloric acid, and nitric acid, respectively. The experimental results are shown in the table below.

산종류에 상관없이 불소제거 효과가 산을 넣지 않은 경우보다 우수함을 알 수 있었다.Regardless of the acid type, the fluorine removal effect was superior to that without the acid.

Claims (4)

불소함유 폐수를 가용성 희토류 화합물로 처리함에 있어서, 폐수에 무기산을 투입하여 PH를 중성이하로 조절 후 가용성 희토류 화합물을 첨가하여 폐수중의 불소를 제거시키는 것을 특징으로 하는 불소함유 폐수의 처리방법.A method of treating fluorine-containing wastewater, wherein the treatment of fluorine-containing wastewater with soluble rare earth compounds comprises adding inorganic acid to the wastewater to adjust the pH to neutral and then adding soluble rare earth compounds to remove fluorine from the wastewater. 제1항에 있어서, 무기산이 질산,염산,황산인 것을 특징으로 하는 불소함유 폐수의 처리방법.The method for treating fluorine-containing wastewater according to claim 1, wherein the inorganic acid is nitric acid, hydrochloric acid or sulfuric acid. 제1항에 있어서, 무기산으로 처리한 PH가 3~7인 것을 특징으로 하는 불소함유 폐수의 처리방법.The method for treating fluorine-containing wastewater according to claim 1, wherein the pH treated with the inorganic acid is 3 to 7. 제1항에 있어서, 불소함유 폐수가 폐수의 원소 또는 소석회에 의한 1차 처리수 인 것을 특징으로 하는 불소함유 폐수의 처리방법.The method for treating fluorine-containing wastewater according to claim 1, wherein the fluorine-containing wastewater is primary treated water by elemental or hydrated lime of the wastewater.
KR1019950019976A 1995-07-07 1995-07-07 Treatment of fluorine-containing wastewater KR0142932B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950019976A KR0142932B1 (en) 1995-07-07 1995-07-07 Treatment of fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950019976A KR0142932B1 (en) 1995-07-07 1995-07-07 Treatment of fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
KR970006194A KR970006194A (en) 1997-02-19
KR0142932B1 true KR0142932B1 (en) 1998-07-01

Family

ID=66526273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950019976A KR0142932B1 (en) 1995-07-07 1995-07-07 Treatment of fluorine-containing wastewater

Country Status (1)

Country Link
KR (1) KR0142932B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100369892B1 (en) * 2000-11-07 2003-01-29 김재종 Method for treating of contaminated water with fluoride
KR20040031344A (en) * 2002-10-04 2004-04-13 장영옥 The removal agent of fluoride ions using waste polishes and its making method
KR100435475B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A Solution for Removing Fluorine Ion Having Simultaneous Removal Effect of COD and CN and A Treatment Method of Wastewater Using It

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435475B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A Solution for Removing Fluorine Ion Having Simultaneous Removal Effect of COD and CN and A Treatment Method of Wastewater Using It
KR100369892B1 (en) * 2000-11-07 2003-01-29 김재종 Method for treating of contaminated water with fluoride
KR20040031344A (en) * 2002-10-04 2004-04-13 장영옥 The removal agent of fluoride ions using waste polishes and its making method

Also Published As

Publication number Publication date
KR970006194A (en) 1997-02-19

Similar Documents

Publication Publication Date Title
JPH1190165A (en) Treatment of waste water from flue gas desulfurization
JPS60117B2 (en) How to treat fluoride-containing water
KR0142932B1 (en) Treatment of fluorine-containing wastewater
JPH07265869A (en) Treatment of fluorine-phosphorus-containing discharged water
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
KR101559852B1 (en) Treating method for waste water contaning fluoroboric acid produced in etch process
TWI263623B (en) Effluent water treatment method
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
JP2912237B2 (en) Treatment method for fluorine-containing wastewater
JPH06320168A (en) Treatment of waste water containing fluorine
JP3596631B2 (en) Treatment of wastewater containing selenium
KR100318661B1 (en) Wastewater treatment agent and its treatment method
KR100324078B1 (en) Process for removing fluorine from desulfurization waste water of flue gas
JP3019009B2 (en) Treatment method for wastewater containing fluorine
KR0149933B1 (en) Fluorine-contained waste water treatment
KR100390159B1 (en) Treatment agent and method for treating industrial waste-water including flourine
KR20080058077A (en) Method for treating wastewater including fluorine
KR0140316B1 (en) Process for the treatment of acid waste solutions containing fluorine and heavy metals
JP2751874B2 (en) Treatment method for wastewater containing fluorine
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP2003117564A (en) Method for treating fluorine-containing waste water
KR0142931B1 (en) Fluorine-containing wastewater processing method
KR20050058535A (en) A treatment method of waste water from incineration plant
KR940011221B1 (en) Method for treatment of waste-water having fluorine
JP3378362B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121231

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20140408

Year of fee payment: 17

EXPY Expiration of term