KR0149933B1 - Fluorine-contained waste water treatment - Google Patents

Fluorine-contained waste water treatment Download PDF

Info

Publication number
KR0149933B1
KR0149933B1 KR1019950019974A KR19950019974A KR0149933B1 KR 0149933 B1 KR0149933 B1 KR 0149933B1 KR 1019950019974 A KR1019950019974 A KR 1019950019974A KR 19950019974 A KR19950019974 A KR 19950019974A KR 0149933 B1 KR0149933 B1 KR 0149933B1
Authority
KR
South Korea
Prior art keywords
fluorine
rare earth
waste water
soluble rare
wastewater
Prior art date
Application number
KR1019950019974A
Other languages
Korean (ko)
Other versions
KR970006192A (en
Inventor
홍영호
양성훈
우상모
Original Assignee
이정성
주식회사엘지금속
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이정성, 주식회사엘지금속 filed Critical 이정성
Priority to KR1019950019974A priority Critical patent/KR0149933B1/en
Publication of KR970006192A publication Critical patent/KR970006192A/en
Application granted granted Critical
Publication of KR0149933B1 publication Critical patent/KR0149933B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 불소(下)가 함유된 폐수에서 용존불소 이온을 선택적이며 효과적으로 제거하기 위해 가용성 희토류 화합물을 이용하여 불소를 처리시 이에 사용되는 가용성 희토류 화합물의 조성에 관한 것으로, 불소함유 폐수를 가용성 희토류 화합물로 처리하는 처리제에 있어서, 희토류 성분중 세륨(Ce) 성분이 10중량% 미만임을 특징으로 하는 불소함유 폐수 처리제에 관한 기술이다.The present invention relates to the composition of soluble rare earth compounds used for treating fluorine using soluble rare earth compounds to selectively and effectively remove dissolved fluorine ions from waste water containing fluorine. A treatment agent treated with a compound, wherein the cerium (Ce) component in the rare earth component is less than 10% by weight.

Description

불소함유 폐수처리제Fluorine-containing wastewater treatment agent

첨부도면은 Ce 함량에 따른 불소이온 농도제거를 나타낸 그래프.The accompanying drawings are graphs showing the removal of fluorine ion concentration according to Ce content.

본 발명은 불소가 함유된 폐수에서 용존불소 이온을 선택적이며 효과적으로 제거하는 방법에 관한 것으로, 보다 상세하게는 가용성 회토류 화합물을 이용하여 불소를 처리시 이에 사용되는 가용성 회토류 화합물의 조성에 관한 것이다.The present invention relates to a method for the selective and effective removal of dissolved fluorine ions in wastewater containing fluorine, and more particularly, to the composition of a soluble rare earth compound used for treating fluorine using a soluble rare earth compound. .

불소를 함유하고 있는 폐수는 반도체 제조공장, 금속표면 처리공장, 세라믹스 제조공장등 불소화합물을 사용하는 모든 공장에서 배출되는데 최근 들어 환경에 대한 관심이 고조되고 환경규제가 전진적으로 강화될 것으로 볼 때 효과적이며 경제적인 방법으로 불소를 저농도로 제거할 수 있는 방법의 개발이 요구되고 있다.Wastewater containing fluorine is discharged from all factories that use fluorine compounds, such as semiconductor manufacturing plants, metal surface treatment plants, and ceramic manufacturing plants. Recently, environmental concerns are expected to increase and environmental regulations will be strengthened. There is a need to develop a method for removing fluorine at low concentrations in an effective and economic manner.

이와관련하여 여러 가지 방법으로 불소를 제거하는데, 가장 일반적으로는 Ca 화합물, Al 화합물을 폐수중에 가하여 불소이온을 불용화하고 고액분리하는 방법(일본 공개특허, 소60-117호, 소62-125894호)이 제안되고 있다.In this regard, fluorine is removed by various methods. Most commonly, a Ca compound or an Al compound is added to waste water to insolubilize fluorine ions and to separate solid-liquid (Japanese Patent Laid-Open No. 60-117, No. 62-125894). Is proposed.

이 방법은 약품사용량 및 잔사(Sludge) 발생량이 많으며 또한 Ca 화합물로서 불소를 제거시 이론적으로 최대 8mg/ℓ 정도의 불소이온이 용액중에 잔류하므로 불소를 저농도로 제거시는 부적합하다.This method is not suitable for removing fluorine at low concentration because the amount of chemicals used and the amount of sludge generated are high, and fluorine ions of up to 8mg / l are theoretically retained in the solution when removing fluorine as a Ca compound.

또, 침진법이 아닌 흡착법으로 불소를 제거하는 방법이 한국특허 89-3882에 제안되었으나 이 흡착식 제거법은 사용하는 흡착제가 불용성 희토류 화합물이므로 원료로부터 희토류 수산화물의 제조비용이 고가이고 투입되는 양이 과량이며, 이온교환 작용이 산성의 용액에서만 이루어진다는 단점이 있으며, 탈착시 이온교환 반응에 의존해야 하기 때문에 반응속도가 느리다.In addition, the method of removing fluorine by adsorption method rather than deposition method has been proposed in Korean Patent 89-3882. However, since the adsorbent used is an insoluble rare earth compound, the manufacturing cost of the rare earth hydroxide from the raw material is expensive and the amount to be added is excessive. However, there is a disadvantage that the ion exchange action is performed only in an acidic solution, and the reaction rate is slow because the ion exchange reaction must be dependent upon the desorption.

또한 이 방법을 적용시 기존설비를 사용하지 못하며 대용량의 흡착제가 담긴 다수의 용기에서 단속적인 작업을 해야하는 번거로움이 발생되며, 생성된 알카리불화물을 Ca(OH)2로 처리시 상당히 많은 량의 CaF2잔사가 발생하며, Ca(OH)2로 처리시 용액속에 잔류하는 불소가 항상 8mg/ℓ정도로 농도 이상으로 존재하게 된다는 단점이 있다.In addition, this method does not use the existing equipment, it is cumbersome to intermittently work in a number of vessels containing a large amount of adsorbent, and when treating the resulting alkali fluoride with Ca (OH) 2 , a considerable amount of CaF 2 residues are generated, and when treated with Ca (OH) 2 , fluorine remaining in the solution is always present at a concentration of about 8 mg / l or more.

또한, 일본 공개특허 평3-186393에서는 가용성 희토류 화합물과 알칼리 및 알칼리토금속 화합물을 이용하여 불소가 함유된 폐수에서 불소이온을 불용화한 후, 고액분리하는 것을 제안하고 있다.In addition, Japanese Patent Laid-Open No. 3-186393 proposes to insolubilize fluorine ions in wastewater containing fluorine using a soluble rare earth compound and an alkali and alkaline earth metal compound, followed by solid-liquid separation.

이 방법의 경우 위에 언급된 다른방법에 비해 비교적 쉽게, 그리고 고효율로 불소를 제거할 수 있으나, 폐수의 액성에 따라 응집제를 과다하게 투입해도 여액이 Colloid 상태가 되거나 침강이 잘되지 않아 폐수처리 공정상에 큰 문제가 되고 있다.In this method, fluorine can be removed relatively easily and with high efficiency compared to the above-mentioned methods. However, depending on the liquidity of the waste water, the filtrate becomes colloidal or does not settle well even if the coagulant is excessively added. Has become a big problem.

즉, 폐수가 대량 발생하기 때문에 고액분리의 용이도가 매우 중요한 요소이므로 불소이온 제거 효과의 향상과 더불어 플럭의 생성 및 침강속도가 매우 빠른 처리법이 요구되고 있다.In other words, since a large amount of waste water is generated, the ease of separation of solid-liquid is a very important factor, and thus a treatment method for improving the fluorine ion removal effect and having a very high floc rate and settling rate is required.

즉, 불소를 포함하는 폐수 중의 많은 부분을 차지하는 반도체 공장의 경우 폐수 중에 과산화수소(H2O2)를 포함하고 있다.That is, in the case of a semiconductor factory that occupies a large part of wastewater containing fluorine, the wastewater contains hydrogen peroxide (H 2 O 2 ).

과산화수소가 온입된 불소함유 폐수를 가용성 희토류 화합물로 처리함에 있어서, 희토류 성분중 과산화 수소와 반응성이 좋은 세륨(Ce)의 함량이 높을 경우 불소이온과 반응하지 못하고, 수산화 이온과 결합하여 희토류 수산화물로 침전되어 불소제거 효율이 떨어지게 되고, pH3 정도에서 노란색의 침전을 형성한다.In treating fluorine-containing wastewater containing hydrogen peroxide with a soluble rare earth compound, when the content of cerium (Ce) which is highly reactive with hydrogen peroxide in the rare earth component is high, it does not react with fluorine ions and binds with hydroxide ions to precipitate as rare earth hydroxide. This decreases the fluorine removal efficiency and forms a yellow precipitate at pH3.

그 반응식을 아래에 나타내었다.The reaction scheme is shown below.

H2O2+ 2H++ 2Ce3++ 2H2O + 2Ce4+ H 2 O 2 + 2H + + 2Ce 3+ + 2H 2 O + 2Ce 4+

4OH-+ Ce4+→ Ce(OH)4↓(노란침전) 4OH - + Ce 4+ → Ce ( OH) 4 ↓ ( yellow precipitate)

이러한 경우 희토류 이온이 수산화 이온 및 불소이온과 혼합물(Complex)을 형성하여 Colloid화 되어 탁도를 유발하기도 한다.In this case, rare earth ions form a mixture with hydroxide ions and fluorine ions, which collide to cause turbidity.

또한 이러한 침전물은 부착성이 커서 Sensor, Stirrer, 반응기 벽 등에 부착되어 많은 문제점들이 제기되고 있다.In addition, such deposits are attached to the sensor, stirrer, reactor wall, etc. due to the high adhesion has raised many problems.

과산화수소가 포함되지 않은 경우라도 침전이 공기중의 산소와 반응하여 노란색을 띄게 한다.Even when hydrogen peroxide is not included, the precipitation reacts with the oxygen in the air to make it yellow.

따라서 본 발명은 상기에 제시된 문제점들을 해결함과 동시에 가용성 희토류 화합물의 불소제거 효율을 높이는 방법을 제시하는데 본 발명의 목적이 있다.Accordingly, an object of the present invention is to provide a method for solving the problems described above and increasing the fluorine removal efficiency of the soluble rare earth compound.

이와같은 목적 달성을 위한 본 발명은 불소함유 폐수를 가용성 희토류 화합물로 처리하는 처리제에 있어서, 희토류 성분중 Ce 성분이 10 중량% 미만이 되게 한 불소함유 폐수처리제로 이루어진다.The present invention for achieving the above object comprises a fluorine-containing wastewater treatment agent in which the Ce component in the rare earth component is less than 10% by weight in the treatment agent for treating the fluorine-containing wastewater with a soluble rare earth compound.

본 발명은 알카리 금속의 존재정도에 관계하지 않고 폐수에 투입하는 가용성 희토류 화합물의 성분중 Ce의 양을 10 중량 미만이 되게(바람직하게는 5% 미만)하였으며, 실험결과 침전물의 색도를 제거할 수 있었고 탁도와 불소제거 효율의 향상시킬 수 있었다.According to the present invention, the amount of Ce in the components of the soluble rare earth compound to be injected into the wastewater regardless of the degree of alkali metal is less than 10% (preferably less than 5%), and the color of the precipitate can be removed. And turbidity and fluorine removal efficiency were improved.

이는 Ce 양을 줄여주고 La의 양을 늘여줌으로써 희토류 이온이 수화되는 것을 방지하여 불소이온과 선택적, 효율적으로 반응하였기 때문이다.This is because the rare earth ions are prevented from being hydrated by reducing the amount of Ce and increasing the amount of La, thereby selectively and efficiently reacting with fluorine ions.

다행히 Ce은 Ce4+로 산화되기 쉬우므로 다음과 같은 방법으로 쉽게 제거가 가능하다.Fortunately, Ce is easily oxidized to Ce 4+ , which can be easily removed in the following way.

즉, 희토류 수산화물을 공기중에서 120~130℃로 가열하여 Ce을 4가로 산화시킨 후 5~10%의 질산이나 염산에 용해시키면 3가의 수산화물들은 용해되지만 4가 상태의 CeO2·nH2O는 용해되지 않는다.That is, when rare earth hydroxide is heated to 120 ~ 130 ℃ in air to oxidize Ce to tetravalent and then dissolved in 5 ~ 10% nitric acid or hydrochloric acid, trivalent hydroxides are dissolved but tetravalent CeO 2 · nH 2 O is dissolved. It doesn't work.

이와 같은 방법으로Ce을 제거할 수 있다.In this way Ce can be removed.

본 발명에 이용되는 가용성 희토류 화합물은 염화물, 질산염, 황산염 등을 사용할 수 있다.As the soluble rare earth compound used in the present invention, chlorides, nitrates, sulfates and the like can be used.

이하 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예 1 ~ 5 및 비교예 1~ 5][Examples 1-5 and Comparative Examples 1-5]

시약급 NH4F 0.292g을 5ℓ의 수돗물에 녹여 만든 인공폐수(불소농도 30 ppm, pH7.7)에 과산화수소를 1㎖ 넣어준 용액을 대상으로 실험을 행하였다.An experiment was performed on a solution in which 1 ml of hydrogen peroxide was added to artificial wastewater (fluorine concentration 30 ppm, pH7.7) prepared by dissolving 0.292 g of reagent-grade NH 4 F in 5 L of tap water.

투입되는 가용성 희토류 화합물은 그 함량이 전 희토류 산화물로 할 때 200g/ℓ인 것을 사용하였다.As the soluble rare earth compound to be added, a content of 200 g / L was used when the content of all rare earth oxides was used.

먼저 과산화수소를 포함하고 있는 폐수에 전 희토류 산화물 중 Ce 산화물이 각각 0.5, 10, 20, 30%인 가용성 희토류 호합물을 0.6㎖ 투입한 후 10분간 반응시키고 가성소다로 pH를 7.5로 조절한다.First, 0.6 ml of a soluble rare earth compound having 0.5, 10, 20, and 30% Ce oxide in the total rare earth oxide was added to the wastewater containing hydrogen peroxide, and then reacted for 10 minutes, and the pH was adjusted to 7.5 with caustic soda.

pH 조절이 끝난후 5분간 더 반응시키고 응집제를 투입한 후 불소농도, 탁도, Sludge의 색을 측정하였다(실시예 1~5).After the pH adjustment, the reaction was further reacted for 5 minutes, a flocculant was added, and the fluorine concentration, turbidity, and color of the sludge were measured (Examples 1 to 5).

다음은 과산화 수소를 포함하지 않은 폐수에 전 희토류 산화물 중 Ce 산화물이 각각 0.5,10,20,30%인 가용성 희토류 화합물을 0.6㎖ 투입한 후 10분간 반응시키고 가성소다로 pH를 7.5로 조절한다.Next, 0.6 ml of a soluble rare earth compound having 0.5, 10, 20, and 30% Ce oxide in the total rare earth oxide was added to the wastewater containing no hydrogen peroxide, and then reacted for 10 minutes, and the pH was adjusted to 7.5 with caustic soda.

pH 조절이 끝난후 5분간 더 반응시키고 응집제를 투입한 후 불소농도, 탁도, Sludge의 색을 측정하였다(비교실시예 6∼10).After pH adjustment was completed, the reaction was further performed for 5 minutes, a flocculant was added, and fluorine concentration, turbidity, and color of sludge were measured (Comparative Examples 6 to 10).

그 결과를 표 1 및 첨부된 도면과 같이 나타냈다.The results are shown in Table 1 and the accompanying drawings.

불소이온 농도는 ion metcr를 이용하였으며, 탁도는 LaMotte 수질분석기를 이용하여 측정하였다.Fluoride ion concentration was measured using ion metcr, and turbidity was measured using LaMotte water analyzer.

탁도는 낮은 숫자일수록 많은 용액임을 나타낸다.Turbidity indicates that the lower the number, the more solution.

상기와 같은 결과에서 과산화 수소가 혼입된 경우 Ce의 함량이 줄어들수록 불소제거 효과 및 탁도가 좋아지고 침전물의 색도도 생기지 않음을 알 수 있었다.As a result, when hydrogen peroxide was mixed, it was found that as the Ce content decreases, the fluorine removal effect and turbidity are improved, and the color of the precipitate does not occur.

특히, 탁도의 경우 사용자의 수처리 엄체에서 5이하가 되도록 요구하고 있는 실정이다.In particular, in the case of turbidity, the situation is required to be 5 or less in the water treatment strictness of the user.

[실시예 6 및 비교예 11]Example 6 and Comparative Example 11

반도체 제조업체에서 발생되는 폐수의 1차 처리수를 대상으로 가용성 희토류 화합물의 조성에 따른 효과를 살펴보기 위한 실험을 행하였다.An experiment was conducted to investigate the effects of the composition of soluble rare earth compounds on the first treatment water of wastewater generated by semiconductor manufacturers.

이때, 1차 처리수의 pH는 5.07, 불소농도는 15ppm, 과산화수소농도는 50ppm 이었다.At this time, the pH of the primary treated water was 5.07, the fluorine concentration was 15 ppm, and the hydrogen peroxide concentration was 50 ppm.

투입되는 가용성 희토류 화합물은 그 함량이 전 희토류 산화물로 할 때 200g/ℓ인 것을 사용하였다.As the soluble rare earth compound to be added, a content of 200 g / L was used when the content of all rare earth oxides was used.

먼저 상기의 폐수에 전 희토류 산화물 중 La 산화물이 55%, Ce 산화물이 3.9%인 가용성 희토류 화합물을 0.3㎖ 투입한 후 10분간 반응시키고 가성소다로 pH를 7.5로 조절한다.First, 0.3 ml of a soluble rare earth compound having 55% of La oxide and 3.9% of Ce oxide in the rare earth oxide was added to the wastewater, followed by reaction for 10 minutes, and the pH was adjusted to 7.5 with caustic soda.

pH 조절이 끝난후 5분간 반응시키고 응집제를 투입한 후 불소농도, 탁도, Sludge의 색을 측정하였다(실시예 6).After the pH was adjusted, the reaction was carried out for 5 minutes, a flocculant was added, and the fluorine concentration, turbidity, and color of the sludge were measured (Example 6).

다음은 동일한 폐수에 전 희토류 산화물 중 La 산화물이 27%, Ce 산화물이 44%인 가용성 희토류 산화물을 같은 양 넣고 실시예 1과 동일하게 반응시킨 후 불소농도, 탁도, Sludge의 색을 측정하였다(비교예 11).Next, soluble rare earth oxides containing 27% La oxide and 44% Ce oxide in the same wastewater were added in the same wastewater, and reacted in the same manner as in Example 1, and then fluorine concentration, turbidity, and color of sludge were measured. Example 11).

상기와 같은 결과에서 가용성 희토류 화합물 중 Ce의 양을 줄여준 실시예 6이 비교예 11에 비하여 그 효과가 우수함을 알 수 있다.As a result, it can be seen that Example 6, which reduces the amount of Ce in the soluble rare earth compound, is superior to Comparative Example 11.

Claims (1)

불소함유 폐수를 염화물, 질산염, 황산염 중 1종을 포함한 가용성 희토류 화합물로 처리하는 처리제에 있어서, 상기 가용성 희토류 화합물 성분 중 세륨(Ce)성분이 10중량% 미만임을 특징으로 하는 불소함유 폐수 처리제.A treatment agent for treating a fluorine-containing wastewater with a soluble rare earth compound containing one of chloride, nitrate, and sulfate salts, wherein the fluorine-containing wastewater treatment agent has a cerium (Ce) component of less than 10% by weight.
KR1019950019974A 1995-07-07 1995-07-07 Fluorine-contained waste water treatment KR0149933B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950019974A KR0149933B1 (en) 1995-07-07 1995-07-07 Fluorine-contained waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950019974A KR0149933B1 (en) 1995-07-07 1995-07-07 Fluorine-contained waste water treatment

Publications (2)

Publication Number Publication Date
KR970006192A KR970006192A (en) 1997-02-19
KR0149933B1 true KR0149933B1 (en) 1999-03-30

Family

ID=19420068

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950019974A KR0149933B1 (en) 1995-07-07 1995-07-07 Fluorine-contained waste water treatment

Country Status (1)

Country Link
KR (1) KR0149933B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380740B1 (en) * 1998-11-30 2003-08-19 주식회사 포스코 Method for preparing fluorine ion remover in wastewater, fluorine ion remover prepared therefrom and method for removing fluorine ion using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100380740B1 (en) * 1998-11-30 2003-08-19 주식회사 포스코 Method for preparing fluorine ion remover in wastewater, fluorine ion remover prepared therefrom and method for removing fluorine ion using same

Also Published As

Publication number Publication date
KR970006192A (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5013453A (en) Method for removing heavy metals from aqueous solutions by coprecipitation
EP0139622B1 (en) A method for purifying aqueous solutions
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
US4956098A (en) Oxidation and photoxidation process
US5762807A (en) Composition and process for treating water and gas streams containing heavy metals and other pollutants
KR0149933B1 (en) Fluorine-contained waste water treatment
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
JP4670004B2 (en) Method for treating selenium-containing water
US6251283B1 (en) Methods for removing selenium from a waste stream
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
KR100318661B1 (en) Wastewater treatment agent and its treatment method
KR100318660B1 (en) Sewage treatment with fluorine and methods for treating wastewater using the same
USH1126H (en) Treatment of sodium nitrite-containing boiler wastewater
EP1493716A1 (en) Method of wastewater treatment
KR0142932B1 (en) Treatment of fluorine-containing wastewater
KR0149934B1 (en) Fluorine-contained waste water treatment
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
JP2718221B2 (en) Treatment method for arsenic-containing sulfuric acid wastewater
JP4034218B2 (en) Wastewater treatment method
JP4696017B2 (en) Treatment method for boron-containing wastewater
KR100262689B1 (en) Treatment of stack gas desulfurization waste water
KR0140316B1 (en) Process for the treatment of acid waste solutions containing fluorine and heavy metals
JP2737614B2 (en) Treatment of flue gas desulfurization wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee