KR20050058535A - A treatment method of waste water from incineration plant - Google Patents
A treatment method of waste water from incineration plant Download PDFInfo
- Publication number
- KR20050058535A KR20050058535A KR1020030090446A KR20030090446A KR20050058535A KR 20050058535 A KR20050058535 A KR 20050058535A KR 1020030090446 A KR1020030090446 A KR 1020030090446A KR 20030090446 A KR20030090446 A KR 20030090446A KR 20050058535 A KR20050058535 A KR 20050058535A
- Authority
- KR
- South Korea
- Prior art keywords
- fluorine
- approximately
- heavy metal
- adjusting
- removal process
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/583—Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
본 발명은 소각장에서 배출되는 불소 및 중금속을 함유한 폐수의 처리 방법에 관한 것으로, 그 목적은 고가인 희토류 화합물이 주성분인 불소제거제의 사용을 최소화하면서도 환경 규제치 이하로 불소농도를 유지시키는 폐수처리 공정을 제공함에 있다. The present invention relates to a method for treating wastewater containing fluorine and heavy metals discharged from an incinerator, and an object thereof is a wastewater treatment process for maintaining a fluorine concentration below environmental regulations while minimizing the use of a fluorine remover whose main component is an expensive rare earth compound. In providing.
본 발명은 중금속 및 불소가 함유된 폐수를 황산을 사용하여 산성으로(대략 pH:4)로 조절하는 단계와; 소석회를 사용하여 알칼리성(대략 pH:10.5)으로 조절하는 단계와; 중금속 안정화제를 사용하여 중금속을 고정화하는 단계와; 환산반토를 사용하여 중성(대략 pH:7)으로 조절하는 동시에 염화칼슘을 투입하는 단계와; 고분자 응집제를 투입하는 단계와; 침전조에서 생성된 슬러지를 제거하는 단계로 구성된 중금속 제거공정과,The present invention comprises the steps of adjusting the wastewater containing heavy metals and fluorine to acidic (approximately pH: 4) using sulfuric acid; Adjusting to alkaline (approximately pH: 10.5) using slaked lime; Immobilizing the heavy metal using a heavy metal stabilizer; Using calcium alumina to adjust to neutral (approximately pH: 7) and simultaneously adding calcium chloride; Injecting a polymer flocculant; A heavy metal removal process consisting of removing sludge produced in the settling tank,
중금속제거공정을 거친 폐수를 황산을 사용하여 산성(대략 pH:4~5)으로 조절하는 단계와; 희토류 화합물이 주성분인 불소제거제를 투입하는 단계와; 소석회를 사용하여 중성(대략 pH:7)으로 조절하는 단계와; 고분자 응집제를 투입하는 단계와; 침전조에서 생성된 슬러지를 제거하는 단계로 구성된 불소제거공정을 포함하는 것을 그 기술적 요지로 한다. Adjusting the wastewater which has undergone the heavy metal removal process to acidic (approximately pH: 4-5) using sulfuric acid; Injecting a fluorine remover having a rare earth compound as a main component; Adjusting to neutral (approximately pH: 7) using slaked lime; Injecting a polymer flocculant; The technical subject matter is to include a fluorine removal process consisting of removing sludge produced in the settling tank.
Description
본 발명은 소각장에서 배출되는 불소 및 중금속을 함유한 폐수의 처리 방법에 관한 것으로, 보다 상세하게는 고가인 희토류 화합물이 주성분인 불소제거제의 사용을 최소화하면서도 환경 규제치 이하로 불소농도를 유지시키는 폐수 처리 방법에 관한 것이다.The present invention relates to a method for treating wastewater containing fluorine and heavy metals discharged from an incinerator, and more particularly, to wastewater treatment to maintain fluorine concentrations below environmental regulations while minimizing the use of fluorine removers whose main components are expensive rare earth compounds. It is about a method.
산업화와 도시화로 일반 폐기물 및 사업장 폐기물의 발생량은 증가 추세에 있으며 우리나라의 좁은 국토 여건상 소각처리에 의한 폐기물 처리는 필수 불가결한 상태이다. 이에 따라 일반 쓰레기 및 사업장 폐기물을 소각하는 소각처리 시설이 증가하고 있다. 소각처리 시설에서는 소각시 발생되는 2차환경오염 물질을 방지하기 위하여 흡수탑의 운전과정에서 발생되는 폐수와 바닥재, 냉각수 등 많은 폐수가 발생되고 있다. 이러한 폐수에는 환경오염의 주요 인자인 많은 중금속과 불소가 함유되어 있으므로 환경기준에 적합하도록 폐수를 처리해야 한다. 도 1는 현재 A소각처리 시설에서 발생되는 폐수를 정화하는 폐수처리 공정을 나타낸다. 폐수처리 공정은 크게 중금속 제거공정과 불소제거 공정으로 나눌 수 있다. 중금속 제거공정은 폐수를 산을 사용하여 산성으로 조절하고(대략 pH:4) 소석회(Ca(OH)2)를 사용하여 알칼리성(대략 pH:10.5)으로 조절하고 킬레이트 화합물 등의 중금속 포집제를 사용하여 중금속을 안정화시키고, pH조절 및 응집작용을 하는 황산반토(Al2(SO4)3 )를 사용하여 중성으로(대략 pH:7) 조절한 후, 고분자 응집제를 사용하여 플록(floc)화 시키고 침전조에서 중금속 침전물을 제거한다. 중금속이 제거된 불소 함유 폐수는 다시 불소제거공정에 도입되는데 불소를 제거하기 위하여 황산을 사용하여 산성(대략 pH:4~5)으로 맞추고 불소제거제(상품명:히토졸(HITISOL),(주)유니테크 제조)를 투입하여 불소를 고형화한 후 소석회(Ca(OH)2)를 사용하여 중성(대략 pH: 7)으로 맞춘 후, 침전조에서 폐수처리 슬러지는 제거되고 정화된 폐수는 방류되게 된다.Due to industrialization and urbanization, the generation of general waste and workplace waste is on the rise, and waste disposal by incineration is indispensable due to the narrow domestic environment. As a result, an increasing number of incineration facilities are incinerated with general waste and workplace waste. In the incineration plant, many wastewaters such as wastewater, floor ash and cooling water are generated during the operation of the absorption tower to prevent secondary environmental pollutants generated during incineration. These wastewaters contain a lot of heavy metals and fluorine, which are the main factors of environmental pollution, so the wastewater must be treated in accordance with environmental standards. 1 shows a wastewater treatment process for purifying wastewater generated at the present A incineration plant. Wastewater treatment process can be divided into heavy metal removal process and fluorine removal process. The heavy metal removal process adjusts the wastewater to acidity using acid (approximately pH: 4) and alkaline (approximately pH: 10.5) using calcined lime (Ca (OH) 2 ) and uses heavy metal capture agents such as chelate compounds. To stabilize the heavy metals, adjust neutral (approximately pH: 7) with alumina sulfate (Al 2 (SO 4 ) 3 ), which controls pH and flocculates, and flocs with a polymer flocculant. Remove heavy metal deposits from the settling tank. The fluorine-containing wastewater from which heavy metals have been removed is introduced into the fluorine removal process. In order to remove fluorine, sulfuric acid is used to adjust acidity (approximately pH: 4 to 5), and a fluorine remover (HITISOL), UNI TECHNOLOGY) is added to solidify the fluorine and then neutralized using slaked lime (Ca (OH) 2 ) to neutral (approximately pH: 7), and then the wastewater treatment sludge is removed from the settling tank and the purified wastewater is discharged.
폐수에 함유된 불소의 고형화제로는 Ca화합물, Al화합물, 희토류 화합물 등이 있으나 Ca, Al 화합물은 자체용해도가 폐수처리기준인 15ppm이상이므로 15ppm이하로 낮출 수 있는 희토류 화합물이 주성분인 불소제거제를 사용하여야만 한다. 폐수 처리 공정에 투입된 폐수 속에 함유된 불소이온은 약 300~500ppm이며 중금속제거공정을 거치면서 불소농도는 150~200ppm정도로 저감된다. 중금속제거공정에서의 불소이온은 pH조절제로 투입된 (Ca(OH)2)와 황산반토(Al2(SO4)3)에 의하여 각각Ca(F2), AlF3, Na3AlF6(빙정석)등으로 침전된다.Solidifying agents of fluorine in wastewater include Ca compounds, Al compounds, and rare earth compounds. However, Ca and Al compounds use a fluorine remover whose main component is a rare earth compound, which can be lowered to 15 ppm or less because its solubility is over 15 ppm. You must do it. Fluoride ions contained in the wastewater input to the wastewater treatment process are about 300-500ppm, and the fluorine concentration is reduced to about 150-200ppm by the heavy metal removal process. Fluorine ions in the heavy metal removal process were converted into Ca (F 2 ), AlF 3 , Na 3 AlF 6 (Crystal) by (Ca (OH) 2 ) and alumina sulfate (Al 2 (SO 4 ) 3 ) added as a pH regulator. To precipitate.
중금속 제거공정을 거친 불소함유 폐수는 희토류 화합물이 주성분인 불소제거제에 의하여 LnF3로 제거되게 된다.(여기서 Ln은 La, Ce 등의 희토류 원소를 칭함). LnF3는 물에 불용임으로 환경규제치 15ppm이하로 낮출 수가 있게된다. 하지만 희토류 화합물이 주성분인 불소제거제는 고가이므로 폐수처리 공정에서는 고가인 불소제거제가 다량 소모되고 있다.Fluorine-containing wastewater undergoing heavy metal removal process is to remove the rare earth compound as LnF 3 by the main component fluorine remover (wherein Ln refers to rare earth elements such as La and Ce). LnF 3 is insoluble in water and can be lowered below 15ppm. However, since the fluorine remover whose main component is a rare earth compound is expensive, a large amount of expensive fluorine remover is consumed in the wastewater treatment process.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출되는 것으로, 그 목적은 고가인 희토류 화합물이 주성분인 불소제거제의 사용을 최소화하면서도 환경 규제치(불소농도:15ppm) 이하로 불소농도를 유지시키는 폐수처리 공정을 제공함에 있다. The present invention has been made to solve the above-mentioned conventional problems, the object of the wastewater to maintain the fluorine concentration below the environmental regulation value (fluorine concentration: 15ppm) while minimizing the use of a fluorine remover whose main component is an expensive rare earth compound In providing a treatment process.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 중금속 및 불소가 함유된 폐수를 황산을 사용하여 산성으로(대략 pH:4)로 조절하는 단계와; 소석회를 사용하여 알칼리성(대략 pH:10.5)으로 조절하는 단계와; 중금속 안정화제를 사용하여 중금속을 고정화 하는 단계와; 환산반토를 사용하여 중성(대략 pH:7)으로 조절하는 동시에 염화칼슘을 투입하는 단계와; 고분자 응집제를 투입하는 단계와; 침전조에서 생성된 슬러지를 제거하는 단계로 구성된 중금속 제거공정과,The present invention to achieve the object as described above and to perform the task for eliminating the conventional drawbacks comprises the steps of adjusting the waste water containing heavy metals and fluorine acidic (approximately pH: 4) using sulfuric acid; Adjusting to alkaline (approximately pH: 10.5) using slaked lime; Immobilizing the heavy metal using a heavy metal stabilizer; Using calcium alumina to adjust to neutral (approximately pH: 7) and simultaneously adding calcium chloride; Injecting a polymer flocculant; A heavy metal removal process consisting of removing sludge produced in the settling tank,
중금속제거공정을 거친 폐수를 황산을 사용하여 산성(대략 pH:4~5)으로 조절하는 단계와; 희토류 화합물이 주성분인 불소제거제를 투입하는 단계와; 소석회를 사용하여 중성(대략 pH:7)으로 조절하는 단계와; 고분자 응집제를 투입하는 단계와; 침전조에서 생선된 슬러지를 제거하는 단계로 구성된 불소제거공정을 포함하는 것을 특징으로 한다. Adjusting the wastewater which has undergone the heavy metal removal process to acidic (approximately pH: 4-5) using sulfuric acid; Injecting a fluorine remover having a rare earth compound as a main component; Adjusting to neutral (approximately pH: 7) using slaked lime; Injecting a polymer flocculant; It characterized in that it comprises a fluorine removal process consisting of the step of removing the fish sludge in the sedimentation tank.
이하, 본 발명의 실시예를 첨부도면과 연계하여 상세히 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2 는 본 발명에 의한 폐수의 처리 공정도로서, 본 발명은 중금속 및 불소가 함유된 폐수를 황산을 사용하여 산성으로(대략 pH:4)로 조절하는 제 1단계(1)와; 소석회를 사용하여 알칼리성(대략 pH:10.5)으로 조절하는 제 2단계(2)와; 중금속 안정화제를 사용하여 중금속을 고정화하는 제 3단계(3)와; 환산반토를 사용하여 중성(대략 pH:7)으로 조절하는 동시에 염화칼슘을 투입하는 제 4단계(4)와; 고분자 응집제를 투입하는 제 5단계(5)와; 침전조에서 생성된 슬러지를 제거하는 제 6단계(6)로 구성된 중금속 제거공정과,FIG. 2 is a flow chart of a wastewater treatment process according to the present invention, which includes a first step (1) of adjusting wastewater containing heavy metals and fluorine to acidic (approximately pH: 4) using sulfuric acid; A second step (2) of adjusting to alkaline (approximately pH: 10.5) using slaked lime; A third step (3) of immobilizing the heavy metal using a heavy metal stabilizer; A fourth step (4) of adjusting calcium to neutral (approximately pH: 7) and adding calcium chloride at the same time by using alumina; A fifth step (5) of introducing a polymer flocculant; A heavy metal removal process comprising a sixth step (6) for removing sludge produced in the settling tank,
중금속제거공정을 거친 폐수를 황산을 사용하여 산성(대략 pH:4~5)으로 조절하는 제 7단계(7)와; 희토류 화합물이 주성분인 불소제거제를 투입하는 제 8단계(8)와; 소석회를 사용하여 중성(대략 pH:7)으로 조절하는 제 9단계(9)와; 고분자 응집제를 투입하는 제 10단계(10)와; 침전조에서 생성된 슬러지를 제거하는 제 11단계(11)로 구성된 불소제거공정을 포함하여 이루어진다.A seventh step (7) of adjusting the wastewater which has undergone the heavy metal removal process to acidic (approximately pH: 4 to 5) using sulfuric acid; An eighth step (8) of introducing a fluorine remover having a rare earth compound as a main component; A ninth step (9) of adjusting to neutral (approximately pH: 7) using slaked lime; A tenth step (10) of introducing a polymer flocculant; It comprises a fluorine removal process consisting of an eleventh step (11) for removing the sludge produced in the sedimentation tank.
한편, 상기 제 2단계(2) 및 9단계(9)에서 소석회는 각각 폐수원수 80 m3/min 에 대하여 600-1000ppm와 300ppm정도로 투입되며, 반응시간은 약 1시간이다.On the other hand, the slaked lime in the second step (2) and 9 step (9) is introduced at about 600-1000ppm and 300ppm with respect to the waste water source 80 m 3 / min, respectively, the reaction time is about 1 hour.
또한, 상기 제 3단계(3)에서 중금속 안정화제는 보통 킬레이드 화합물을 사용하며, 폐수원수 80 m3/min 에 대하여 2000~3000ppm정도로 투입되며, 반응시간은 약 1시간이다.In addition, in the third step (3), the heavy metal stabilizer usually uses a chelated compound, and is introduced at about 2000 to 3000 ppm with respect to 80 m 3 / min of wastewater, and the reaction time is about 1 hour.
또한, 상기 제 4단계(4)에서 황산반토는 폐수원수 80 m3/min에 대하여 600~1200ppm정도로 투입되며, 반응시간은 약 1시간이다. 한편, 상기 제 4단계(4)에서는 염화칼슘을 투입하게 되는데, 상기 염화칼슘의 작용은 pH에 크게 영향을 주지 않으면서 칼슘이온이 불소와 결합하여 CaF2로 되어 불용화되고 같이 투입된 황산반토와 공침 작용을 일으키고 다음 단계인 고분자 응집제 투입공정에서 플록(Floc)이 커져 침강하게 되므로 중금속제거공정에서 불소농도를 낮은 수치로 떨어뜨리므로 불소제거공정에 사용되는 불소제거제의 양을 줄일 수 있게 되는 것이다.In addition, in the fourth step (4), alumina sulfate is introduced at about 600 to 1200 ppm with respect to 80 m 3 / min of wastewater, and the reaction time is about 1 hour. Meanwhile, in the fourth step (4), calcium chloride is added, and the action of calcium chloride is insoluble as CaF 2 by incorporation of fluorine and CaF 2 without significantly affecting pH. In the next step, the flocculant becomes large and precipitates in the polymer coagulant input process, so that the fluorine concentration in the heavy metal removal process is lowered to a lower value, thereby reducing the amount of fluoride remover used in the fluorine removal process.
표 1은 황산반토 투입공정에 염화칼슘의 농도를 달리하여 투입하였을 때 중금속제거공정의 마지막단계인 침전조 에서의 불소농도를 나타낸다.Table 1 shows the concentration of fluorine in the sedimentation tank which is the final stage of the heavy metal removal process when the calcium chloride is added at different concentrations of alumina sulfate.
[표 1] TABLE 1
폐수처리공정에 투입된 불소의 초기 농도는 350ppm이었으며 황산반토 투입공저에서 염화칼슘을 투입하지 않았을 경우에 중금속제거공정의 마지막단계인 침전조에서의 불소농도는 210ppm이었다. 이는 불소제거공정에서 pH를 조절하기 위하여 투입된 소석회와 응집제로 투입된 황산반토가 불소와 반응하여 각각CaF2, AlF3, Na3AlF6(빙정석)등으로 침전되었기 때문에 중금속 제거공정임에도 불구하고 불소농도가 저감되었다. 본 발명에서와 같이 황산반토 투입공정에 염화칼슘을 투입량을 달리하면, 염화칼슘을 2000ppm 투입하였을 경우에는 68ppm, 염화칼슘을 3000ppm투입하였을 경우에는 60ppm의 불소농도를 보였다. 염화 칼슘의 투입량을 늘리는 것은 슬러지의 생성을 많게 함으로 염화칼슘의 투입량은 1000ppm으로 하는 것이 바람직하다.The initial concentration of fluorine in the wastewater treatment process was 350ppm, and the concentration of fluorine in the sedimentation tank, the final stage of the heavy metal removal process, was 210ppm when calcium chloride was not added in the alumina sulphate input. In the fluorine removal process, the fluorine concentration was removed even though the slaked lime added to adjust the pH and the alumina sulfate added as a flocculant reacted with fluorine to precipitate as CaF 2 , AlF 3 , Na 3 AlF 6 (cryolite), respectively. Is reduced. When the amount of calcium chloride was added to the alumina sulfate input process as in the present invention, fluorine concentration of 68 ppm was added when 2000 ppm of calcium chloride was added and 60 ppm was added when 3000 ppm of calcium chloride was added. Increasing the amount of calcium chloride increases the production of sludge, so the amount of calcium chloride is preferably 1000 ppm.
또한, 상기 제 5단계(5) 및 10단계(10)에서 고분자 응집제는 각각 단계에서 폐수원수 80 m3/min에 대하여10ppm과 20ppm정도로 투입되며, 반응시간은 약 1시간이다.In addition, in the fifth step (5) and the ten step (10), the polymer flocculant is introduced at about 10 ppm and 20 ppm with respect to the waste water source 80 m 3 / min in each step, the reaction time is about 1 hour.
또한, 상기 제 8단계(8)에서 불소제거제는 염화칼슘을 투입함으로써 불소농도가 약 50~80ppm정도로 낮아지게 되고 결과적으로 염화칼슘을 투입하지 않는 기존의 폐수 처리 방법보다 적은 불소제거제를 사용하게 되는 것이다. 염화칼슘을 사용하였을 때와 사용하지 않았을 때의 불소제거제의 사용량을 비교하면, 염화칼슘을 사용하지 않았을 경우의 기존방법은 불소제거제의 반응시간을 1시간으로 하였을 때 불소제거제를 약 2000ppm투입여야만 불소농도 15ppm이하로 맞출 수가 있다. 하지만, 불소제거제의 반응시간은 1시간으로 동일하게 하고 황산반토 투입공정에서 염화칼슘을 1000ppm 투입할 경우에는 불소제거제의 투입량을 1000ppm으로 하여도 불소농도를 15ppm 이하로 맞출 수 가 있다. 따라서 염화칼슘을 사용함으로서 불소제거제의 투입량을 반으로 줄이는 효과가 있는 것이다. In addition, in the eighth step (8), the fluorine remover is added with calcium chloride, so that the fluorine concentration is lowered to about 50 to 80 ppm, and as a result, less fluorine remover is used than the conventional wastewater treatment method in which calcium chloride is not added. Comparing the amount of fluoride remover with and without the use of calcium chloride, the conventional method without calcium chloride is about 2000 ppm of fluoride remover when the reaction time of the fluorine remover is 1 hour. 15ppm or less can be set. However, when the reaction time of the fluorine remover is the same as 1 hour and 1000 ppm of calcium chloride is added in the alumina sulfate input process, the fluorine concentration can be adjusted to 15 ppm or less even if the amount of the fluorine remover is 1000 ppm. Therefore, the use of calcium chloride has the effect of reducing the amount of fluoride remover in half.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
상술한 바와 같이 본 발명은 중금속제거공정의 황산반토 투입단계에 염화칼슘을 동시에 투입하면 칼슘이온이 불소와 결합하여 CaF2로 되어 불용화되고 같이 투입된 황산반토와 공침 작용을 일으키고 다음단계인 고분자 응집제 투입공정에서 플록(Floc)이 커져 침강하게 된다. 이에 따라 중금속제거공정에서 불소이온이 50~80ppm으로 줄어들게 됨으로 불소제거 공정에서 사용되는 불소제거제의 사용량을 줄일 수 있게 되는 것이다.As described above, in the present invention, when calcium chloride is simultaneously added to the alumina sulfate input step of the heavy metal removal process, calcium ions are combined with fluorine to form CaF 2 , insolubilized and co-precipitate with the introduced alumina sulfate, and then a polymer coagulant is added. In the process, flocs become larger and settle. Accordingly, fluorine ions are reduced to 50 to 80 ppm in the heavy metal removal process, thereby reducing the amount of fluorine remover used in the fluorine removal process.
도 1 은 기존의 폐수 처리 공정도1 is a conventional wastewater treatment process diagram
도 2 는 본 발명에 의한 폐수의 처리 공정도2 is a process chart of wastewater treatment according to the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
( 1’) : 제 1단계 ( 2’) : 제 2단계(1 '): Step 1 (2'): Step 2
( 3’) : 제 3단계 ( 4’) : 제 4단계(3 ′): Step 3 (4 ′): Step 4
( 5’) : 제 5단계 ( 6’) :제 6단계(5 '): Step 5 (6'): Step 6
( 7’) : 제 7단계 ( 8’) : 제 8단계(7 ′): 7th Step (8 ′): 8th Step
( 9’) : 제 9단계 ( 10’) :제 10단계(9 '): 9th step (10'): 10th step
( 11’) : 제 11단계(11 ’): Eleventh stage
(1) : 제 1단계 (2) : 제 2단계(1): first stage (2): second stage
(3) : 제 3단계 (4) : 제 4단계 (3): third stage (4): fourth stage
(5) : 제 5단계 (6) : 제 6단계(5): 5th step (6): 6th step
(7) : 제 7단계 (8) : 제 8단계(7): 7th step (8): 8th step
(9) : 제 9단계 (10) : 제 10단계(9): 9th step (10): 10th step
(11) : 제 11단계(11): eleventh step
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030090446A KR20050058535A (en) | 2003-12-12 | 2003-12-12 | A treatment method of waste water from incineration plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030090446A KR20050058535A (en) | 2003-12-12 | 2003-12-12 | A treatment method of waste water from incineration plant |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050058535A true KR20050058535A (en) | 2005-06-17 |
Family
ID=37251878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030090446A KR20050058535A (en) | 2003-12-12 | 2003-12-12 | A treatment method of waste water from incineration plant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050058535A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340161B1 (en) * | 2011-12-15 | 2013-12-10 | 노바테크 (주) | High Concentration Hydrofluoric Acid Waste Liquor treatment Method |
CN103539246A (en) * | 2013-08-01 | 2014-01-29 | 乔占印 | Rare-earth polymerized chlorinated aluminum and iron phosphate and preparation process thereof |
CN106865929A (en) * | 2017-03-30 | 2017-06-20 | 哈尔滨工业大学 | In the method that rhamnolipid and calcium chloride remove Heavy Metals in Sludge as detergent |
KR20210129867A (en) * | 2020-04-21 | 2021-10-29 | 주식회사 포스코건설 | Stabilizing agents of heavy metals in fly ash and method for stabilizing heavy metals in fly ash using the same |
KR102592025B1 (en) * | 2023-04-21 | 2023-10-20 | 주식회사 가람 | An automatic control method for treatment of wastewater with heavy metal |
-
2003
- 2003-12-12 KR KR1020030090446A patent/KR20050058535A/en not_active Application Discontinuation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101340161B1 (en) * | 2011-12-15 | 2013-12-10 | 노바테크 (주) | High Concentration Hydrofluoric Acid Waste Liquor treatment Method |
CN103539246A (en) * | 2013-08-01 | 2014-01-29 | 乔占印 | Rare-earth polymerized chlorinated aluminum and iron phosphate and preparation process thereof |
CN106865929A (en) * | 2017-03-30 | 2017-06-20 | 哈尔滨工业大学 | In the method that rhamnolipid and calcium chloride remove Heavy Metals in Sludge as detergent |
KR20210129867A (en) * | 2020-04-21 | 2021-10-29 | 주식회사 포스코건설 | Stabilizing agents of heavy metals in fly ash and method for stabilizing heavy metals in fly ash using the same |
KR102592025B1 (en) * | 2023-04-21 | 2023-10-20 | 주식회사 가람 | An automatic control method for treatment of wastewater with heavy metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7931822B2 (en) | Compositions and methods for wastewater treatment | |
CN111302465B (en) | Novel liquid defluorination medicament and preparation method and application thereof | |
US4698163A (en) | Treatment of phosphate-containing wastewater | |
KR20010071946A (en) | Method for treating a fluorine-containing waste water and treating apparatus | |
CN107176726A (en) | Desulphurization for Coal-fired Power Plant waste water integrates defluorination method | |
JP2000084570A (en) | Treatment of fluorine-containing waste water and treating apparatus | |
CN112321009A (en) | Desulfurization wastewater treatment agent and treatment method | |
KR20050058535A (en) | A treatment method of waste water from incineration plant | |
JP4756415B2 (en) | Gas processing method | |
JP2758607B2 (en) | Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment | |
KR20040095610A (en) | Method of wastewater treatment | |
JPS6328492A (en) | Treatment of waste liquid of stack gas scrubbing | |
JPH06320168A (en) | Treatment of waste water containing fluorine | |
JPH105769A (en) | Treatment of fluorine-containing discharge water | |
CN113060870A (en) | Triple-box type desulfurization wastewater treatment method | |
KR0142932B1 (en) | Treatment of fluorine-containing wastewater | |
KR20030008074A (en) | Photo-oxideatic treatment of waster discharged from FGD | |
JP4203576B2 (en) | Treatment method for boron-containing wastewater | |
JP3822855B2 (en) | Sludge treatment method | |
KR100733332B1 (en) | Treatment method of waste water contaminated with fluoride and nitrate | |
KR100573184B1 (en) | Scale Preventer for Wastewater Disposal Facility in Flue Gas Desulfurization System | |
KR960011886B1 (en) | Waste water treatment method | |
JPS6342791A (en) | Treatment of waste water | |
JPS63258692A (en) | Treatment of organic sewage | |
JPH1133351A (en) | Method for treating drain for flue gas desulfurization device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |