JP2004281155A - Vessel for electricity storage, and its manufacturing method - Google Patents

Vessel for electricity storage, and its manufacturing method Download PDF

Info

Publication number
JP2004281155A
JP2004281155A JP2003069132A JP2003069132A JP2004281155A JP 2004281155 A JP2004281155 A JP 2004281155A JP 2003069132 A JP2003069132 A JP 2003069132A JP 2003069132 A JP2003069132 A JP 2003069132A JP 2004281155 A JP2004281155 A JP 2004281155A
Authority
JP
Japan
Prior art keywords
resin
moisture
proof sheet
solid
container assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003069132A
Other languages
Japanese (ja)
Other versions
JP4500501B2 (en
Inventor
Hiroshi Tada
裕志 多田
Saburo Yamashita
三郎 山下
Kentaro Fujii
憲太郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nissha Printing Co Ltd
Original Assignee
Toyo Aluminum KK
Nissha Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nissha Printing Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2003069132A priority Critical patent/JP4500501B2/en
Publication of JP2004281155A publication Critical patent/JP2004281155A/en
Application granted granted Critical
Publication of JP4500501B2 publication Critical patent/JP4500501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vessel for electricity storage with excellent weight reduction, mass productivity in installing a lid, and insulation property of a terminal part; and to provide its manufacturing method. <P>SOLUTION: This vessel 1 for electricity storage comprises: a resin solid vessel collective body 2 composed by integrally molding a plurality of bottomed cylindrical resin solid vessels 4 having electrolyte resistance by aligning their opening directions; and a moisture-proof sheet 3 covering the outside bottom surface 2b and the outside surface 2a of the collective body 2; and the moisture-proof sheet 3 is composed by laminate at least a corrosion-resisting resin layer 5 and aluminum foil in that order from the out side. Since the material of the vessel comprises the resins and the aluminum foil, the weight of the vessel can be further reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術の分野】
本発明は、軽量化、蓋をする際の量産性、端子部の絶縁性に優れた蓄電用容器とその製造方法に関するものである。
【0002】
【従来の技術】
非特許文献1には、リチウムイオン二次電池ケース用としてアルミ合金板材が新たに開発され、溶接性はそのままで、強度のみを向上させる元素配合及び圧延技術が確立されたことが開示されている。リチウムイオン二次電池は、小型、高電圧で繰り返しの充電にも適していることから、主に携帯電話、ノートパソコン等のバッテリーとして用いられ、今後も使用の拡大が大いに期待されているものである。またハイブリットカーや電気自動車、燃料電池自動車等のバッテリーとしても注目されている。このようなリチウムイオン二次電池のケース(外装缶材料)としては、従来、スチール板材が主に採用されていたが、近年、軽量化ニーズから急速にアルミニウム板材への変更が進んでいる。ケース用のアルミニウム板材には成形性、溶接性(上部に蓋をし、溶接する為)が高いことに加え、電池内部の圧力上昇に耐えるため、耐ふくれ性が高いことが求められる。更に、電池の小型化によりケースの薄肉化が進み、アルミニウム板材に対する強度要求は年々増加傾向にある。前記の新アルミ合金板材は、これらのニーズに対応するため、従来の「JISA3003P(Al−Mn合金)」を改良し強度を向上させ、同時に溶接時の割れ防止を図ったものであり、「A3003P」合金と同レベルの溶接性と成形性を維持しながら、引張強度を15〜20%向上させるものであった。
【0003】
【非特許文献1】
広報・IR室、“リチウムイオン二次電池ケース用アルミニウム板拡販に注力”、[online]、平成14年11月13日、日本軽金属株式会社、Nikkeikin Group News、[平成14年12月18日検索]、インターネット<URL:http://www.nikkeikin.co.jp/pages/press/P2002/p20021113.htm>
【0004】
【発明が解決しようとする課題】
しかしながら、上記のリチウムイオン二次電池のケースは、アルミニウム板材であっても金属製であることにはかわりなく、軽量化に限界があった。特にハイブリットカーや電気自動車、燃料電池自動車等の用途では、電池も大きくなるため、前記問題点はより顕著となる。
【0005】
また、上記しているように上部に蓋をするために溶接が必要となるが、アルミニウムは、熱伝導度が大きい為局部的に加熱するのが困難であり、アルミニウムの溶接・接合には熟練を要する。特性的には、凝固時の体積収縮、線膨張係数が大きい為、溶接歪みが生じ易く、また合金によっては割れが生じることもある。また、表面に強固な酸化皮膜が存在するので、多量のフラックスが必要であり、酸化皮膜に共存する結晶水は、溶接部のブローホール等の溶接欠陥の原因にもなる。さらに化学的に活性な金属である為、不活性ガス等で表面を保護する必要がある。このため不活性ガスアーク溶接(TIG溶接・MIG溶接)が多用されているが、この方法は多量の不活性ガスや高価なタングステン電極もしくは消耗電極が必要な為、量産には適していない。圧接法は、高圧力を利用する為、厚板では可能であるが、薄いアルミニウム板(箔)には不向きである。その他、電子ビーム溶接やプラズマ溶接等が考えられるが、開発途上のものが多く、また装置が高価である等の理由で、工業的には普及していない。従って、溶接工程を含むことは量産に不向きである。
【0006】
また、ケース全体が導電性材料からなるため、端子部の絶縁性を図るために 絶縁性セラミックス、絶縁性樹脂・ゴム等の絶縁性部材を端子部周辺に係合又は螺合しなければならない。しかしながら、水分の付着や不用意な作業によって端子部とケースとがショートする危険性が常にある。ショートを完全に防止するには、ケース全体を絶縁性材料で被覆しなければならず、コスト、量産性の点で不利であった。
【0007】
したがって、本発明の目的は、上記の問題点を解決し、軽量化、蓋をする際の量産性、端子部の絶縁性に優れた、リチウムイオン二次電池以外の電池やキャパシタ用のケースをも含む蓄電用容器とその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の蓄電用容器は、耐電解液性を有する筒状の複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体と、該樹脂固型容器集合体の外側面を覆う防湿シートとからなり、該防湿シートが外側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなるものであるように構成した。
【0009】
本発明の蓄電用容器の製造方法は、射出成形用の金型内壁に、金型側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなる防湿シートを沿わせて配置し、次いでキャビティに溶融された耐電解液性を有する樹脂を射出することにより、筒状をなす複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体を得ると同時に該樹脂固型容器集合体の外側面を防湿シートにて覆うように構成した。
【0010】
また、本発明の蓄電用容器の製造方法は、耐電解液性を有する筒状の複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体を予め用意し、該樹脂固型容器集合体の外側面を、外側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなる防湿シートを重ね合わせて接着することにより覆うように構成した。
【0011】
また、上記各構成において、樹脂固型容器が有底筒状であり、防湿シートが樹脂固型容器集合体の外底面および外側面を覆うように構成した。
【0012】
また、上記外底面も防湿シートで覆う構成において、樹脂固型容器集合体の外底面を覆う防湿シートと樹脂固型容器集合体の外側面を覆う防湿シートとが別体であるように構成した。
【0013】
また、上記各構成において、防湿シートが、アルミニウム箔の樹脂固型容器集合体側に熱接着性樹脂層を積層してなるように構成した。
【0014】
上記蓄電用容器は、その構成によって従来のアルミニウム板からなる容器では得られない、次のような特徴を有する。すなわち、材料が樹脂とアルミニウム箔とからなるため、さらなる軽量化を図ることができる。
【0015】
また、上記しているように上部に蓋をする際には、嵌合、接着剤による接着、ヒートシール、圧入、螺合等すれば済み、従来技術のように溶接は不要である。そのため、上記蓄電用容器は、蓋をする際の量産性に優れる。
【0016】
また、蓄電用容器の最も内側は樹脂材料からなるため絶縁性を有し、端子部の絶縁性を図るための複雑な部材設計の必要性がなく、電池容器と端子部のショ−トという問題は生じない。
【0017】
【発明の実施の形態】
以下に、図を参照しながら本発明に係る蓄電用容器とその製造方法について詳細に説明する。
【0018】
図1に示す蓄電用容器1は、耐電解液性を有する有底筒状の3つの樹脂固型容器4を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体2(図2参照)と、該樹脂固型容器集合体2の外底面2bおよび外側面2aを覆う防湿シート3とからなり、該防湿シート3が外側より少なくとも防蝕性樹脂層5、アルミニウム箔6、熱接着性樹脂層7の順で積層してなるもの(図3参照)である。また、樹脂固型容器集合体2の外底面2bを覆う防湿シート3と樹脂固型容器集合体2の外側面2aを覆う防湿シートとが別体である。
【0019】
上記樹脂固型容器集合体2は、蓄電用容器1について容器としての形状および強度を付与するためのものである。樹脂固型容器集合体2は、次ぎの理由から、射出成形によるのが好ましい。射出成形(Injection Molding)は、樹脂材料を加熱して流動状態にし、閉じた金型の空洞部(キャビティ)に加圧注入し金型内で固化させることにより、金型空洞部に相当する形を造る方法であるため、この方法によって得られる成形品は、形状の選択の幅が広く、図1の樹脂固型容器集合体2のように有底筒状をなす複数の樹脂固型容器4を開口方向を揃えて一体化したものとすることができる。また、この方法によって得られる成形品は、従来のアルミニウム板からなる容器と同様に、電池内部の圧力上昇にも耐え得る耐ふくれ性の高いものである。
【0020】
上記樹脂固型容器集合体2を構成する各樹脂固型容器4は、例えば口径に対し深さ方向が大きい有底筒状にその容量が50cc以上となるように成形される。また、樹脂固型容器集合体2の外底面2bおよび外側面2aを防湿シート3にて覆うため、樹脂固型容器4の筒の形は図1に示すような円筒や角筒(図4参照)とするのが好ましい。この円筒や角筒の内壁面は、開口部が裾拡がりとなるようにテーパーを持っているものでもよい。なお、図1においては、3つの樹脂固型容器4を開口方向を揃えて一体的に射出成形して樹脂固型容器集合体2としているが、本発明の樹脂固型容器集合体2を構成する樹脂固型容器4の数は2つ又は4つ以上であっても構わない。なお、樹脂固型容器集合体2及び樹脂固型容器4の肉厚は、特に制限されるものではないが、材質強度、耐ふくれ性及び設置スペ−スの点より0.5〜10mmが望ましい。
【0021】
上記樹脂固型容器集合体2の材質としては、耐電解液性・ガスバリア性・耐熱性・加工適性のあるものを用いる。例えば、ポリエチレン・ポリプロピレン・TPX等のポリオレフィン樹脂、PET・PEN・PBT等のポリエステル樹脂、PMMA・BMA・EMA等のアクリル樹脂、ABS・スチレン・AS等のスチレン系樹脂、塩化ビニル・酢酸ビニル・塩酢ビ共重合樹脂・塩酢ビマレイン酸共重合樹脂・エチレンビニルアルコール等のビニル樹脂、ナイロン6・ナイロン66等のポリアミド樹脂、フッソ系樹脂、シリコーン樹脂等の単体及びこれら複合物が使用できる。このうちポリオレフィン樹脂、特にポリプロピレン樹脂が、前記耐電解液性・ガスバリア性・耐熱性・加工適性の点で優れているため望ましい。
【0022】
上記防湿シート3に用いるアルミニウム箔6は、外部から蓄電用容器1内部に水蒸気ガスや酸素ガスが浸入することを防止するためのガスバリア層であり、ガスバリア性の確保や加工適性その他を考慮すると、その厚みは6〜200μmの範囲とするのが好ましい。アルミニウム箔6の厚みが6μmに満たないと、ピンホールの発生が極端に多くなり、ガスバリア性が低下する。また、アルミニウム箔6の厚みが200μmを超えると、熱が逃げ易く、また重量が大きくなることに加え、経済的に望ましくない。上記アルミニウム箔の成分は特に限定されるものではなく、公知の純アルミニウムまたはアルミニウム合金が使用できる。また調質は、硬質材、半硬材、軟質材等のいずれであっても良く適宜選択すれば良い。また、アルミニウム箔は、必要に応じ、公知の方法で脱脂・洗浄、アンカーコート、プライマーコート、表面処理(クロム酸処理等)等を施すこともできる。
【0023】
アルミニウム箔6の外側に積層される防蝕性樹脂層5は、他物品との機械的な接触によるアルミニウム箔6の亀裂・穴開き・剥離・破断等の発生を防止し、また水分や不用意な電解液の付着によるアルミニウム箔6の腐食を防止することを目的に設けられるものである。防蝕性樹脂層5に用いる材料としては、ポリエチレン系(HDPE、LDPE、LLDPE等)、ポリエステル系(PET、PEN、PBT等)、ポリプロピレン(延伸PP、無延伸PP)、ポリアミド系(ナイロン、MXDナイロン等)、ポリ塩化ビニリデン、塩化ビニル、フッソ系、エチレン−ビニルアルコール共重合体、ポリカーボネート等の樹脂フィルム、またはエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリオレフィン樹脂、フッ素樹脂系の防食コ−ト剤を用いることができる。特に、フィルムではポリエチレン系(HDPE)、ポリエステル系(PET)、ポリプロピレン(延伸PP、無延伸PP)が、また柔軟性、コスト、強度等のトータルバランスの点で、またコ−ト剤としては焼き付けタイプのエポキシ樹脂、アクリル樹脂が耐食性、コストの点より好ましい。防蝕性樹脂層5に用いるフィルムの厚みとしては、12〜80μmの範囲が、コ−ト剤としては2〜30μmとするのが好ましい。フィルムでは厚みが12μmに満たないと、ピンホールの発生が多くなると共に、前記アルミニウム箔との貼り合わせが困難となり、皺等が発生する為、防蝕性が低下する。また、厚みが80μmを超えると、コストの上昇、熱接着不良の原因となる。樹脂コ−ト層の厚みとして2μm以下では耐食性が十分でなく、30μ以上では塗工乾燥が困難となるだけでなく、コスト面でも好ましくない。
【0024】
また、アルミニウム箔6にフィルム形態の防蝕性樹脂層5を積層する方法としては、周知のドライラミネート用接着剤を用いて周知のドライラミネーション法で積層することができる。また、積層方法としては、押出しラミネート、ウエットラミネート又はヒートラミネート等を採用することもできる。
【0025】
また、本発明の防湿シート3においては、外側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層していればよいが、図3に示すようにアルミニウム箔6の樹脂固型容器集合体2側に熱接着性樹脂層7が積層されている方が好ましい。この理由としては、熱接着性樹脂層7と樹脂固型容器集合体2とを熱接着させることにより、防湿シート3を樹脂固型容器集合体2に強く固着させることができるからである。接着力が弱いとそこから剥離したり、空気(水分)が侵入する恐れがある。熱接着性樹脂層7に用いる材料としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖線状ポリエチレン、飽和ポリエステル、線状飽和ポリエステル、無延伸ポリプロピレン、塩素化ポリプロピレン、エチレン−アクリル酸共重合体、エチレン−メタアクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレン−メチルアクリレート共重合体、アイオノマー、エチレン−エチルアクリレート−無水マレイン酸三元共重合体、ポリオレフィン、カルボン酸変性ポリエチレン、カルボン酸変性ポリプロピレン、カルボン酸変性エチレン−酢酸ビニル、塩化ビニル、ポリスチレン等が挙げられる。また、製品名「ボンダイン」住友化学工業株式会社製、製品名「メルセンM」東ソー株式会社製等の市販品も使用することができる。これら熱接着性樹脂はフィルムの形態又は直接アルミニウム箔6に塗布して用いることができる。特に、接着性の点より樹脂容器に使用される同系の樹脂材料が好ましい。熱接着性樹脂層7の厚みは、1〜80μmの範囲とするのが好ましい。厚みが1μmに満たないと、熱接着強度が不十分となる恐れがある。また、厚みが80μmを超えると、端面から水分が混入する恐れがあり、バリアー性の点で好ましくない。
【0026】
また、アルミニウム箔6にフィルム形態の熱接着性樹脂層7を積層する方法としては、周知のドライラミネート用接着剤を用いて周知のドライラミネーション法で積層することができる。また、積層方法としては、押出しラミネート、ウエットラミネート、ヒートラミネート又はホットメルト等を採用することもでき、またラッカータイプの熱接着剤を塗布してもよい。なお、アルミニウム箔6と熱接着性樹脂層との間に補強樹脂フィルム等を介在させることもでき、補強樹脂フィルムとしては、厚み9〜50μmのポリエチレン系(HDPE、LDPE、LLDPE等)、ポリエステル系(PET、PEN、PBT等)、ポリプロピレン(延伸PP、無延伸PP)、ポリアミド系(ナイロン、MXDナイロン等)、ポリ塩化ビニリデン、塩化ビニル、フッソ系、エチレン−ビニルアルコール共重合体、ポリカーボネート等を介在させることができる。
【0027】
また、先に各層の厚みについて個々の好ましい理由を述べたが、防湿シート3全体の厚みとしては40〜300μmの範囲とするのが好ましい。総厚が40μmに満たないと、防湿シート3に腰がないため、樹脂固型容器集合体2を覆う際に扱いにくくなる。また、総厚が300μmを超えると、柔軟性低下、コスト上昇、熱接着不良、密着不良の原因となる。なお、上記で述べた各層以外に必要に応じて、印刷層、着色層、クッション層、オーバーコート層、接着強化層等を介在又は積層してもよく、また、任意の層に滑剤、腐食抑制剤、紫外線吸収剤等の添加剤・助剤を含ませてもよい。
【0028】
以上のような本発明の蓄電用容器1は、次に示す方法によって樹脂固型容器集合体2を防湿シート3で被覆して製造する。
【0029】
すなわち、射出成形用の金型8の内壁に、金型8側より少なくとも防蝕性樹脂層5、アルミニウム箔6の順で積層してなる防湿シート3を沿わせて配置し(図5参照)、次いでキャビティに溶融された耐電解液性を有する樹脂を射出することにより、有底筒状をなす複数の樹脂固型容器4を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体2を得ると同時に該樹脂固型容器集合体2の外底面2bおよび外側面2aを防湿シート3にて覆うようにする。
【0030】
また、耐電解液性を有する有底筒状の複数の樹脂固型容器4を開口方向を揃えて一体的に射出成形してなる樹脂固型容器集合体2を予め用意し、該樹脂固型容器集合体2の外底面2bおよび外側面2aに、外側より少なくとも防蝕性樹脂層5、アルミニウム箔6の順で積層してなる防湿シート3を重ね合わせて接着することもできる(図6参照)。樹脂固型容器集合体2の外底面2bを覆う防湿シート3と樹脂固型容器集合体2の外側面2aを覆う防湿シート3とが別体である場合、上記金型8を用いる方法よりこの方法の方がより好ましい。何故なら、複数の防湿シート3を金型8内に挿入し、金型8内壁に沿わせて保持するのは手間がかかるからである。なお、防湿シート3に熱接着性樹脂層7を設けて樹脂固型容器集合体2と熱接着性樹脂層7とを熱接着する場合、その手段には外加熱による場合と内加熱による場合とがある。外加熱による熱接着方法としては、熱ローラーのついた熱転写機、アップダウン転写機などを用いて防湿シート3の外側より熱圧をかける圧着法がある。また、内加熱による熱接着方法としては、接着させる界面、すなわちここでは樹脂固型容器集合体2の外側面2aおよび外底面2bと防湿シート3の熱接着性樹脂層7とを密着させておき、その上に超音波又は高周波をかけて界面を振動させ発熱させるウェルダー加工法がある。
【0031】
また、上記熱接着工程においては、防湿シート3を所定の形状にカットしたものを一枚一枚を送り出して樹脂固型容器集合体2に熱接着させることも可能であるし、又このカットしたものを長尺の補助シートに等間隔で貼りつけておいてロール状になし、これを自動的に繰り出し、補助シート側から熱圧をかけカットした防湿シート3のみを樹脂固型容器集合体2に熱接着し、補助シートを巻き取る方法(いわゆる転写ラミネート法)をとることも可能である。
【0032】
ところで、図5および図6においては、樹脂固型容器集合体2の外底面2bを覆う防湿シート3と樹脂固型容器集合体2の外側面2aを覆う防湿シート3とが別体となっている蓄電用容器1の製造方法が示されているが、本発明は、1枚の防湿シート3を樹脂固型容器集合体2の形状に合わせて深絞り成形したものを用いて樹脂固型容器集合体2を被覆するようにしても構わない。しかし、樹脂固型容器集合体2の外底面2bを覆う防湿シート3と樹脂固型容器集合体2の外側面2aを覆う防湿シート3とが別体となる方が、アルミニウム箔6が薄くても比較的大型のものを製造できること、容器全体にわたりアルミニウム箔6が均一の厚みを有し、加工に際して水蒸気ガスの侵入するピンホール等が生成される危険が少ないという効果がある。なお、この外側面2aと外底面2bとの境界で隙間があるとガスバリア性が損なわれるため、外側面2aを覆う防湿シート3または外底面2bを覆う防湿シート3の一方についてその境界に臨む端部を継ぎ代部3aとし、他方の防湿シート3の前記境界に臨む端部に二重に重ね合わせるようにするとよい(図6参照)。また、外側面2aを覆う防湿シート3については、樹脂固型容器集合体2の外側面2aへの巻き始めの端部と巻き終わりの端部との間に隙間があるとガスバリア性が損なわれるため、両端部を二重に重ね合わせる部分(継ぎ代部3a)を設けるとよい(図6参照)。この継ぎ代部3aを設ける場合、防湿シート3の内側および外側の互いに接する層は剥離しにくいものを選択する。
【0033】
また、本発明の蓄電用容器とその製造方法においては、筒状の樹脂固型容器が底のないもので、樹脂固型容器集合体の外側面のみを防湿シートにて覆うようにしてもよい。この場合、
【0034】
【実施例】
(実施例1) 内径40mm、肉厚4mm、長さ140mmの有底円筒状をなす6つのポリプロピレン樹脂固型容器を開口方向を揃えて一体的に射出成形してなる樹脂固型容器集合体を予め用意し、外側よりCPP(無延伸ポリプロピレン)フィルム30μm/ウレタン系ドライ接着剤4μm/アルミニウム箔(Al純度99.3重量%軟質材)30μm/ウレタン系ドライ接着剤4μm/CPPフィルム30μmの順で積層してなる防湿シートを樹脂固型容器集合体の外底面および外側面に個別に、重ね合わせて熱接着(温度:200℃、時間:3sec、圧力:3kg/cm)することにより蓄電用容器を得た。なお、樹脂固型容器集合体の外底面に熱接着した防湿シートおよび樹脂固型容器集合体の外側面に熱接着した防湿シートは、いずれも幅2mmの継ぎ代部を設けた。なお、試験用蓋材としてはOPニス1〜2μm/アルミニウム箔(Al純度99.3重量%軟質材)40μm/ウレタン系ドライ接着剤3〜4μm/CPPフィルム40μmを用い、後述の電解液等を充填後、容器開口部に熱板シール(温度:200℃、時間:3sec、圧力:3kg/cm、シール幅:容器の肉厚)した。
【0035】
(実施例2) 口寸法20mm×50mm、肉厚1mm、長さ140mmの有底角筒状をなす6つの高密度ポリエチレン樹脂固型容器を開口方向を揃えて一体的に射出成形してなる樹脂固型容器集合体を予め用意し、外側よりHDPE(高密度ポリエチレン)フィルム30μm/ウレタン系ドライ接着剤4μm/アルミニウム箔(Al純度99.3重量%軟質材)30μm/ウレタン系ドライ接着剤4μm/HDPEフィルム30μmの順で積層してなる防湿シートを樹脂固型容器集合体の外底面および外側面に個別に、重ね合わせて実施例1同様に熱接着することにより蓄電用容器を得た。なお、樹脂固型容器集合体の外底面に熱接着した防湿シートおよび樹脂固型容器集合体の外側面に熱接着した防湿シートは、いずれも幅2mmの継ぎ代部を設けた。なお、試験用蓋材としてはOPニス1〜2μm/アルミニウム箔(Al純度99.3重量%軟質材)20μm/ウレタン系ドライ接着剤3〜4μm/ナイロンフィルム15μm/ウレタン系ドライ接着剤3〜4μm/LLDPE(線状低密度ポリエチレン)フィルム40μmを用い、後述の電解液等を充填後、容器開口部に熱板シール(温度:180℃、時間:3sec、圧力:3kg/cm、シール幅:容器の肉厚)した。
【0036】
(比較例1) 実施例1でアルミ貼りしないポリプロピレン単体の樹脂固型容器集合体を用いる以外は実施例1と同じ蓋材を用い同様な評価を行った。
【0037】
(比較例2) 実施例2でアルミ貼りしない高密度ポリエチレン単体の樹脂固型容器集合体を用いる以外は実施例2と同じ蓋材を用い同様な評価を行った。
【0038】
以下に実施例1および2、比較例1および2での防水特性、及びリチウムイオン電池、有機系電気2重層コンデンサ−用の電解液に対する耐性の評価結果を示す。
【0039】
テストA:6つの樹脂固型容器内にそれぞれ塩化カルシウムを約80g充填し、試験用蓋材を容器開口部に熱板シール後、高温多湿雰囲気中(40℃×90%×20日)で経時させ重量増加分を水分透過量とした。テストB:6つの樹脂固型容器内にそれぞれ電気2重層用電解液(プロピレンカーボネートに、テトラエチルアンモニウムテトラフルオロホウ素((CNBF)1mol添加)を約100g充填し、試験用蓋材を容器開口部に熱板シール後、高温多湿雰囲気中(40℃×90%×20日)で経時させ電解液の変色及び内層材料の変化を調べた。テストC:6つの樹脂固型容器内にそれぞれリチウムイオン電池用電解液(EC/DEC=1/1のモル比の溶剤にLiPFを1mol添加)を約100g充填し、試験用蓋材を容器開口部に熱板シール後、高温多湿雰囲気中(40℃×90%×20日)で経時させ電解液の変色及び内層材料の変化を調べた。
【0040】
【表1】

Figure 2004281155
【0041】
【発明の効果】
本発明の蓄電用容器とその製造方法は、前記した構成及び作用からなるので、次の効果が奏される。
【0042】
すなわち、材料が樹脂とアルミニウム箔とからなるため、さらなる軽量化を図ることができる。
【0043】
また、上部に蓋をする際には、嵌合、接着剤による接着、ヒートシール、圧入又は螺合すれば済み、従来技術のように溶接は不要である。そのため、上記蓄電用容器は、蓋をする際の量産性に優れる。
【0044】
また、蓄電用容器の最も内側は樹脂材料からなるため絶縁性を有し、端子部の絶縁性を図るための複雑な部材設計の必要性がなく、電池容器と端子部のショ−トという問題は生じない。
【図面の簡単な説明】
【図1】本発明に係る蓄電用容器の一実施例を示す斜視図である。
【図2】本発明に係る蓄電用容器に用いる樹脂固型容器集合体の一実施例を示す部分断面斜視図である。
【図3】本発明に係る蓄電用容器に用いる防湿シートの一実施例を示す断面図である。
【図4】本発明に係る蓄電用容器の他の実施例を示す断面図である。
【図5】本発明に係る蓄電用容器の製造方法の一実施例を示す断面図である。
【図6】本発明に係る蓄電用容器の製造方法の他の実施例を示す図である。
【符号の説明】
1 蓄電用容器
2 樹脂固型容器集合体
2a 外側面
2b 外底面
3 防湿シート
3a 継ぎ代部
4 樹脂固型容器
5 防蝕性樹脂層
6 アルミニウム箔
7 熱接着性樹脂層
8 金型[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power storage container excellent in weight reduction, mass productivity at the time of covering, and insulation of a terminal portion, and a method of manufacturing the same.
[0002]
[Prior art]
Non-Patent Document 1 discloses that an aluminum alloy sheet material has been newly developed for use in a lithium ion secondary battery case, and that element mixing and rolling techniques for improving only strength while maintaining weldability have been established. . Lithium-ion rechargeable batteries are small, high-voltage and suitable for repeated charging, so they are mainly used as batteries for mobile phones, notebook computers, etc., and their use is expected to expand in the future. is there. Attention has also been focused on batteries for hybrid cars, electric vehicles, fuel cell vehicles, and the like. Conventionally, a steel plate material has been mainly used as a case (material of an outer can) of such a lithium ion secondary battery. However, in recent years, the need to reduce the weight has been rapidly changing to an aluminum plate material. The aluminum plate material for the case is required to have high formability and weldability (to cover the upper part and weld), and also to have high swelling resistance to withstand the pressure increase inside the battery. Further, the case is becoming thinner due to the miniaturization of the battery, and the strength requirement for the aluminum plate material is increasing every year. In order to meet these needs, the above-mentioned new aluminum alloy sheet material improves the conventional "JISA3003P (Al-Mn alloy)" to improve the strength and at the same time, aims to prevent cracking during welding. While improving the tensile strength by 15 to 20% while maintaining the same level of weldability and formability as the alloy.
[0003]
[Non-patent document 1]
Public Relations & IR Office, “Focus on expanding sales of aluminum plates for lithium-ion secondary battery cases”, [online], November 13, 2002, Nippon Light Metal Co., Ltd., Nikkikin Group News, [Search December 18, 2002] ], Internet <URL: http: // www. nikkikin. co. jp / pages / press / P2002 / p20021113. htm>
[0004]
[Problems to be solved by the invention]
However, the case of the above-mentioned lithium ion secondary battery is not limited to being made of metal even if it is made of an aluminum plate, and there is a limit to weight reduction. In particular, in applications such as a hybrid car, an electric vehicle, and a fuel cell vehicle, the size of the battery is increased, so that the above-described problem becomes more remarkable.
[0005]
In addition, as described above, welding is required to cover the upper part. However, aluminum is difficult to locally heat due to its high thermal conductivity. Cost. In terms of characteristics, since volume shrinkage and linear expansion coefficient during solidification are large, welding distortion is likely to occur, and cracks may occur depending on the alloy. Further, since a strong oxide film is present on the surface, a large amount of flux is required, and crystallization water coexisting in the oxide film causes welding defects such as blowholes in a welded portion. Furthermore, since it is a chemically active metal, it is necessary to protect the surface with an inert gas or the like. For this reason, inert gas arc welding (TIG welding / MIG welding) is frequently used, but this method is not suitable for mass production because a large amount of inert gas and expensive tungsten electrodes or consumable electrodes are required. The pressure welding method uses a high pressure and can be used for a thick plate, but is not suitable for a thin aluminum plate (foil). In addition, electron beam welding, plasma welding, and the like are conceivable, but many of them are still under development and are not widely used industrially because the equipment is expensive. Therefore, including a welding step is not suitable for mass production.
[0006]
In addition, since the entire case is made of a conductive material, an insulating member such as insulating ceramics, insulating resin or rubber must be engaged or screwed around the terminal portion in order to achieve insulation of the terminal portion. However, there is always a risk that the terminal portion and the case may be short-circuited due to adhesion of moisture or careless work. In order to completely prevent a short circuit, the entire case must be covered with an insulating material, which is disadvantageous in terms of cost and mass productivity.
[0007]
Therefore, an object of the present invention is to solve the above-mentioned problems, to reduce the weight, to mass-produce when closing the lid, and to provide a case for a battery or a capacitor other than a lithium ion secondary battery, which is excellent in the insulation of the terminals. And a method of manufacturing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a power storage container according to the present invention is a resin-solid container assembly formed by integrally molding a plurality of cylindrical resin-solid containers having electrolytic solution resistance with their opening directions aligned. And a moisture-proof sheet covering the outer surface of the resin-solid container assembly, and the moisture-proof sheet is formed by laminating at least a corrosion-resistant resin layer and an aluminum foil in this order from the outside.
[0009]
The method for manufacturing a power storage container according to the present invention includes disposing a moisture-proof sheet formed by laminating at least a corrosion-resistant resin layer and an aluminum foil in this order on the inner wall of a mold for injection molding, and then forming a cavity. By injecting a resin having an electrolytic solution resistance that has been melted into, a resin-solid container assembly obtained by integrally molding a plurality of cylindrical resin-solid containers in the same opening direction is obtained. The outer surface of the resin-solid container assembly was covered with a moisture-proof sheet.
[0010]
In addition, the method for manufacturing a power storage container according to the present invention includes preparing a resin-solid container assembly in which a plurality of cylindrical resin-solid containers having electrolytic resistance are integrally formed with their opening directions aligned. Then, the outer surface of the resin-solid container assembly was covered by laminating and bonding at least a moisture-proof sheet formed by laminating a corrosion-resistant resin layer and an aluminum foil in this order from the outside.
[0011]
Further, in each of the above-described configurations, the resin solid container is cylindrical with a bottom, and the moisture-proof sheet is configured to cover the outer bottom surface and the outer surface of the resin solid container assembly.
[0012]
Further, in the configuration in which the outer bottom surface is also covered with the moisture-proof sheet, the moisture-proof sheet covering the outer bottom surface of the resin-solid-container assembly and the moisture-proof sheet covering the outer surface of the resin-solid-container assembly are separate bodies. .
[0013]
Further, in each of the above configurations, the moisture-proof sheet was configured such that a heat-adhesive resin layer was laminated on the resin-solid container assembly side of the aluminum foil.
[0014]
The above-described power storage container has the following features that cannot be obtained with a conventional container made of an aluminum plate due to its configuration. That is, since the material is made of the resin and the aluminum foil, further weight reduction can be achieved.
[0015]
Further, when the lid is put on the upper part as described above, fitting, bonding with an adhesive, heat sealing, press-fitting, screwing, etc. may be performed, and welding as in the related art is unnecessary. Therefore, the power storage container is excellent in mass productivity when the lid is closed.
[0016]
Further, since the innermost part of the power storage container is made of a resin material, it has an insulating property, and there is no need to design a complicated member for achieving the insulating property of the terminal part. Does not occur.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the power storage container and the method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.
[0018]
A power storage container 1 shown in FIG. 1 is a resin-solid container assembly 2 (see FIG. 1) formed by integrally molding three resin-solid bottomed containers 4 having a bottom with an electrolytic solution with the opening directions thereof aligned. 2) and a moisture-proof sheet 3 that covers the outer bottom surface 2b and the outer surface 2a of the resin-solid container assembly 2, and the moisture-proof sheet 3 is at least from the outside in a corrosion-resistant resin layer 5, an aluminum foil 6, and a thermal bond. It is formed by laminating in order of the conductive resin layer 7 (see FIG. 3). In addition, the moisture-proof sheet 3 that covers the outer bottom surface 2b of the resin-solid container assembly 2 and the moisture-proof sheet that covers the outer surface 2a of the resin-solid container assembly 2 are separate bodies.
[0019]
The resin-solid container assembly 2 is for imparting the shape and strength of the container to the power storage container 1. The resin-solid container assembly 2 is preferably formed by injection molding for the following reasons. Injection molding is a method in which a resin material is heated to a fluidized state, injected into a cavity (cavity) of a closed mold under pressure, and solidified in the mold, thereby forming a shape corresponding to the mold cavity. Therefore, the molded product obtained by this method has a wide range of choices in the shape, and a plurality of resin-solid containers 4 having a bottomed cylindrical shape like the resin-solid container assembly 2 in FIG. Can be integrated by aligning the opening directions. Further, the molded article obtained by this method has high blister resistance, which can withstand a pressure increase inside the battery, similarly to a container made of a conventional aluminum plate.
[0020]
Each resin solid container 4 constituting the resin solid container assembly 2 is formed into a bottomed cylindrical shape whose depth direction is large with respect to the diameter, for example, so that the capacity is 50 cc or more. Further, since the outer bottom surface 2b and the outer side surface 2a of the resin-solid container assembly 2 are covered with the moisture-proof sheet 3, the shape of the tube of the resin-solid container 4 is a cylinder or a square tube as shown in FIG. ) Is preferable. The inner wall surface of the cylinder or the square tube may have a taper so that the opening becomes wider. In FIG. 1, three resin solid container containers 4 are integrally injection-molded in the same opening direction to form a resin solid container container assembly 2. The number of resin solid containers 4 to be formed may be two or four or more. The thickness of the resin-solid container assembly 2 and the resin-solid container 4 is not particularly limited, but is preferably 0.5 to 10 mm from the viewpoint of material strength, swelling resistance, and installation space. .
[0021]
As the material of the resin-solid container assembly 2, a material having electrolytic resistance, gas barrier properties, heat resistance, and processability is used. For example, polyolefin resins such as polyethylene / polypropylene / TPX, polyester resins such as PET / PEN / PBT, acrylic resins such as PMMA / BMA / EMA, styrene resins such as ABS / styrene / AS, vinyl chloride / vinyl acetate / salt Simple substances such as vinyl acetate copolymer resin, vinyl acetate vinyl acetate copolymer resin, vinyl resin such as ethylene vinyl alcohol, polyamide resin such as nylon 6 and nylon 66, fluorine resin and silicone resin, and composites thereof can be used. Of these, polyolefin resins, particularly polypropylene resins, are desirable because they are excellent in the above-mentioned electrolytic solution resistance, gas barrier properties, heat resistance, and workability.
[0022]
The aluminum foil 6 used for the moisture-proof sheet 3 is a gas barrier layer for preventing water vapor gas or oxygen gas from entering the power storage container 1 from the outside, and in consideration of ensuring gas barrier properties, processing suitability, and the like, Its thickness is preferably in the range of 6 to 200 μm. If the thickness of the aluminum foil 6 is less than 6 μm, the occurrence of pinholes becomes extremely large, and the gas barrier property is reduced. On the other hand, if the thickness of the aluminum foil 6 exceeds 200 μm, heat easily escapes and the weight increases, which is not economically desirable. The components of the aluminum foil are not particularly limited, and known pure aluminum or aluminum alloy can be used. The refining may be any of a hard material, a semi-hard material, a soft material, and the like, and may be appropriately selected. The aluminum foil may be subjected to degreasing / washing, anchor coating, primer coating, surface treatment (chromic acid treatment, etc.) by a known method, if necessary.
[0023]
The corrosion-resistant resin layer 5 laminated on the outer side of the aluminum foil 6 prevents the aluminum foil 6 from being cracked, perforated, peeled, broken, etc. due to mechanical contact with other articles. It is provided for the purpose of preventing the corrosion of the aluminum foil 6 due to the adhesion of the electrolytic solution. Materials used for the corrosion-resistant resin layer 5 include polyethylene (HDPE, LDPE, LLDPE, etc.), polyester (PET, PEN, PBT, etc.), polypropylene (stretched PP, unstretched PP), polyamide (nylon, MXD nylon) Etc.), polyvinylidene chloride, vinyl chloride, fluorine-based, ethylene-vinyl alcohol copolymer, polycarbonate and other resin films, or epoxy resin, acrylic resin, polyester resin, polyolefin resin, fluorine resin-based anticorrosion coating agent. Can be used. In particular, polyethylene (HDPE), polyester (PET), and polypropylene (stretched PP, unstretched PP) are used for films, and baking is used as a coating agent in terms of total balance of flexibility, cost, strength, and the like. Type epoxy resin and acrylic resin are preferable from the viewpoint of corrosion resistance and cost. The thickness of the film used for the corrosion-resistant resin layer 5 is preferably in the range of 12 to 80 μm, and the thickness of the coating agent is preferably 2 to 30 μm. If the thickness of the film is less than 12 μm, pinholes increase and the lamination with the aluminum foil becomes difficult, and wrinkles and the like are generated. On the other hand, when the thickness exceeds 80 μm, it causes an increase in cost and poor thermal bonding. When the thickness of the resin coat layer is 2 μm or less, the corrosion resistance is not sufficient. When the thickness is 30 μm or more, not only the coating and drying becomes difficult but also the cost is not preferable.
[0024]
In addition, as a method of laminating the corrosion-resistant resin layer 5 in the form of a film on the aluminum foil 6, the lamination can be performed by a known dry lamination method using a known adhesive for dry lamination. Further, as a lamination method, extrusion lamination, wet lamination, heat lamination, or the like can also be employed.
[0025]
Further, in the moisture-proof sheet 3 of the present invention, it is sufficient that at least the corrosion-resistant resin layer and the aluminum foil are laminated in this order from the outside, but as shown in FIG. It is more preferable that the heat-adhesive resin layer 7 is laminated on the substrate. The reason is that the moisture-proof sheet 3 can be firmly fixed to the resin-solid container assembly 2 by thermally bonding the heat-adhesive resin layer 7 and the resin-solid container assembly 2. If the adhesive strength is weak, there is a risk that the adhesive will peel off or air (moisture) will enter. Examples of the material used for the heat-adhesive resin layer 7 include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear linear polyethylene, saturated polyester, linear saturated polyester, undrawn polypropylene, chlorinated polypropylene, and ethylene-acryl. Acid copolymer, ethylene-methacrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ionomer, ethylene-ethyl acrylate-maleic anhydride terpolymer, polyolefin, carboxylic acid Modified polyethylene, carboxylic acid-modified polypropylene, carboxylic acid-modified ethylene-vinyl acetate, vinyl chloride, polystyrene and the like can be mentioned. Commercial products such as "Bondane" manufactured by Sumitomo Chemical Co., Ltd. and "Mersen M" manufactured by Tosoh Corporation can also be used. These thermo-adhesive resins can be used in the form of a film or directly applied to the aluminum foil 6. Particularly, a similar resin material used for the resin container is preferable from the viewpoint of adhesiveness. The thickness of the heat-adhesive resin layer 7 is preferably in the range of 1 to 80 μm. If the thickness is less than 1 μm, the heat bonding strength may be insufficient. On the other hand, if the thickness exceeds 80 μm, moisture may be mixed from the end face, which is not preferable in terms of barrier properties.
[0026]
In addition, as a method of laminating the heat-adhesive resin layer 7 in the form of a film on the aluminum foil 6, the lamination can be performed by a well-known dry lamination method using a well-known dry laminating adhesive. In addition, as a lamination method, extrusion lamination, wet lamination, heat lamination, hot melt, or the like may be employed, or a lacquer-type thermal adhesive may be applied. In addition, a reinforcing resin film or the like can be interposed between the aluminum foil 6 and the heat-adhesive resin layer. As the reinforcing resin film, a polyethylene (HDPE, LDPE, LLDPE, etc.) having a thickness of 9 to 50 μm, or a polyester resin (PET, PEN, PBT, etc.), polypropylene (stretched PP, non-stretched PP), polyamide (nylon, MXD nylon, etc.), polyvinylidene chloride, vinyl chloride, fluorine, ethylene-vinyl alcohol copolymer, polycarbonate, etc. It can be interposed.
[0027]
In addition, although the reasons for the individual thicknesses of the respective layers have been described above, the thickness of the entire moisture-proof sheet 3 is preferably in the range of 40 to 300 μm. If the total thickness is less than 40 μm, the moisture-proof sheet 3 has no stiffness, so that it becomes difficult to cover the resin-solid container assembly 2. On the other hand, if the total thickness exceeds 300 μm, it causes a decrease in flexibility, an increase in cost, poor thermal bonding, and poor adhesion. In addition, other than the above-described layers, if necessary, a printing layer, a coloring layer, a cushion layer, an overcoat layer, an adhesion reinforcing layer, and the like may be interposed or laminated. Additives and auxiliaries such as agents and ultraviolet absorbers.
[0028]
The power storage container 1 of the present invention as described above is manufactured by covering the resin-solid container assembly 2 with the moisture-proof sheet 3 by the following method.
[0029]
That is, the moisture-proof sheet 3 formed by laminating at least the corrosion-resistant resin layer 5 and the aluminum foil 6 in this order from the side of the mold 8 is arranged on the inner wall of the mold 8 for injection molding (see FIG. 5). Next, a resin-solid container assembly formed by integrally molding a plurality of resin-solid containers 4 having a bottomed cylindrical shape by aligning the opening directions by injecting molten resin having electrolytic resistance into the cavity. At the same time as obtaining the body 2, the outer bottom surface 2 b and the outer side surface 2 a of the resin-solid container assembly 2 are covered with the moisture-proof sheet 3.
[0030]
Further, a resin-solid container assembly 2 is prepared in advance by integrally injection-molding a plurality of bottomed cylindrical resin-solid containers 4 having an electrolytic solution resistance while aligning the opening directions. A moisture-proof sheet 3 formed by laminating at least an anti-corrosion resin layer 5 and an aluminum foil 6 in this order from the outside can be overlapped and bonded to the outer bottom surface 2b and the outer side surface 2a of the container assembly 2 (see FIG. 6). . When the moisture-proof sheet 3 covering the outer bottom surface 2b of the resin-solid container assembly 2 and the moisture-proof sheet 3 covering the outer surface 2a of the resin-solid container assembly 2 are separate bodies, The method is more preferred. This is because it takes time and effort to insert the plurality of moisture-proof sheets 3 into the mold 8 and hold the moisture-proof sheets 3 along the inner wall of the mold 8. In the case where the heat-adhesive resin layer 7 is provided on the moisture-proof sheet 3 and the resin-solid container assembly 2 and the heat-adhesive resin layer 7 are heat-bonded to each other, the means may be either external heating or internal heating. There is. As a heat bonding method by external heating, there is a pressure bonding method in which heat pressure is applied from the outside of the moisture-proof sheet 3 using a heat transfer machine with a heat roller, an up-down transfer machine, or the like. As a method of heat bonding by internal heating, an interface to be bonded, that is, the outer surface 2a and the outer bottom surface 2b of the resin-solid container assembly 2 and the heat-adhesive resin layer 7 of the moisture-proof sheet 3 are brought into close contact with each other. There is a welder processing method in which ultrasonic waves or high frequencies are applied thereon to vibrate the interface to generate heat.
[0031]
In the heat bonding step, it is possible to cut out the moisture-proof sheet 3 into a predetermined shape one by one and heat-bond it to the resin-solid-container container assembly 2. The sheet is stuck to a long auxiliary sheet at regular intervals and formed into a roll. This is automatically fed out, and only the moisture-proof sheet 3 cut by applying heat and pressure from the auxiliary sheet side is used as the resin solid container assembly 2. It is also possible to employ a method of thermally bonding the sheet to the substrate and winding the auxiliary sheet (a so-called transfer lamination method).
[0032]
In FIGS. 5 and 6, the moisture-proof sheet 3 covering the outer bottom surface 2b of the resin-solid container assembly 2 and the moisture-proof sheet 3 covering the outer surface 2a of the resin-solid container assembly 2 are separate bodies. A method for manufacturing a power storage container 1 is shown, but the present invention relates to a method for manufacturing a resin-container container using a single moisture-proof sheet 3 which is deep drawn according to the shape of the resin-consolidated container assembly 2. The aggregate 2 may be covered. However, when the moisture-proof sheet 3 that covers the outer bottom surface 2b of the resin-solid container assembly 2 and the moisture-proof sheet 3 that covers the outer surface 2a of the resin-solid container assembly 2 are separate bodies, the aluminum foil 6 becomes thinner. In addition, there is an effect that a relatively large product can be manufactured, the aluminum foil 6 has a uniform thickness over the entire container, and there is little danger of generating a pinhole or the like into which steam gas enters during processing. If there is a gap at the boundary between the outer surface 2a and the outer bottom surface 2b, gas barrier properties are impaired. Therefore, one end of the moisture-proof sheet 3 covering the outer surface 2a or the moisture-proof sheet 3 covering the outer bottom surface 2b faces the boundary. It is preferable that the portion is a joint portion 3a, and the other moisture-proof sheet 3 is double overlapped with the end facing the boundary (see FIG. 6). As for the moisture-proof sheet 3 covering the outer surface 2a, the gas barrier property is impaired if there is a gap between the winding start end and the winding end of the resin solid container assembly 2 around the outer surface 2a. Therefore, it is preferable to provide a portion (joint margin 3a) where both ends are overlapped doubly (see FIG. 6). When the joint portion 3a is provided, the inner and outer layers of the moisture-proof sheet 3 that are in contact with each other are selected to be hard to peel.
[0033]
In the power storage container and the method of manufacturing the same according to the present invention, the cylindrical resin solid container has no bottom, and only the outer surface of the resin solid container assembly may be covered with the moisture-proof sheet. . in this case,
[0034]
【Example】
(Example 1) A resin solid container assembly formed by integrally injection molding six polypropylene resin solid containers having a bottom with a diameter of 40 mm, a wall thickness of 4 mm, and a length of 140 mm with the opening directions aligned. Prepared in advance, CPP (unstretched polypropylene) film 30 μm / urethane dry adhesive 4 μm / aluminum foil (Al purity 99.3% by weight soft material) 30 μm / urethane dry adhesive 4 μm / CPP film 30 μm The laminated moisture-proof sheet is individually superposed on the outer bottom surface and the outer surface of the resin-solid container assembly and thermally bonded (temperature: 200 ° C., time: 3 sec, pressure: 3 kg / cm). 2 ) To obtain a power storage container. Each of the moisture-proof sheet thermally bonded to the outer bottom surface of the resin-solid-container assembly and the moisture-proof sheet thermally bonded to the outer surface of the resin-solid-container assembly was provided with a 2-mm-width joint portion. In addition, OP varnish 1 to 2 μm / aluminum foil (Al purity: 99.3% by weight soft material) 40 μm / urethane-based dry adhesive 3 to 4 μm / CPP film 40 μm was used as a test lid material. After filling, seal the hot plate at the container opening (temperature: 200 ° C, time: 3 sec, pressure: 3 kg / cm 2 , Seal width: thickness of the container).
[0035]
(Example 2) A resin obtained by integrally injection-molding six high-density polyethylene resin solid containers each having a square cylindrical shape with a bottom having a mouth size of 20 mm x 50 mm, a thickness of 1 mm, and a length of 140 mm with the opening directions aligned. A solid container assembly is prepared in advance, and an HDPE (high-density polyethylene) film 30 μm / urethane-based dry adhesive 4 μm / aluminum foil (Al purity 99.3% by weight soft material) 30 μm / urethane-based dry adhesive 4 μm / A moisture-proof sheet formed by laminating HDPE films in an order of 30 μm was individually superposed on the outer bottom surface and the outer surface of the resin-solid container assembly, and thermally bonded in the same manner as in Example 1 to obtain a power storage container. Each of the moisture-proof sheet thermally bonded to the outer bottom surface of the resin-solid-container assembly and the moisture-proof sheet thermally bonded to the outer surface of the resin-solid-container assembly was provided with a 2-mm-width joint portion. The test lid material is OP varnish 1 to 2 μm / aluminum foil (softness of Al purity 99.3% by weight) 20 μm / urethane dry adhesive 3 to 4 μm / nylon film 15 μm / urethane dry adhesive 3 to 4 μm / LLDPE (linear low-density polyethylene) film 40 μm, and after filling with an electrolytic solution and the like described below, a hot plate seal (temperature: 180 ° C., time: 3 sec, pressure: 3 kg / cm) 2 , Seal width: thickness of the container).
[0036]
(Comparative Example 1) The same evaluation was performed using the same lid material as in Example 1 except that a resin-solid container assembly made of a simple substance of polypropylene not attached to aluminum in Example 1 was used.
[0037]
(Comparative Example 2) The same evaluation was performed using the same lid material as in Example 2 except that a resin-solid container assembly of high-density polyethylene alone not bonded to aluminum was used in Example 2.
[0038]
The results of evaluating the waterproof properties and the resistance to electrolytes for lithium ion batteries and organic electric double layer capacitors in Examples 1 and 2 and Comparative Examples 1 and 2 are shown below.
[0039]
Test A: Approximately 80 g of calcium chloride was filled in each of six resin-solidified containers, and a test cover material was sealed with a hot plate at the opening of the container, and then aged in a hot and humid atmosphere (40 ° C. × 90% × 20 days). The weight increase was defined as the amount of water permeation. Test B: Electric double layer electrolytes (propylene carbonate, tetraethylammonium tetrafluoroboron ((C 2 H 5 ) 4 NBF 4 ) (1 mol added) was filled in about 100 g, the test lid material was sealed on the opening of the container with a hot plate, and then allowed to age in a high-temperature and high-humidity atmosphere (40 ° C. × 90% × 20 days). Was examined. Test C: Lithium-ion battery electrolyte solution (EC / DEC = 1: 1 molar ratio solvent LiPF 6 (1 mol added), and the test lid was sealed on the opening of the container with a hot plate, and then allowed to age in a high-temperature and high-humidity atmosphere (40 ° C. × 90% × 20 days) to change the color of the electrolytic solution and the change of the inner layer material. Was examined.
[0040]
[Table 1]
Figure 2004281155
[0041]
【The invention's effect】
The power storage container and the method of manufacturing the same according to the present invention have the above-described configuration and operation, and thus have the following effects.
[0042]
That is, since the material is made of the resin and the aluminum foil, further weight reduction can be achieved.
[0043]
In addition, when the lid is placed on the upper part, fitting, bonding with an adhesive, heat sealing, press-fitting or screwing is sufficient, and welding as in the prior art is unnecessary. Therefore, the power storage container is excellent in mass productivity when the lid is closed.
[0044]
In addition, since the innermost part of the power storage container is made of a resin material, it has insulating properties, so that there is no need to design a complicated member for achieving the insulating properties of the terminals, and there is a problem of a short between the battery container and the terminals. Does not occur.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a power storage container according to the present invention.
FIG. 2 is a partial cross-sectional perspective view showing one embodiment of a resin-solid container assembly used for a power storage container according to the present invention.
FIG. 3 is a cross-sectional view showing one embodiment of a moisture-proof sheet used for a power storage container according to the present invention.
FIG. 4 is a sectional view showing another embodiment of the power storage container according to the present invention.
FIG. 5 is a cross-sectional view showing one embodiment of the method for manufacturing a power storage container according to the present invention.
FIG. 6 is a view showing another embodiment of the method for manufacturing a power storage container according to the present invention.
[Explanation of symbols]
1 storage container
2 Resin solid container aggregate
2a Outside surface
2b Outer bottom
3 Moisture proof sheet
3a Joint section
4 Resin solid container
5 Corrosion-resistant resin layer
6 Aluminum foil
7 Thermal adhesive resin layer
8 Mold

Claims (9)

耐電解液性を有する筒状の複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体と、該樹脂固型容器集合体の外側面を覆う防湿シートとからなり、該防湿シートが外側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなるものであることを特徴とする蓄電用容器。A resin-solid container assembly formed by integrally forming a plurality of cylindrical resin-solid containers having electrolytic solution resistance with their opening directions aligned, and a moisture-proof sheet covering the outer surface of the resin-solid container assembly Wherein the moisture-proof sheet is formed by laminating at least an anticorrosive resin layer and an aluminum foil in this order from the outside. 樹脂固型容器が有底筒状であり、防湿シートが樹脂固型容器集合体の外底面および外側面を覆う請求項1記載の蓄電用容器。The power storage container according to claim 1, wherein the resin solid container has a bottomed cylindrical shape, and the moisture-proof sheet covers an outer bottom surface and an outer surface of the resin solid container assembly. 樹脂固型容器集合体の外底面を覆う防湿シートと樹脂固型容器集合体の外側面を覆う防湿シートとが別体である請求項2記載の蓄電用容器。The power storage container according to claim 2, wherein the moisture-proof sheet covering the outer bottom surface of the resin-solid container assembly and the moisture-proof sheet covering the outer surface of the resin-solid container assembly are separate bodies. 防湿シートが、アルミニウム箔の樹脂固型容器集合体側に熱接着性樹脂層を積層してなる請求項1〜3のいずれかに記載の蓄電用容器。The power storage container according to any one of claims 1 to 3, wherein the moisture-proof sheet is formed by laminating a heat-adhesive resin layer on the resin-solid container assembly side of the aluminum foil. 射出成形用の金型内壁に、金型側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなる防湿シートを沿わせて配置し、次いでキャビティに溶融された耐電解液性を有する樹脂を射出することにより、筒状をなす複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体を得ると同時に該樹脂固型容器集合体の外側面を防湿シートにて覆うことを特徴とする蓄電用容器の製造方法。On the inner wall of the mold for injection molding, a moisture-proof sheet formed by laminating at least a corrosion-resistant resin layer and an aluminum foil in this order from the mold side is arranged, and then the resin having electrolytic resistance melted in the cavity To obtain a resin-solid container assembly formed by integrally molding a plurality of cylindrical resin-solid containers in the same opening direction and simultaneously forming the outer surface of the resin-solid container assembly. A method for manufacturing a power storage container, which comprises covering with a moisture-proof sheet. 耐電解液性を有する筒状の複数の樹脂固型容器を開口方向を揃えて一体的に成形してなる樹脂固型容器集合体を予め用意し、該樹脂固型容器集合体の外側面を、外側より少なくとも防蝕性樹脂層、アルミニウム箔の順で積層してなる防湿シートを重ね合わせて接着することにより覆うことを特徴とする蓄電用容器の製造方法。A resin-solid container assembly is prepared in advance by integrally molding a plurality of cylindrical resin-solid containers having electrolytic solution resistance with the opening directions aligned, and the outer surface of the resin-solid container assembly is prepared. A method for manufacturing a power storage container, comprising covering a moisture-proof sheet, which is formed by laminating at least a corrosion-resistant resin layer and an aluminum foil in this order from the outside, by overlapping and bonding. 樹脂固型容器が有底筒状であり、防湿シートが樹脂固型容器集合体の外底面および外側面を覆う請求項5または請求項6のいずれかに記載の蓄電用容器の製造方法。The method for manufacturing a power storage container according to claim 5, wherein the resin solid container has a bottomed cylindrical shape, and the moisture-proof sheet covers an outer bottom surface and an outer surface of the resin solid container assembly. 樹脂固型容器集合体の外底面を覆う防湿シートと樹脂固型容器集合体の外側面を覆う防湿シートとが別体である請求項7記載の蓄電用容器の製造方法。8. The method for manufacturing a power storage container according to claim 7, wherein the moisture-proof sheet covering the outer bottom surface of the resin-solid container assembly and the moisture-proof sheet covering the outer surface of the resin-solid container assembly are separate bodies. 防湿シートが、アルミニウム箔の樹脂固型容器集合体側に熱接着性樹脂層を積層してなる請求項5〜8のいずれかに記載の蓄電用容器の製造方法。The method for manufacturing a power storage container according to any one of claims 5 to 8, wherein the moisture-proof sheet is formed by laminating a heat-adhesive resin layer on the resin-solid container assembly side of the aluminum foil.
JP2003069132A 2003-03-14 2003-03-14 Storage container and method for manufacturing the same Expired - Fee Related JP4500501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003069132A JP4500501B2 (en) 2003-03-14 2003-03-14 Storage container and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003069132A JP4500501B2 (en) 2003-03-14 2003-03-14 Storage container and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004281155A true JP2004281155A (en) 2004-10-07
JP4500501B2 JP4500501B2 (en) 2010-07-14

Family

ID=33286247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003069132A Expired - Fee Related JP4500501B2 (en) 2003-03-14 2003-03-14 Storage container and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4500501B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319260A (en) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp Hybrid secondary battery jar
WO2008050604A1 (en) * 2006-10-24 2008-05-02 Panasonic Corporation Sealed secondary battery
JP2008135374A (en) * 2006-10-24 2008-06-12 Matsushita Electric Ind Co Ltd Sealed secondary battery
JP2010067524A (en) * 2008-09-11 2010-03-25 Inoac Corp Container for power storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101749720B1 (en) 2014-05-16 2017-06-21 주식회사 엘지화학 Battery Pack Having a Integrated Case Member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055491A (en) * 2002-07-24 2004-02-19 Miyagawa Kasei Ind Co Ltd Battery case structure of sealed type battery
JP2004281156A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, vessel collective body for electricity storage, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055491A (en) * 2002-07-24 2004-02-19 Miyagawa Kasei Ind Co Ltd Battery case structure of sealed type battery
JP2004281156A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, vessel collective body for electricity storage, and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004319260A (en) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp Hybrid secondary battery jar
JP4502245B2 (en) * 2003-04-16 2010-07-14 旭化成ケミカルズ株式会社 Hybrid secondary battery case
WO2008050604A1 (en) * 2006-10-24 2008-05-02 Panasonic Corporation Sealed secondary battery
JP2008135374A (en) * 2006-10-24 2008-06-12 Matsushita Electric Ind Co Ltd Sealed secondary battery
US8323826B2 (en) 2006-10-24 2012-12-04 Panasonic Corporation Sealed secondary battery
JP2010067524A (en) * 2008-09-11 2010-03-25 Inoac Corp Container for power storage device

Also Published As

Publication number Publication date
JP4500501B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP2004281156A (en) Vessel for electricity storage, vessel collective body for electricity storage, and manufacturing method thereof
EP2434564B1 (en) Rechargeable lithium battery in pouch form
US20180123090A1 (en) Polymer battery module packaging sheet and a method of manufacturing the same
KR101896922B1 (en) Covering material for battery and lithum-ion rechargeable battery
JP4736146B2 (en) Polymer battery packaging materials
JP4620202B2 (en) Method for producing polymer battery packaging material
JP2024016165A (en) Exterior material for power storage device and power storage device
JP6738164B2 (en) Exterior material for power storage device and power storage device
JP4831268B2 (en) Secondary battery packaging materials
JP4972816B2 (en) Polymer battery packaging materials
JP2024026624A (en) Pouch film laminate, pouch-type battery case, and pouch-type secondary battery
JP2017195112A (en) Exterior material for power storage device, and power storage device
JP4500501B2 (en) Storage container and method for manufacturing the same
KR101833913B1 (en) Slot Die Coater for Manufacturing Aluminium Pouch Film
JP2001176463A (en) Packaging material for polymer batter and production method therefor
JP2003242942A (en) Cell enclosure, and enclosing method of cell
JP6979847B2 (en) Exterior materials for power storage devices and power storage devices
JP2001229886A (en) Packaging material for polymer battery and method of manufacturing the same
JP7208213B2 (en) laminated battery
KR20130129417A (en) Film for protecting electrochemical energy stores
JP2001176457A (en) Method of producing polymer battery packaging material
JP2002279943A (en) Packaging material for lithium ion battery, and lithium ion battery using the same
JP2002245985A (en) Film for lead wire of battery and wrapping material for battery using it
JP5413341B2 (en) Polymer battery packaging materials
KR20120133827A (en) Battery Pouch having enhanced electrical insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees