JP4502245B2 - Hybrid secondary battery case - Google Patents

Hybrid secondary battery case Download PDF

Info

Publication number
JP4502245B2
JP4502245B2 JP2003111572A JP2003111572A JP4502245B2 JP 4502245 B2 JP4502245 B2 JP 4502245B2 JP 2003111572 A JP2003111572 A JP 2003111572A JP 2003111572 A JP2003111572 A JP 2003111572A JP 4502245 B2 JP4502245 B2 JP 4502245B2
Authority
JP
Japan
Prior art keywords
resin
metal
battery case
secondary battery
composite plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111572A
Other languages
Japanese (ja)
Other versions
JP2004319260A (en
Inventor
義邦 秋山
悟志 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003111572A priority Critical patent/JP4502245B2/en
Publication of JP2004319260A publication Critical patent/JP2004319260A/en
Application granted granted Critical
Publication of JP4502245B2 publication Critical patent/JP4502245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、リチウム金属電池、リチウムイオン電池(以下リチウム電池と略称する)、ニッケル−水素電池、鉛蓄電池、アルカリ蓄電池等の内部エレメントを内蔵する容器の開放型二次電池電槽および密閉型二次電池電槽に関する。
更に詳しくは、金属樹脂複合板面と熱可塑性樹脂面の異なる材質面を一体成形して得られる,放熱性、耐温水透過性、耐ガス透過性、耐薬品性に優れたハイブリッド二次電池電槽に関する。
【0002】
【従来の技術】
移動機器用駆動源、コンピュータのデータバックアップのための電源、また太陽電池エネルギーの有効利用の目的、環境保護の観点から各種二次電池の用途が拡大されつつある。特に、自動車の内燃機関の所要電力を供給するために二次電池が多く使用されることは周知となっているが、地球環境保護、特に内燃機関が排出する二酸化炭素、NOx等の排気ガスを減らす運動が世界的規模に広がり、これを受けて各国の自動車メーカーはガソリンエンジンである内燃機関の代わりに電気エネルギーを利用したモーター駆動車の開発・普及化が進んできている。これらは、たとえば、二次電池によるモーター駆動源の電気自動車、内燃機関駆動源と回生電流を利用した二次電池によるモーター駆動源を併用したハイブリッド自動車等が挙げられる。
しかしながら、モーター駆動源となる二次電池は出力、電気容量、寿命の面でも従来の二次電池性能では不十分であり、更なる電池性能の改善が行われている。
【0003】
このように、世の中の期待、産業技術の発達に伴い、二次電池の需要は益々増加する傾向にあり、小型軽量、大電気容量の二次電池に対する要請が高まっている。
中でも、鉛蓄電池、ニッケル−水素電池で代表される二次電池は、酸またはアルカリの電解質、電極およびセパレータ等を収納する電槽が不可欠であり、電池性能を高めるためには、その心臓部である電解質、電極、セパレータ等のエレメントの改良と連動して電槽も改良されなければならない。
この電槽の材質に要求される特性としては、強酸、強アルカリに対する耐性の他に、特に自動車用途の二次電池電槽として使用される場合は、更に耐ガソリン性、耐油性や外部衝撃にも十分耐え得る耐衝撃性が要求される。更に、この電槽の材質は充電時の化学反応に伴う発熱や生成物、例えば水分や水素ガス等をも十分考慮したものでなければならない。
【0004】
ことに、密閉形二次電池にあたっては、小形・軽量化の要請に適合させるために、電槽では、薄肉で、且つ耐熱性があり、充放電時の内圧の上昇下降に耐え、長期間にわたって電解質の性状を適正に維持し得ることが必要となる。
従来、電槽の材料としてポリプロピレン樹脂、ABS樹脂が多く採用されている。しかし、ポリプロピレン樹脂は、水蒸気バリアー性に優れるものの、水素、酸素のガス透過性が比較的大きく、電槽の性能として十分でないことが指摘されている。また、成形性に優れるものの、薄肉リブ構造の製品の射出成形に於いて、成形収縮率が大きいために生じるヒケ等の表面欠陥や剛性、特に高温時の剛性(熱時剛性)に劣る等の問題点も指摘されている。一方、ABS樹脂は、ポリプロピレン樹脂に比べ、水蒸気バリアー性、水素等のガスバリアー性が劣る点や、自動車用途に於いてガソリン、オイル(例えば、ブレーキオイル、防錆剤)に対する耐性に劣る点が指摘されている。
【0005】
これらポリプロピレン樹脂、ABS樹脂の他に、ポリフェニレンエーテル系樹脂とポリスチレン系樹脂からなる密閉形二次電池用電槽(例えば、特許文献1参照)は、ABS樹脂に比べ水蒸気バリアー性に優れるものの、ここで開示されている樹脂組成物で成形された電槽は、流動性が悪いため成形時に発生する成形歪や蓋を熱溶着する際に発生する熱歪により、使用時にストレスクラックが発生する問題や自動車用に於いてはABS樹脂と同様に、ガソリン、オイルに対する耐性が悪いことが指摘されている。
【0006】
このように樹脂で作られた二次電池電槽は熱伝導率が低く、電池を充放電させると内部発熱を伴い、特に大電流を流した時、電池の温度が上昇し充放電特性の低下が見られ、特にアルカリ蓄電池用として広く使用されているニッケル正極は高温での充電受け入れ性が悪く、放電容量の低下が大きくなる欠点を有している。このように二次電池の温度上昇は発電要素の劣化や性能低下、寿命の短縮を招いてしまう等の問題点を残している。
このため樹脂製の二次電池電槽は、欠点である除熱効率を高めるために樹脂製電槽の表面に金属フィルムや金属板の放熱部材を貼り合わせた構造の電槽(例えば、特許文献2〜12参照)が提案されており、さらに樹脂製電槽の表面に貼り合わせる金属板の伝熱面積を増やすために金属板を波板状やエンボス加工にし、その隙間に冷却風を流す構造の電槽(例えば、特許文献13〜14参照)が提案されている。
【0007】
【特許文献1】
特開平6−203814号公報
【特許文献2】
特開昭59−91658号公報
【特許文献3】
特開昭64−65771号公報
【特許文献4】
特開平1−140565号公報
【特許文献5】
特開平6−349461号公報
【特許文献6】
特開平9−199093号公報
【特許文献7】
特開平10−144266号公報
【特許文献8】
特開平11−213962号公報
【特許文献9】
特開2000−215860号公報
【特許文献10】
特開2001−6630号公報
【特許文献11】
特開2002−245990号公報
【特許文献12】
特開2003−17141号公報
【特許文献13】
特開2003−7255号公報
【特許文献14】
特開2003−7355号公報
【0008】
しかしながら、これら提案されている電池電槽は、全く金属板、金属フィルム等を貼り合わせていない場合と比べ、冷却効果は改善されているものの、根本的に二次電池電槽の筐体が樹脂材料を主体として壁面全体を囲っているため、電槽筐体内部で発生する熱量が樹脂壁面を通じて外層の金属板に伝熱するため冷却効果が劣り、発熱による発電エレメントの劣化、充電効率の改善が十分でなく、電池寿命を長く維持することが困難であるのが現状である。
【0009】
【発明が解決しようとする課題】
本発明は、長期間にわたって初期の電解質の性状を可能な限り長期間維持し、電池の充放電により発生した熱に対する放熱性に優れ、且つ、水蒸気バリアー性、電池内で発生する水素、酸素等のガスに対するガスバリアー性に優れた新規な二次電池用電槽を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記した二次電池電槽の従来技術の欠点を解消するため、金属−樹脂複合板と樹脂を併用した二次電池電槽の構造に着眼し、樹脂製電槽特有の欠点である、
(1)低熱伝導率に起因した放熱効果の悪さによる二次電池の寿命悪化。
(2)水素ガス透過性、水蒸気透過性で示されるガスバリアー性が低く二次電池の寿命の悪化。
の二つの大きな欠点を解消すべく、特に二次電池の充放電により発生した熱に対する放熱性を改良するために二次電池電槽の筐体骨格である全壁面に使用されている樹脂製電槽壁面の一部を金属−樹脂複合板壁面に置き換え、電槽壁面として、樹脂製電槽壁面と金属−樹脂複合板壁面の異なる材質の壁面を有するハイブリッド二次電池電槽を新規に考案した。
【0011】
この新規なハイブリッド二次電池電槽の樹脂製壁面と金属−樹脂複合板壁面を一体成形した二次電池電槽の最大の難点である二次電池内部の内圧変動や温度上昇下降の際に起こりえる金属−樹脂の線膨張係数の差による一体成形部の接着面でのクラック発生や剥離現象の原因となる樹脂−金属の冷熱繰り返し後の接着強度に着眼し鋭意検討したところ、金属−樹脂複合板を構成するベースの金属板に特定の官能基を有するポリマーを被覆した金属−樹脂複合板を用いた金属−樹脂複合板壁面と樹脂製壁面を一体成形することにより、樹脂−金属の冷熱繰り返し後の接着強度が優れ、接着面でのクラック発生や剥離現象が認められず、金属樹脂複合板壁面と樹脂製壁面が一体成形されたハイブリッド二次電池電槽を与えることを見いだし本発明に到達した。
【0012】
すなわち、本発明は、
電極・電解液・セパレータ等の電池エレメントを収納する二次電池電槽において、その電槽容器を構成する長側面、短側面、底面、蓋面の少なくとも一つの面が金属−樹脂複合板、熱可塑性樹脂の異なる材質で構成され、かかる金属−樹脂複合板の少なくとも片面が、金属面にカルボン酸基、酸無水物基、水酸基、アミノ基、イミド基、グリシジル基、オキサゾニル基、メルカプト基およびシリル基のいずれか一種の官能基を有する変性ポリオレフィンまたは変性水添ブロック共重合体で被覆されており、かつ、金属−樹脂複合板壁面と熱可塑性樹脂壁面の接する部分が金属−樹脂複合板と熱可塑性樹脂で一体成形されていることを特徴とするハイブリッド二次電池電槽に関するものである。
【0013】
以下、本発明について詳述する。
本発明のハイブリッド二次電池電槽の例としては、第1図で示される密閉型二次電池電槽が挙げられ、Aの電槽本体とBの電槽蓋からなり、Aの電槽本体とBの電槽蓋は熱溶着された熱可塑性樹脂で密閉された構造を取る。また、Aの電槽本体は、Cの長側面(金属−樹脂複合板)、Dの短側面(熱可塑性樹脂)およびEの電槽底部(熱可塑性樹脂)からなる構造面を有し、これらC〜Eの構造面は全て同一材質(金属−樹脂複合板または熱可塑性樹脂)で構成されておらず、金属−樹脂複合板壁面と熱可塑性樹脂壁面の接する部分が金属樹脂複合板と熱可塑性樹脂で一体成形されたAの電槽本体の構造を有する。
【0014】
第2図は、第1図で示すAの電槽本体をFの電槽上部開口部から見た平面図であり、Cの長側面(金属−樹脂複合板)はDの短側面の熱可塑性樹脂と一体成形され、金属−樹脂複合板に熱可塑性樹脂が接着した構造を示す。
また第3図は、第1図で示すAの電槽本体をCの長側面(金属−樹脂複合板)を正面から見た正面図であり、Cの長側面(金属−樹脂複合板)はDの短側面の熱可塑性樹脂と一体成形され、金属−樹脂複合板に熱可塑性樹脂が接着した構造を示す。
このように、本発明のハイブリッド二次電池電槽は、金属−樹脂複合板と熱可塑性樹脂が一体化した電槽構造であり、金属−樹脂複合板をインサート成型、アウトサート成型等の方法により熱可塑性樹脂を用いて電槽容器として一体成形されたものである。
【0015】
本発明のハイブリッド二次電池電槽筐体の一部である樹脂製壁面を構成する熱可塑性樹脂は、通常、水蒸気バリアー性、電池内で発生する水素、酸素等のガスに対するガスバリアー性に優れた熱可塑性樹脂を使用することができ、好ましい熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリプロピレン樹脂がマトリックス相を形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成し水添ブロック共重合体が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成しポリエチレンが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂、ポリフェニレンスルフィド樹脂がマトリックス相を形成しエラストマーが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂がマトリックスを形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物等が挙げられる。
【0016】
次に本発明のハイブリッド二次電池電槽筐体の一部である金属−樹脂複合板壁面を構成する金属−樹脂複合板は、そのベースとなる金属板の厚みが0.1mm以上のアルミニウム、鉄、銅、ニッケルまたはこれらを主成分とする合金であり、腐食防止などを目的としたメッキ処理を施してもよい。そして金属−樹脂複合板のベース金属部と接する層がカルボン酸基、酸無水物基、水酸基、アミノ基、イミド基、グリシジル基、オキサゾニル基、メルカプト基およびシリル基のいずれか一種の官能基を有する変性ポリオレフィンまたは変性水添ブロック共重合体で形成されたものである。
【0017】
この変性ポリオレフィンとは、その前駆体であるポリオレフィン、すなわち、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、密度0.90未満の超低密度ポリエチレン、アイソタクチックポリプロピレンやポリ(4−メチル−1−ペンテン)、ポリブテン−1などの単独重合体の他に、エチレン、プロピレン、他のα−オレフィン等を共重合した共重合体、例えば、エチレン/プロピレン共重合体、エチレン/オクテン共重合体、エチレン/ブテン−1共重合体、プロピレン/エチレン(ランダム、ブロック)共重合体、プロピレン/1−ヘキセン共重合体、プロピレン/4−メチル−1−ペンテン共重合体等と、脂肪族性不飽和基を有しさらにカルボン酸基、酸無水物基、水酸基、アミノ基、イミド基、グリシジル基、オキサゾニル基、メルカプト基およびシリル基から選ばれるいずれか1種の官能基を同時に有する官能性化合物をラジカル発生剤の存在下、非存在下で溶融状態、溶液状態で50〜350℃の温度下で化学反応させることによって得られる変性ポリオレフィンであり、該官能性化合物がポリオレフィン100重量部に対して0.01〜10重量部グラフトまたは付加した重合体である。
【0018】
なお、該変性ポリオレフィンは、該官能性化合物が0.01〜10重量部グラフトまたは付加した重合体であれば、未変性のポリオレフィンと変性ポリオレフィンが任意の割合で混合されたものであってもかまわない。
かかるポリオレフィンを化学変性する官能性化合物としては、例えば、マレイン酸、フマル酸、クロロマレイン酸、シトラコン酸、イタコン酸、ハイミック酸等の不飽和ジカルボン酸や、アクリル酸、メタクリル酸、クロトン酸、ビニル酢酸、ペンテン酸、リノール酸、けい皮酸等の不飽和モノカルボン酸や、無水マレイン酸、アクリル酸無水物、無水ハイミック酸等のα,β−不飽和ジカルボン酸の酸無水物、α,β−不飽和カルボン酸の酸無水物や、アリルアルコール、3−ブテン−2−オール、プロパギルアルコール等の不飽和アルコール化合物や、p−ビニルフェノール、2−プロペニルフェノール等のアルケニルフェノールや、p−アミノスチレン、アリルアミン、N−ビニルアニリン等の不飽和アミン化合物や、マレイミド等のα,β−不飽和ジカルボン酸のイミドまたはα,β−不飽和モノカルボン酸のイミドや、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジル等の不飽和グリシジル化合物や、イソプロペニルオキサゾリン等の不飽和オキサゾリン化合物や、p−tert−ブチルメルカプトメチルスチレン等の不飽和メルカプト化合物や、2−(3−シクロヘキセニル)エチルトリメトキシシラン、1,3−ジビニルテトラエトキシシラン、ビニルトリス−(2−メトキシエトキシ)シラン、5−(ビシクロヘプテニル)トリエトキシシラン等の不飽和オルガノシラン化合物等が挙げられ、中でも官能性化合物として無水マレイン酸が最も好ましい。
【0019】
これら官能性化合物は単独で使用することもできるが、官能性化合物と共重合可能なスチレン等のビニル芳香族化合物と併用してもかまわない。また、この変性ポリオレフィンを製造する際に供するラジカル発生剤としては、例えば、ジクミルパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バレレート、1,1−ビス(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン等が挙げられ、これらの中から好適に1種以上を選ぶことができる。
【0020】
ここで得られた本発明で使用する変性ポリオレフィンに付加した官能性化合物の量は、通常、NMR、FTIR、滴定法等の公知の方法で知ることが出来る。
さらに本発明の金属−樹脂複合板のベース金属部に接着層として使用する変性水添ブロック共重合体とは、その前駆体である水添ブロック共重合体を化学変性したポリマーである。以下、順次説明する。
ここで前駆体となる水添ブロック共重合体とは、少なくとも1個のビニル芳香族化合物を主体とする重合体ブロックAと少なくとも1個の共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体の水素添加物であり、例えばA−B、A−B−A、B−A−B−A、(A−B−)4−Si、A−B−A−B−A等の構造を有するビニル芳香族化合物−共役ジエン化合物ブロック共重合体のBで示される共役ジエン化合物を主体とする重合体ブロック中に存在する共役ジエン化合物に由来する脂肪族系二重結合を水素添加反応して得られるものである。
【0021】
このブロック共重合体は、ビニル芳香族化合物を5重量%〜70重量%、好ましくは10〜65重量%含み、またブロック構造に言及すると、ビニル芳香族化合物を主体とする重合体ブロックAが、ビニル芳香族化合物のホモ重合体ブロックまたは、ビニル芳香族化合物を50重量%を超え好ましくは70重量%以上含有するビニル芳香族化合物と共役ジエン化合物との共重合体ブロックの構造を有しており、そしてさらに、共役ジエン化合物を主体とする重合体ブロックが、共役ジエン化合物のホモ重合体ブロックまたは、共役ジエン化合物を50重量%を超え好ましくは70重量%以上含有する共役ジエン化合物とビニル芳香族化合物との共重合体ブロックの構造を有するものである。
【0022】
また、これらのビニル芳香族化合物を主体とする重合体ブロックA、共役ジエン化合物を主体とする重合体ブロックBは、それぞれの重合体ブロックにおける分子鎖中の共役ジエン化合物またはビニル芳香族化合物の分布がランダム、テーパード(分子鎖に沿ってモノマー成分が増加または減少するもの)、一部ブロック状またはこれらの任意の組み合わせで成っていてもよく、該ビニル芳香族化合物を主体とする重合体ブロックおよび該共役ジエン化合物を主体とする重合体ブロックがそれぞれ2個以上ある場合は、各重合体ブロックはそれぞれ同一構造であってもよく、異なる構造であってもよい。
【0023】
このブロック共重合体を構成するビニル芳香族化合物としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、p−tert−ブチルスチレン、ジフェニルエチレン等のうちから1種または2種以上が選択でき、中でもスチレンが好ましい。また、共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等のうちから1種または2種以上が選ばれ、中でもブタジエン、イソプレンおよびこれらの組み合わせが好ましい。そして、共役ジエン化合物を主体とする重合体ブロックは、そのブロックにおける共役ジエン化合物の結合形態であるミクロ構造を任意に選ぶことができ、通常、1,2−ビニル結合量および3,4−ビニル結合量の合計量が3〜85%、好ましくは4〜80%である。
【0024】
また、上記の構造を有するブロック共重合体の数平均分子量は5,000〜1,000,000、好ましくは10,000〜800,000、さらに好ましくは30,000〜500,000の範囲であり、分子量分布〔ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量(Mw)と数平均分子量(Mn)の比〕は10以下である。さらに、このブロック共重合体の分子構造は、直鎖状、分岐状、放射状あるいはこれらの任意の組み合わせのいずれであってもよい。
【0025】
このような構造を持つブロック共重合体は、上記したブロック共重合体の共役ジエン化合物を主体とする重合体ブロックBの脂肪族系二重結合を水素添加した水添ブロック共重合体(ビニル芳香族化合物−共役ジエン化合物ブロック共重合体の水素添加物)として得ることができる。かかる脂肪族系二重結合の水素添加率は少なくとも50%を超え、好ましくは80%以上、さらに好ましくは95%以上である。
【0026】
これらのブロック共重合体、そして水添ブロック共重合体の製造方法は、上記した構造を有するものであればどのような製造方法で得られるものであってもかまわない。公知の製造方法の例としては、例えば、特開昭47−11486号公報、特開昭49−66743号公報、特開昭50−75651号公報、特開昭54−126255号公報、特開昭56−10542号公報、特開昭56−62847号公報、特開昭56−100840号公報、英国特許第1130770号および米国特許第3281383号および同第3639517号に記載された方法や英国特許第1020720号および米国特許第3333024号および同第4501857号に記載された方法で水添ブロック共重合体を容易に製造できる。
【0027】
本発明で用いる変性水添ブロック共重合体は、上記した前駆体である水添ブロック共重合体と、脂肪族性不飽和基を有しさらにカルボン酸基、酸無水物基、水酸基、アミノ基、イミド基、グリシジル基、オキサゾニル基、メルカプト基およびシリル基から選ばれるいずれか1種の官能基を同時に有する官能性化合物をラジカル発生剤の存在下、非存在下で溶融状態、溶液状態で50〜350℃の温度下で化学反応させることによって得られる変性水添ブロック共重合体であり、該官能性化合物が水添ブロック共重合体100重量部に対して0.01〜10重量部グラフトまたは付加した重合体である。
【0028】
なお、該変性水添ブロック共重合体は、該官能性化合物が0.01〜10重量部グラフトまたは付加した重合体であれば、未変性の水添ブロック共重合体と変性水添ブロック共重合体が任意の割合で混合されたものであってもかまわない。かかる水添ブロック共重合体を化学変性する官能性化合物としては、例えば、マレイン酸、フマル酸、クロロマレイン酸、シトラコン酸、イタコン酸、ハイミック酸等の不飽和ジカルボン酸や、アクリル酸、メタクリル酸、クロトン酸、ビニル酢酸、ペンテン酸、リノール酸、けい皮酸等の不飽和モノカルボン酸や、無水マレイン酸、アクリル酸無水物、無水ハイミック酸等のα,β−不飽和ジカルボン酸の酸無水物、α,β−不飽和カルボン酸の酸無水物や、アリルアルコール、3−ブテン−2−オール、プロパギルアルコール等の不飽和アルコール化合物や、p−ビニルフェノール、2−プロペニルフェノール等のアルケニルフェノールや、p−アミノスチレン、アリルアミン、N−ビニルアニリン等の不飽和アミン化合物や、マレイミド等のα,β−不飽和ジカルボン酸のイミドまたはα,β−不飽和モノカルボン酸のイミドや、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジル等の不飽和グリシジル化合物や、イソプロペニルオキサゾリン等の不飽和オキサゾリン化合物や、p−tert−ブチルメルカプトメチルスチレン等の不飽和メルカプト化合物や、2−(3−シクロヘキセニル)エチルトリメトキシシラン、1,3−ジビニルテトラエトキシシラン、ビニルトリス−(2−メトキシエトキシ)シラン、5−(ビシクロヘプテニル)トリエトキシシラン等の不飽和オルガノシラン化合物等が挙げられ、中でも官能性化合物として無水マレイン酸が最も好ましい。
【0029】
これら官能性化合物は単独で使用することもできるが、官能性化合物と共重合可能なスチレン等のビニル芳香族化合物と併用してもかまわない。また、この変性水添ブロック共重合体を製造する際に供するラジカル発生剤としては、例えば、ジクミルパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バレレート、1,1−ビス(tert−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン等が挙げられ、これらの中から好適に1種以上を選ぶことができる。
ここで得られた本発明で使用する変性水添ブロック共重合体に付加した官能性化合物の量は、通常、NMR、FTIR、滴定法等の公知の方法で知ることが出来る。
【0030】
このように、二次電池電槽を構成する筐体の壁面が、従来は樹脂製であったり、またはその樹脂製壁面に金属板等を張り合わせた構造の電槽であったが、本発明の最大の特徴は、これら従来の二次電池電槽を構成する壁面が、樹脂壁面と金属−樹脂複合板壁面の組合せからなる一体成形した構造をとるため、二次電池内部での発熱に対して冷熱効果が改良される。さらに、本発明のハイブリッド二次電池電槽で供する金属−樹脂複合板が、上記した特徴を有する変性ポリオレフィンまたは変性水添ブロック共重合体とベース金属(アルミニウム、鉄、銅、ニッケルまたはこれらを主成分とする合金)を積層したものであり、中でもベース金属と接着する層は、変性水添ブロック共重合体が最も好ましく、かかる変性水添ブロック共重合体が接着層を形成した場合、二次電池内部の内圧変動や温度上昇下降の際に起こりえる樹脂−金属の冷熱サイクル後の接着強度に優れた効果をもたらす。
【0031】
本発明のハイブリッド二次電池電槽で供する金属−樹脂複合板は、ベース金属(アルミニウム、鉄、銅、ニッケルまたはこれらを主成分とする合金)に上記した特徴を有する変性ポリオレフィンまたは変性水添ブロック共重合体を積層し、さらにその上に他の積層熱可塑性樹脂を多層に積層していても構わない。積層の方法として、押出しラミネート,熱ラミネート,溶液コーティングなど公知の積層加工技術を用いて金属−樹脂多層複合板を作成する事ができる。かかる積層熱可塑性樹脂としては、例えば、エチレン−ビニルアルコール共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリプロピレン樹脂がマトリックス相を形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成し水添ブロック共重合体が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成しポリエチレンが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂、ポリフェニレンスルフィド樹脂がマトリックス相を形成しエラストマーが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂がマトリックスを形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物の中から選ばれる少なくとも1種の熱可塑性樹脂が挙げられる。中でも、ポリオレフィン系樹脂のポリエチレン樹脂、ポリプロピレン樹脂が好適に用いることができる。
【0032】
本発明のハイブリッド二次電池電槽は、二次電池電槽筐体を構成する熱可塑性樹脂製壁面と金属−樹脂複合板壁面をインサート成形等の一体成形の手法で容易に成形できるが、構造的に樹脂製壁面と金属−樹脂複合板壁面が一体成形された二次電池電槽であれば、いかなる製法でも構わない。さらに、ハイブリッド二次電池電槽は、その構造が単槽であっても多槽一体型の構造であっても構わない。
【0033】
【発明の実施の形態】
以下、実施例によって、本発明の実施の形態を説明するが、本発明はこれらの実施例により限定されるものではない。
なお、金属−樹脂複合シートに使用した原料は下記の通りである。
(A)金属シート : 厚さ0.3mmのアルミニウムシート
(B−1)変性水添ブロック共重合体
ポリスチレン−水素添加されたポリブタジエン−ポリスチレンの構造を持ち、結合スチレン量が45%、水素添加する前のポリブタジエン部分の1,2−ビニル結合量が43%、ポリブタジエン部の水素添加率が99.8%、数平均分子量が68000の水添ブロック共重合体に無水マレイン酸が0.9重量部付加した変性水添ブロック共重合体を(B−1)とした。
【0034】
(B−2)変性水添ブロック共重合体
ポリスチレン−水素添加されたポリブタジエン−ポリスチレンの構造を持ち、結合スチレン量が30%、水素添加する前のポリブタジエン部分の1,2−ビニル結合量が38%、ポリブタジエン部の水素添加率が99.5%、数平均分子量が46000の水添ブロック共重合体に無水マレイン酸が0.1重量部付加した変性水添ブロック共重合体を(B−2)とした。
(B−3)水添ブロック共重合体
ポリスチレン−水素添加されたポリブタジエン−ポリスチレンの構造を持ち、結合スチレン量が30%、水素添加する前のポリブタジエン部分の1,2−ビニル結合量が38%、ポリブタジエン部の水素添加率が99.5%、数平均分子量が46000の水添ブロック共重合体の水添ブロック共重合体を(B−2)とした。
【0035】
(B−4)変性ホリプロピレン
ポリプロピレンに無水マレイン酸が0.2重量部付加した変性ポリプロピレンを(B−4)とした。
なお、上記の表面をエタノールで脱脂した厚み0.3mmの(A)アルミニウムシートおよび接着樹脂(B−1)〜(B−4)を用いて、下記の条件による圧縮成形で樹脂層を密着させた金属−樹脂複合シートを形成した。
温度条件:230℃(上下加熱)
予熱時間:4分
加圧時間:1分
圧力:21.6MPa
厚さ0.1mmのスペーサーを敷き、アルミニウムシートと(B−1)〜(B−4)の接着樹脂を加熱溶融し接着した。なお、加熱接着後、25℃に冷却した圧縮成形機にて圧力21.6MPa、冷却時間3分にて冷却し、樹脂層を密着させた金属−樹脂複合シートを得た。
【0036】
【実施例1〜3および比較例1】
樹脂製壁面と金属−樹脂複合板壁面が一体成形された密閉型二次電池電槽を想定し、上記で得た金属−樹脂複合シートを20mm×100mm短冊状に切り出し、20mm×50mmの形状に切り出したポリイミドフイルムでラミネート面の表面をマスキングし、他方の金属面の四辺に幅3mmの両面テープを張り、その面を平板金型のキャビティに固定し、下記の条件で射出成形による一体成形を行った。
射出成形機:東芝IS80EPN
金型:150×150×2mm平板金型 φ1mmピンゲート
熱可塑性樹脂:アイソタクチックポリプロピレン、密度0.908、
MFR=1.0
樹脂温度:260℃
金型温度:60℃(温水循環による温調)
【0037】
ここで得た金属−樹脂複合シートと熱可塑性樹脂が一体成形された試験片を、連続ヒートショック試験(−40℃×30分保持〜70℃×30分保持の昇温・降温速度5℃/分で500サイクル)を行った。
連続ヒートショック試験を実施していないブランクおよび連続ヒートショック試験後の試験片に対して、治具で平板を水平に固定し、金属−樹脂複合シートのマスキングした部分をチャックした状態で、3mm/分の速度でT剥離試験を行い、最大剥離強度を測定し、その結果を表1に載せた。
【0038】
この結果より、樹脂製壁面と金属−樹脂複合板壁面が一体成形された密閉型二次電池電槽を想定した、変性ポリオレフィン、変性水添ブロック共重合体をアルミニウムシートに接着した金属−樹脂複合シートとポリプロピレンからなる一体成形した材料は連続冷熱サイクル後の接着強度に優れることが明らかになった。中でも、変性水添ブロック共重合体をアルミニウムシートに接着した金属−樹脂複合シートとポリプロピレンからなる一体成形した材料は、顕著に連続冷熱サイクル後の接着強度に優れることが明らかになった。
【0039】
【実施例4】
本発明のハイブリッド二次電池電槽の構造(下記(1))と従来技術の樹脂製電槽壁面に金属−樹脂複合板を貼り合わせた二次電池電槽の構造(下記(2))を想定し、
(1)厚み0.7mmのアルミニウムシートの両面に実施例1で用いた変性水添ブロック共重合体(B−1)(0.1mmの厚み)からなる金属−樹脂複合板を用いて、1つの容器壁面(幅10cm×高さ3cm)がこの金属−樹脂複合板だけで構成され、残りの5つの容器壁面が樹脂製となるように、内容積が幅10cm×奥行き5cm×高さ3cmの上部が開口した容器をアイソタクチックポリプロピレン(密度0.908、MFR=1.0)を用いて樹脂壁の厚みが1.7mmで一体成形して得た。この容器を23℃に設定した恒温室に置き、内部に70℃の水を入れ40℃に低下するまでの時間を測定した。
【0040】
(2)内容積が幅10cm×奥行き5cm×高さ3cmの上部が開口し、樹脂壁厚みが1.7mmで壁面が全てアイソタクチックポリプロピレン(密度0.908、MFR=1.0)である樹脂製容器を作成する際に、この1つの樹脂製外壁面(幅10cm×高さ3cm)に厚み0.7mmのアルミニウムシートの両面に実施例1で用いた変性水添ブロック共重合体(B−1)(0.1mmの厚み)からなる金属−樹脂複合板を一体成形してポリプロピレン壁面と金属−樹脂複合板を貼り合わせた構造の壁面を1つ有する容器(残りの5つの面は全て壁厚みが1.7mmのポリプロピレン製)を得た。この容器を23℃に設定した恒温室に置き、内部に70℃の水を入れ40℃に低下するまでの時間を測定した。
【0041】
上記の放置冷却テストを実施し、(1)本発明のハイブリッド二次電池電槽相当の容器/(2)従来技術の樹脂電槽壁に金属−樹脂複合板を貼り合わせた二次電池電槽相当の容器の冷却時間の比は、0.58/1.0であり、本発明のハイブリッド二次電池電槽は冷却効果に優れることが明らかとなった。
【0042】
【表1】

Figure 0004502245
【0043】
【発明の効果】
本発明の熱可塑性樹脂壁面と金属−樹脂複合板壁面の異なる材質の壁面を一体成形してなるハイブリッド二次電池電槽は、冷却効果に優れ、金属−樹脂複合板の金属部が変性ポリマーで接着層を形成しているため、連続冷熱サイクル後の接着強度に優れ、熱歪みによる影響を受けにくく長期にわたり密着強度が保持されるため、放熱性、水蒸気バリアー性やガス(水素、酸素等)バリアー性にも優れ、さらには二次電池寿命が延長される密閉型二次電池電槽を提供する。
【図面の簡単な説明】
【図1】本発明のハイブリッド二次電池電槽見取り図
【図2】Aの電槽本体をFの電槽上部開口部から見た平面図
【図3】Aの電槽本体をCの長側面を正面から見た正面図
長側面の縁の部分は樹脂製壁面と同一の熱可塑性樹脂で一体成形されている。
【符号の説明】
A:電槽本体
B:電槽蓋(樹脂製)
C:長側面(金属−樹脂複合板)
D:短側面(樹脂製)
E:電槽底部(樹脂製)
F:電槽上部開口部[0001]
[Industrial application fields]
The present invention relates to an open-type secondary battery container and a sealed-type battery for a container containing internal elements such as a lithium metal battery, a lithium ion battery (hereinafter abbreviated as a lithium battery), a nickel-hydrogen battery, a lead storage battery, and an alkaline storage battery. It relates to the secondary battery battery case.
More specifically, it is a hybrid secondary battery battery with excellent heat dissipation, hot water resistance, gas resistance, and chemical resistance, obtained by integrally molding different metal resin composite plate and thermoplastic resin surfaces. Regarding the tank.
[0002]
[Prior art]
Applications of various secondary batteries are being expanded from the viewpoints of driving sources for mobile devices, power sources for computer data backup, the purpose of effective use of solar cell energy, and environmental protection. In particular, it is well known that secondary batteries are often used to supply the required power of automobile internal combustion engines. However, it is well known that global environmental protection, especially exhaust gases such as carbon dioxide and NOx emitted by internal combustion engines, is used. The movement to reduce has spread worldwide, and in response to this, automobile manufacturers in various countries are developing and spreading motor-driven vehicles that use electric energy instead of internal combustion engines, which are gasoline engines. These include, for example, an electric vehicle driven by a secondary battery and a hybrid vehicle using an internal combustion engine drive source and a secondary battery motor drive source utilizing a regenerative current.
However, the secondary battery serving as the motor drive source is insufficient in conventional secondary battery performance in terms of output, electric capacity, and life, and further battery performance is improved.
[0003]
As described above, with the expectation of the world and the development of industrial technology, the demand for secondary batteries is increasing more and more, and there is an increasing demand for secondary batteries with small and light weight and large electric capacity.
In particular, secondary batteries represented by lead-acid batteries and nickel-hydrogen batteries require an acid or alkaline electrolyte, electrodes and a battery case for storing separators, etc. In order to improve battery performance, The battery case must be improved in conjunction with improvements in certain elements such as electrolytes, electrodes and separators.
In addition to the resistance to strong acids and strong alkalis, the characteristics required for the material of this battery case are particularly resistant to gasoline, oil resistance and external impact when used as a secondary battery battery case for automobiles. Is required to have sufficient impact resistance. Furthermore, the material of the battery case must sufficiently take into account the heat generated by the chemical reaction during charging and products such as moisture and hydrogen gas.
[0004]
In particular, for sealed secondary batteries, the battery case is thin and heat resistant to withstand the demands for small size and light weight. It is necessary to properly maintain the properties of the electrolyte.
Conventionally, many polypropylene resins and ABS resins have been adopted as battery case materials. However, although polypropylene resin is excellent in water vapor barrier property, it has been pointed out that gas permeability of hydrogen and oxygen is relatively large and the performance of the battery case is not sufficient. In addition, although it is excellent in moldability, in injection molding of products with a thin rib structure, surface defects such as sink marks caused by a large molding shrinkage rate and rigidity, especially inferior to rigidity at high temperature (thermal rigidity) Problems are also pointed out. On the other hand, ABS resin is inferior to polypropylene resin in terms of water vapor barrier properties and gas barrier properties such as hydrogen, and inferior in resistance to gasoline and oil (for example, brake oil, rust preventive agent) in automobile applications. It has been pointed out.
[0005]
In addition to these polypropylene resins and ABS resins, the battery case for a sealed secondary battery made of polyphenylene ether resin and polystyrene resin (see, for example, Patent Document 1) has excellent water vapor barrier properties compared to ABS resin. The battery case molded with the resin composition disclosed in the above is a problem that stress cracks occur during use due to molding distortion that occurs during molding due to poor fluidity and thermal strain that occurs when the lid is heat welded. It has been pointed out that in automobiles, resistance to gasoline and oil is poor as in the case of ABS resin.
[0006]
The battery case made of resin in this way has low thermal conductivity, and when the battery is charged and discharged, internal heat generation occurs. Especially when a large current is passed, the temperature of the battery rises and the charge and discharge characteristics deteriorate. In particular, the nickel positive electrode widely used for alkaline storage batteries has a drawback that charge acceptability at high temperatures is poor and the discharge capacity is greatly reduced. As described above, the temperature rise of the secondary battery still has problems such as deterioration of the power generation element, performance reduction, and shortening of the life.
For this reason, a resin secondary battery battery case is a battery case having a structure in which a heat radiating member of a metal film or a metal plate is bonded to the surface of the resin battery case in order to increase heat removal efficiency, which is a drawback (for example, Patent Document 2). In order to increase the heat transfer area of the metal plate to be bonded to the surface of the resin battery case, the metal plate is corrugated or embossed, and cooling air flows through the gap. A battery case (see, for example, Patent Documents 13 to 14) has been proposed.
[0007]
[Patent Document 1]
JP-A-6-203814
[Patent Document 2]
JP 59-91658 A
[Patent Document 3]
JP 64-65771
[Patent Document 4]
JP-A-1-140565
[Patent Document 5]
JP-A-6-349461
[Patent Document 6]
JP-A-9-199093
[Patent Document 7]
Japanese Patent Laid-Open No. 10-144266
[Patent Document 8]
JP 11-213962 A
[Patent Document 9]
JP 2000-215860 A
[Patent Document 10]
JP 2001-6630 A
[Patent Document 11]
JP 2002-245990 A
[Patent Document 12]
JP 2003-17141 A
[Patent Document 13]
JP 2003-7255 A
[Patent Document 14]
JP 2003-7355 A
[0008]
However, although these proposed battery cases have improved cooling effect compared to the case where no metal plate, metal film, etc. are bonded together, the housing of the secondary battery case is basically made of resin. Since the entire wall surface is mainly composed of material, the amount of heat generated inside the battery case is transferred to the outer metal plate through the resin wall surface, resulting in poor cooling effect, deterioration of the power generation element due to heat generation, and improvement of charging efficiency. Is not sufficient, and it is difficult to maintain the battery life for a long time.
[0009]
[Problems to be solved by the invention]
The present invention maintains the properties of the initial electrolyte as long as possible over a long period of time, is excellent in heat dissipation against heat generated by charging and discharging of the battery, and has a water vapor barrier property, hydrogen generated in the battery, oxygen, etc. It is to provide a novel battery case for a secondary battery having excellent gas barrier properties against other gases.
[0010]
[Means for Solving the Problems]
In order to eliminate the disadvantages of the prior art of the secondary battery case described above, the present inventors have focused on the structure of the secondary battery battery case using a metal-resin composite plate and a resin in combination, and are specific to the resin battery case. Is a drawback,
(1) Deterioration of secondary battery life due to poor heat dissipation effect due to low thermal conductivity.
(2) The gas barrier property shown by hydrogen gas permeability and water vapor permeability is low and the life of the secondary battery is deteriorated.
In order to eliminate these two major drawbacks, the resin-made electric power used for the entire wall surface, which is the case skeleton of the secondary battery case, in order to improve the heat dissipation against the heat generated by the charge and discharge of the secondary battery. A part of the tank wall was replaced with a metal-resin composite wall, and a hybrid secondary battery battery was devised as the battery wall having a wall made of a different material from the resin battery wall and the metal-resin composite wall. .
[0011]
It occurs when the internal pressure fluctuation or temperature rises and falls inside the secondary battery, which is the most difficult point of the secondary battery battery case in which the resin wall and metal-resin composite plate wall of the new hybrid secondary battery are integrally molded. The metal-resin composite was investigated by focusing on the adhesive strength of the resin-metal after repeated cooling and heating, which causes cracking and peeling at the adhesive surface of the integrally molded part due to the difference in the linear expansion coefficient of the metal-resin. Metal-resin composite plate wall surface and resin wall surface using a metal-resin composite plate coated with a polymer having a specific functional group on the base metal plate constituting the plate are integrally molded by resin-metal cold heat repetition The present invention has been found to provide a hybrid secondary battery battery case in which the later adhesive strength is excellent, crack generation or peeling phenomenon on the adhesive surface is not observed, and the metal resin composite plate wall surface and the resin wall surface are integrally formed. It has been reached.
[0012]
That is, the present invention
In a secondary battery battery case that houses battery elements such as electrodes, electrolytes, and separators, at least one of the long side surface, short side surface, bottom surface, and lid surface constituting the battery case is a metal-resin composite plate, heat Consists of different materials of plastic resin, At least one side of the metal-resin composite plate has a functional group of any one of a carboxylic acid group, an acid anhydride group, a hydroxyl group, an amino group, an imide group, a glycidyl group, an oxazonyl group, a mercapto group, and a silyl group on the metal surface. Covered with a modified polyolefin or a modified hydrogenated block copolymer, And the part which the metal-resin composite board wall surface and a thermoplastic resin wall surface contact | connect is integrally formed with the metal-resin composite board and the thermoplastic resin, It is related with the hybrid secondary battery battery case characterized by the above-mentioned.
[0013]
Hereinafter, the present invention will be described in detail.
As an example of the hybrid secondary battery battery case of the present invention, there is a sealed secondary battery battery case shown in FIG. 1, which comprises a battery case body A and a battery case lid B, and the battery case body A The battery case lids of A and B have a structure sealed with a heat-welded thermoplastic resin. Moreover, the battery case body of A has a structural surface composed of a long side surface of C (metal-resin composite plate), a short side surface of D (thermoplastic resin), and a bottom part of E battery case (thermoplastic resin). The structural surfaces C to E are not all made of the same material (metal-resin composite plate or thermoplastic resin), and the portion where the metal-resin composite plate wall surface and the thermoplastic resin wall surface are in contact with the metal resin composite plate and the thermoplastic resin It has a structure of A battery case body integrally molded with resin.
[0014]
FIG. 2 is a plan view of the battery case body A shown in FIG. 1 as viewed from the upper opening of the battery case F. The long side surface (metal-resin composite plate) of C is the thermoplasticity of the short side surface of D. A structure in which a thermoplastic resin is bonded to a metal-resin composite plate, which is integrally formed with a resin.
3 is a front view of the battery case body A shown in FIG. 1 as viewed from the front side of the C long side surface (metal-resin composite plate). The long side surface of C (metal-resin composite plate) is 3 shows a structure in which a thermoplastic resin is integrally molded with a thermoplastic resin on the short side of D and the thermoplastic resin is bonded to a metal-resin composite plate.
Thus, the hybrid secondary battery battery case of the present invention has a battery case structure in which a metal-resin composite plate and a thermoplastic resin are integrated, and the metal-resin composite plate is formed by a method such as insert molding or outsert molding. It is integrally molded as a battery case container using a thermoplastic resin.
[0015]
The thermoplastic resin constituting the resin wall surface which is a part of the battery case of the hybrid secondary battery of the present invention is usually excellent in water vapor barrier properties and gas barrier properties against gases such as hydrogen and oxygen generated in the battery. The preferred thermoplastic resins include polyethylene resin, polypropylene resin, a resin composition in which polypropylene resin forms a matrix phase and a polyphenylene ether resin forms a dispersed phase, and polypropylene resin in a matrix. Resin composition in which a hydrogenated block copolymer forms a dispersed phase, a polypropylene resin forms a matrix phase, and a polyethylene forms a dispersed phase, polyphenylene sulfide resin, polyphenylene sulfide resin forms a matrix phase Resin that is formed and elastomer forms a dispersed phase Narubutsu, resin composition or the like polyphenylene sulfide resin forms a matrix polyphenylene ether resin forms a dispersed phase and the like.
[0016]
Next, the metal-resin composite plate wall constituting the metal-resin composite plate wall surface which is a part of the hybrid secondary battery case of the present invention is made of aluminum having a base metal plate thickness of 0.1 mm or more, It is iron, copper, nickel, or an alloy containing these as a main component, and may be plated for the purpose of preventing corrosion. And the layer in contact with the base metal part of the metal-resin composite plate has any one functional group of carboxylic acid group, acid anhydride group, hydroxyl group, amino group, imide group, glycidyl group, oxazonyl group, mercapto group and silyl group. It is formed of a modified polyolefin or a modified hydrogenated block copolymer.
[0017]
This modified polyolefin is a precursor polyolefin, that is, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra low density polyethylene having a density of less than 0.90, isotactic polypropylene and poly (4-methyl). -1-pentene), a copolymer obtained by copolymerizing ethylene, propylene, another α-olefin, etc. in addition to a homopolymer such as polybutene-1, such as an ethylene / propylene copolymer, an ethylene / octene copolymer Polymer, ethylene / butene-1 copolymer, propylene / ethylene (random, block) copolymer, propylene / 1-hexene copolymer, propylene / 4-methyl-1-pentene copolymer, etc., and aliphatic It has an unsaturated group and is further carboxylic acid group, acid anhydride group, hydroxyl group, amino group, imide group, glycidyl , A functional compound having any one functional group selected from oxazonyl group, mercapto group and silyl group in the presence of a radical generator, in the absence, in the molten state, in a solution state at a temperature of 50 to 350 ° C. Is a modified polyolefin obtained by a chemical reaction in which the functional compound is a polymer obtained by grafting or adding 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyolefin.
[0018]
The modified polyolefin may be an unmodified polyolefin and a modified polyolefin mixed at an arbitrary ratio as long as the functional compound is a polymer obtained by grafting or adding 0.01 to 10 parts by weight. Absent.
Examples of the functional compound that chemically modifies the polyolefin include unsaturated dicarboxylic acids such as maleic acid, fumaric acid, chloromaleic acid, citraconic acid, itaconic acid, and hymic acid, acrylic acid, methacrylic acid, crotonic acid, and vinyl. Unsaturated monocarboxylic acids such as acetic acid, pentenoic acid, linoleic acid and cinnamic acid, and acid anhydrides of α, β-unsaturated dicarboxylic acids such as maleic anhydride, acrylic anhydride and hymic anhydride, α, β -Acid anhydrides of unsaturated carboxylic acids, unsaturated alcohol compounds such as allyl alcohol, 3-buten-2-ol, propargyl alcohol, alkenyl phenols such as p-vinylphenol and 2-propenylphenol, p- Unsaturated amine compounds such as aminostyrene, allylamine, N-vinylaniline, and α, such as maleimide β-unsaturated dicarboxylic acid imides or α, β-unsaturated monocarboxylic acid imides, unsaturated glycidyl compounds such as glycidyl acrylate, glycidyl methacrylate, allyl glycidyl, unsaturated oxazoline compounds such as isopropenyl oxazoline, p -Unsaturated mercapto compounds such as tert-butylmercaptomethylstyrene, 2- (3-cyclohexenyl) ethyltrimethoxysilane, 1,3-divinyltetraethoxysilane, vinyltris- (2-methoxyethoxy) silane, 5- ( And unsaturated organosilane compounds such as bicycloheptenyl) triethoxysilane. Among them, maleic anhydride is most preferable as the functional compound.
[0019]
These functional compounds can be used alone or in combination with a vinyl aromatic compound such as styrene copolymerizable with the functional compound. Examples of the radical generator provided when producing the modified polyolefin include dicumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl-2,5-di- (Tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, n-butyl-4,4-bis (tert-butylperoxy) valerate, 1 , 1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane and the like, and one or more of these can be suitably selected.
[0020]
The amount of the functional compound added to the modified polyolefin used in the present invention obtained here can be usually known by a known method such as NMR, FTIR, or titration.
Furthermore, the modified hydrogenated block copolymer used as an adhesive layer for the base metal portion of the metal-resin composite plate of the present invention is a polymer obtained by chemically modifying the hydrogenated block copolymer that is a precursor thereof. Hereinafter, description will be made sequentially.
Here, the hydrogenated block copolymer as a precursor is composed of a polymer block A mainly composed of at least one vinyl aromatic compound and a polymer block B mainly composed of at least one conjugated diene compound. A hydrogenated product of a block copolymer, for example, A-B, A-B-A, B-A-B-A, (A-B-) Four A conjugated diene present in a polymer block mainly composed of a conjugated diene compound represented by B of a vinyl aromatic compound-conjugated diene compound block copolymer having a structure such as Si, ABABABA, etc. It is obtained by hydrogenating an aliphatic double bond derived from a compound.
[0021]
This block copolymer contains 5 to 70% by weight, preferably 10 to 65% by weight of a vinyl aromatic compound, and referring to the block structure, the polymer block A mainly composed of a vinyl aromatic compound is: It has a structure of a homopolymer block of a vinyl aromatic compound or a copolymer block of a vinyl aromatic compound and a conjugated diene compound containing more than 50% by weight of a vinyl aromatic compound and preferably 70% by weight or more. Further, the polymer block mainly composed of a conjugated diene compound is a homopolymer block of a conjugated diene compound or a conjugated diene compound containing more than 50% by weight, preferably 70% by weight or more of a conjugated diene compound and a vinyl aromatic It has a structure of a copolymer block with a compound.
[0022]
In addition, the polymer block A mainly composed of these vinyl aromatic compounds and the polymer block B mainly composed of conjugated diene compounds are the distribution of the conjugated diene compound or vinyl aromatic compound in the molecular chain in each polymer block. May be random, tapered (in which the monomer component increases or decreases along the molecular chain), partially in the form of a block, or any combination thereof, and a polymer block mainly composed of the vinyl aromatic compound and When there are two or more polymer blocks each composed mainly of the conjugated diene compound, the polymer blocks may have the same structure or different structures.
[0023]
As the vinyl aromatic compound constituting the block copolymer, for example, one or more kinds can be selected from styrene, α-methylstyrene, vinyltoluene, p-tert-butylstyrene, diphenylethylene, and the like. Of these, styrene is preferred. Further, as the conjugated diene compound, for example, one or two or more kinds are selected from butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, etc., among which butadiene, isoprene and These combinations are preferred. A polymer block mainly composed of a conjugated diene compound can arbitrarily select a microstructure which is a bonding form of the conjugated diene compound in the block, and usually has a 1,2-vinyl bond amount and a 3,4-vinyl bond. The total amount of bonds is 3 to 85%, preferably 4 to 80%.
[0024]
The number average molecular weight of the block copolymer having the above structure is in the range of 5,000 to 1,000,000, preferably 10,000 to 800,000, more preferably 30,000 to 500,000. The molecular weight distribution [ratio of weight average molecular weight (Mw) and number average molecular weight (Mn) measured by gel permeation chromatography] is 10 or less. Further, the molecular structure of the block copolymer may be linear, branched, radial, or any combination thereof.
[0025]
The block copolymer having such a structure is a hydrogenated block copolymer (vinyl aromatic) obtained by hydrogenating an aliphatic double bond of a polymer block B mainly composed of the conjugated diene compound of the block copolymer described above. Group compound-conjugated diene compound block copolymer hydrogenated product). The hydrogenation rate of such aliphatic double bonds exceeds at least 50%, preferably 80% or more, more preferably 95% or more.
[0026]
The production method of these block copolymers and hydrogenated block copolymers may be obtained by any production method as long as it has the structure described above. Examples of known production methods include, for example, JP-A-47-11486, JP-A-49-66743, JP-A-50-75651, JP-A-54-126255, JP-A-54-126255. No. 56-10542, JP-A 56-62847, JP-A 56-100900, British Patent No. 1130770 and US Pat. Nos. 3,281,383 and 3639517, and British Patent No. 1020720. And US Pat. Nos. 3,330,024 and 4,501,857 can be used to easily produce a hydrogenated block copolymer.
[0027]
The modified hydrogenated block copolymer used in the present invention includes the above-described hydrogenated block copolymer, an aliphatic unsaturated group, a carboxylic acid group, an acid anhydride group, a hydroxyl group, and an amino group. , An imide group, a glycidyl group, an oxazonyl group, a mercapto group, and a silyl group at the same time, a functional compound having at least one functional group in the presence or absence of a radical generator in the molten state or in a solution state. A modified hydrogenated block copolymer obtained by chemical reaction at a temperature of ˜350 ° C., wherein the functional compound is grafted in an amount of 0.01 to 10 parts by weight with respect to 100 parts by weight of the hydrogenated block copolymer. It is an added polymer.
[0028]
The modified hydrogenated block copolymer is an unmodified hydrogenated block copolymer and a modified hydrogenated block copolymer as long as the functional compound is a polymer obtained by grafting or adding 0.01 to 10 parts by weight. The union may be mixed at an arbitrary ratio. Examples of the functional compound for chemically modifying the hydrogenated block copolymer include unsaturated dicarboxylic acids such as maleic acid, fumaric acid, chloromaleic acid, citraconic acid, itaconic acid, and hymic acid, acrylic acid, and methacrylic acid. Acid anhydrides of unsaturated monocarboxylic acids such as crotonic acid, vinyl acetic acid, pentenoic acid, linoleic acid and cinnamic acid, and α, β-unsaturated dicarboxylic acids such as maleic anhydride, acrylic anhydride and hymic anhydride , Acid anhydrides of α, β-unsaturated carboxylic acids, unsaturated alcohol compounds such as allyl alcohol, 3-buten-2-ol, propargyl alcohol, and alkenyls such as p-vinylphenol and 2-propenylphenol Phenol, unsaturated amine compounds such as p-aminostyrene, allylamine, N-vinylaniline, and maleimide Α, β-unsaturated dicarboxylic acid imides or α, β-unsaturated monocarboxylic acid imides, unsaturated glycidyl compounds such as glycidyl acrylate, glycidyl methacrylate, and allyl glycidyl, and unsaturated oxazoline compounds such as isopropenyl oxazoline And unsaturated mercapto compounds such as p-tert-butylmercaptomethylstyrene, 2- (3-cyclohexenyl) ethyltrimethoxysilane, 1,3-divinyltetraethoxysilane, vinyltris- (2-methoxyethoxy) silane, Examples thereof include unsaturated organosilane compounds such as 5- (bicycloheptenyl) triethoxysilane, among which maleic anhydride is most preferable as the functional compound.
[0029]
These functional compounds can be used alone or in combination with a vinyl aromatic compound such as styrene copolymerizable with the functional compound. Examples of the radical generator used in producing the modified hydrogenated block copolymer include dicumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, 2,5-dimethyl- 2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, n-butyl-4,4-bis (tert-butylperoxy) Oxy) valerate, 1,1-bis (tert-butylperoxy) 3,3,5-trimethylcyclohexane and the like can be mentioned, and one or more can be suitably selected from these.
The amount of the functional compound added to the modified hydrogenated block copolymer used in the present invention obtained here can be usually known by a known method such as NMR, FTIR, or titration.
[0030]
As described above, the wall surface of the casing constituting the secondary battery battery case is conventionally made of resin, or the battery case has a structure in which a metal plate or the like is bonded to the resin wall surface. The biggest feature is that the wall surface that constitutes the conventional secondary battery case has an integrally formed structure composed of a combination of a resin wall surface and a metal-resin composite plate wall surface, so that the heat generated inside the secondary battery can be prevented. The cooling effect is improved. Furthermore, the metal-resin composite plate provided in the hybrid secondary battery case of the present invention is a modified polyolefin or modified hydrogenated block copolymer having the above-described characteristics and a base metal (aluminum, iron, copper, nickel or these as main components). In particular, the layer that adheres to the base metal is most preferably a modified hydrogenated block copolymer. When such a modified hydrogenated block copolymer forms an adhesive layer, a secondary layer is formed. This brings about an excellent effect on the adhesive strength after a resin-metal cooling / heating cycle that can occur when the internal pressure of the battery fluctuates or the temperature rises or falls.
[0031]
The metal-resin composite plate provided in the hybrid secondary battery case of the present invention is a modified polyolefin or modified hydrogenated block having the above-described characteristics in a base metal (aluminum, iron, copper, nickel or an alloy containing these as a main component). A copolymer may be laminated, and another laminated thermoplastic resin may be laminated on the multilayer. As a laminating method, a metal-resin multilayer composite plate can be prepared by using a known laminating technique such as extrusion lamination, thermal lamination, solution coating and the like. As such laminated thermoplastic resins, for example, ethylene-vinyl alcohol copolymer, polyamide resin, polyester resin, polycarbonate resin, polyethylene resin, polypropylene resin, polypropylene resin form a matrix phase, and polyphenylene ether resin forms a dispersed phase. Resin composition in which polypropylene resin forms a matrix phase and hydrogenated block copolymer forms a dispersed phase, resin composition in which polypropylene resin forms a matrix phase and polyethylene forms a dispersed phase, polyphenylene sulfide Resin, a resin composition in which a polyphenylene sulfide resin forms a matrix phase and an elastomer forms a dispersed phase, a polyphenylene sulfide resin forms a matrix, and a polyphenylene ether resin forms a dispersed phase At least one thermoplastic resin selected from among fat-composition. Among these, polyethylene resins and polypropylene resins, which are polyolefin resins, can be suitably used.
[0032]
The hybrid secondary battery case of the present invention can be easily formed by an integral molding method such as insert molding of the thermoplastic resin wall surface and the metal-resin composite plate wall surface constituting the secondary battery battery case. Any method can be used as long as it is a secondary battery battery case in which a resin wall and a metal-resin composite plate wall are integrally formed. Furthermore, the hybrid secondary battery battery case may have a single tank structure or a multi-tank integrated structure.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates embodiment of this invention, this invention is not limited by these Examples.
In addition, the raw material used for the metal-resin composite sheet is as follows.
(A) Metal sheet: 0.3 mm thick aluminum sheet
(B-1) Modified hydrogenated block copolymer
It has a structure of polystyrene-hydrogenated polybutadiene-polystyrene, the amount of bonded styrene is 45%, the amount of 1,2-vinyl bonds in the polybutadiene portion before hydrogenation is 43%, and the hydrogenation rate of the polybutadiene portion is 99.8. % And a modified hydrogenated block copolymer obtained by adding 0.9 part by weight of maleic anhydride to a hydrogenated block copolymer having a number average molecular weight of 68,000 was designated as (B-1).
[0034]
(B-2) Modified hydrogenated block copolymer
It has a structure of polystyrene-hydrogenated polybutadiene-polystyrene, the amount of bonded styrene is 30%, the amount of 1,2-vinyl bonds in the polybutadiene portion before hydrogenation is 38%, and the hydrogenation rate of the polybutadiene portion is 99.5. %, A modified hydrogenated block copolymer obtained by adding 0.1 part by weight of maleic anhydride to a hydrogenated block copolymer having a number average molecular weight of 46000 was designated as (B-2).
(B-3) Hydrogenated block copolymer
It has a structure of polystyrene-hydrogenated polybutadiene-polystyrene, the amount of bonded styrene is 30%, the amount of 1,2-vinyl bonds in the polybutadiene portion before hydrogenation is 38%, and the hydrogenation rate of the polybutadiene portion is 99.5. %, A hydrogenated block copolymer of a hydrogenated block copolymer having a number average molecular weight of 46000 was designated as (B-2).
[0035]
(B-4) Modified polypropylene
A modified polypropylene obtained by adding 0.2 parts by weight of maleic anhydride to polypropylene was designated as (B-4).
In addition, the resin layer was brought into close contact by compression molding under the following conditions using a 0.3 mm-thick (A) aluminum sheet and adhesive resins (B-1) to (B-4) degreased with ethanol. A metal-resin composite sheet was formed.
Temperature condition: 230 ° C (up and down heating)
Preheating time: 4 minutes
Pressurization time: 1 minute
Pressure: 21.6MPa
A spacer having a thickness of 0.1 mm was laid, and the aluminum sheet and the adhesive resins (B-1) to (B-4) were heated and melted and bonded. In addition, after heat bonding, it cooled by the pressure 21.6MPa and cooling time 3 minutes with the compression molding machine cooled to 25 degreeC, and obtained the metal-resin composite sheet which closely_contact | adhered the resin layer.
[0036]
Examples 1 to 3 and Comparative Example 1
Assuming a sealed secondary battery battery case in which a resin wall surface and a metal-resin composite plate wall surface are integrally molded, the metal-resin composite sheet obtained above is cut into a 20 mm × 100 mm strip shape and formed into a shape of 20 mm × 50 mm. Mask the surface of the laminate surface with the cut out polyimide film, apply double-sided tape with a width of 3 mm to the other metal surface, fix the surface to the cavity of the flat plate mold, and perform integral molding by injection molding under the following conditions. went.
Injection molding machine: Toshiba IS80EPN
Mold: 150 × 150 × 2mm flat plate mold φ1mm pin gate
Thermoplastic resin: isotactic polypropylene, density 0.908,
MFR = 1.0
Resin temperature: 260 ° C
Mold temperature: 60 ° C (temperature control by hot water circulation)
[0037]
The specimen obtained by integrally molding the metal-resin composite sheet and the thermoplastic resin obtained here was subjected to a continuous heat shock test (-40 ° C. × 30 minutes hold to 70 ° C. × 30 minutes hold temperature increase / decrease rate 5 ° C. / 500 cycles per minute).
3 mm / mm in a state where the flat plate is horizontally fixed with a jig and the masked portion of the metal-resin composite sheet is chucked with respect to the blank not subjected to the continuous heat shock test and the test piece after the continuous heat shock test. T peel test was conducted at a speed of minutes, the maximum peel strength was measured, and the results are shown in Table 1.
[0038]
From this result, a metal-resin composite in which a modified polyolefin and a modified hydrogenated block copolymer are bonded to an aluminum sheet, assuming a sealed secondary battery battery case in which a resin wall and a metal-resin composite plate wall are integrally formed. It became clear that the integrally molded material consisting of sheet and polypropylene is excellent in adhesive strength after continuous cooling and heating cycle. In particular, it has been clarified that an integrally molded material composed of a metal-resin composite sheet obtained by bonding a modified hydrogenated block copolymer to an aluminum sheet and polypropylene has excellent adhesive strength after a continuous cooling and heating cycle.
[0039]
[Example 4]
The structure of the hybrid secondary battery case of the present invention (below (1)) and the structure of the secondary battery case in which the metal-resin composite plate is bonded to the wall surface of the conventional resin battery case (below (2)) Assuming,
(1) Using a metal-resin composite plate made of the modified hydrogenated block copolymer (B-1) (0.1 mm thickness) used in Example 1 on both surfaces of a 0.7 mm thick aluminum sheet, 1 One container wall surface (width 10 cm × height 3 cm) is composed only of this metal-resin composite plate, and the inner volume is 10 cm width × 5 cm depth × 3 cm height so that the remaining five container wall surfaces are made of resin. A container having an upper opening was obtained by integrally molding a container with a resin wall thickness of 1.7 mm using isotactic polypropylene (density 0.908, MFR = 1.0). This container was placed in a thermostatic chamber set at 23 ° C., 70 ° C. water was put inside, and the time until the temperature decreased to 40 ° C. was measured.
[0040]
(2) The upper part of the internal volume is 10 cm wide × 5 cm deep × 3 cm high, the resin wall thickness is 1.7 mm, and the walls are all isotactic polypropylene (density 0.908, MFR = 1.0). When preparing a resin container, the modified hydrogenated block copolymer (B) used in Example 1 on both surfaces of an aluminum sheet having a thickness of 0.7 mm on this one resin outer wall (width 10 cm × height 3 cm) -1) A container having one wall having a structure in which a metal-resin composite plate made of (0.1 mm thickness) is integrally formed and a polypropylene wall surface and a metal-resin composite plate are bonded together (the remaining five surfaces are all A polypropylene having a wall thickness of 1.7 mm was obtained. This container was placed in a thermostatic chamber set at 23 ° C., 70 ° C. water was put inside, and the time until the temperature decreased to 40 ° C. was measured.
[0041]
The above standing cooling test was performed, and (1) a container equivalent to the hybrid secondary battery battery case of the present invention / (2) a secondary battery battery case in which a metal-resin composite plate was bonded to the resin battery wall of the prior art. The ratio of the cooling time of the corresponding container was 0.58 / 1.0, and it was revealed that the hybrid secondary battery case of the present invention was excellent in the cooling effect.
[0042]
[Table 1]
Figure 0004502245
[0043]
【The invention's effect】
The hybrid secondary battery battery case formed by integrally molding different wall surfaces of the thermoplastic resin wall surface and the metal-resin composite plate wall surface of the present invention has an excellent cooling effect, and the metal portion of the metal-resin composite plate is made of a modified polymer. Since the adhesive layer is formed, the adhesive strength after continuous cooling and heating cycles is excellent, and the adhesive strength is maintained over a long period without being affected by thermal distortion. Therefore, heat dissipation, water vapor barrier properties and gases (hydrogen, oxygen, etc.) Provided is a sealed secondary battery battery case that is excellent in barrier properties and further extends the life of a secondary battery.
[Brief description of the drawings]
FIG. 1 is a sketch of a hybrid secondary battery battery case according to the present invention.
FIG. 2 is a plan view of the A battery case body as viewed from the upper opening of the F battery case.
FIG. 3 is a front view of the battery case body of A when the long side of C is viewed from the front.
The edge portion of the long side surface is integrally formed of the same thermoplastic resin as the resin wall surface.
[Explanation of symbols]
A: Battery case
B: Battery case cover (made of resin)
C: Long side (metal-resin composite plate)
D: Short side (made of resin)
E: Bottom of battery case (made of resin)
F: Battery case upper opening

Claims (10)

電極・電解液・セパレータ等の電池エレメントを収納する二次電池電槽において、その電槽容器を構成する長側面、短側面、底面、蓋面の少なくとも一つの面が金属−樹脂複合板、熱可塑性樹脂の異なる材質で構成され、かかる金属−樹脂複合板の少なくとも片面が、金属面にカルボン酸基、酸無水物基、水酸基、アミノ基、イミド基、グリシジル基、オキサゾニル基、メルカプト基およびシリル基のいずれか一種の官能基を有する変性ポリオレフィンまたは変性水添ブロック共重合体で被覆されており、かつ、金属−樹脂複合板壁面と熱可塑性樹脂壁面の接する部分が金属−樹脂複合板と熱可塑性樹脂で一体成形されていることを特徴とするハイブリッド二次電池電槽。In a secondary battery battery case that houses battery elements such as electrodes, electrolytes, and separators, at least one of the long side surface, short side surface, bottom surface, and lid surface constituting the battery case is a metal-resin composite plate, heat Consists of different plastic resin materials, and at least one side of such a metal-resin composite plate has a carboxylic acid group, acid anhydride group, hydroxyl group, amino group, imide group, glycidyl group, oxazonyl group, mercapto group and silyl group on the metal surface. The metal-resin composite plate is coated with a modified polyolefin or a modified hydrogenated block copolymer having any one of the functional groups, and the metal-resin composite plate wall surface and the thermoplastic resin wall surface are in contact with each other. A hybrid secondary battery battery case, which is integrally formed of a plastic resin. 長側面が金属−樹脂複合板、短側面が熱可塑性樹脂であることを特徴とする請求項1記載のハイブリッド二次電池電槽。  The hybrid secondary battery case according to claim 1, wherein the long side is a metal-resin composite plate and the short side is a thermoplastic resin. 金属−樹脂複合板の金属板が、厚み0.1mm以上のアルミニウム、銅、鉄、ニッケルまたはこれらを主成分とする合金であることを特徴とする請求項1〜2のいずれか1項に記載のハイブリッド二次電池電槽。  The metal plate of the metal-resin composite plate is aluminum, copper, iron, nickel, or an alloy containing these as a main component having a thickness of 0.1 mm or more. Hybrid secondary battery battery case. 金属−樹脂複合板の少なくとも片面が、金属面に無水マレイン酸が0.01〜10重量%付加した変性ポリプロピレンで被覆された層であることを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド二次電池電槽。  4. At least one surface of the metal-resin composite plate is a layer coated with a modified polypropylene having 0.01 to 10% by weight of maleic anhydride added to the metal surface. The hybrid secondary battery battery case described in 1. 金属−樹脂複合板の少なくとも片面が、金属面に無水マレイン酸が0.01〜10重量%付加した変性水添ブロック共重合体で被覆されていることを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド二次電池電槽。  4. At least one surface of the metal-resin composite plate is coated with a modified hydrogenated block copolymer in which 0.01 to 10% by weight of maleic anhydride is added to the metal surface. The hybrid secondary battery battery case according to claim 1. 請求項1〜5に記載の金属−樹脂複合板がさらにその上層に少なくとも1種の積層熱可塑性樹脂で形成されている金属−樹脂複合板であることを特徴とするハイブリッド二次電池電槽。A hybrid secondary battery battery case, wherein the metal-resin composite plate according to any one of claims 1 to 5 is a metal-resin composite plate further formed of at least one laminated thermoplastic resin. 金属−樹脂複合板に積層する積層熱可塑性樹脂が、エチレン−ビニルアルコール共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリプロピレン樹脂がマトリックス相を形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成し水添ブロック共重合体が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成しポリエチレンが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂、ポリフェニレンスルフィド樹脂がマトリックス相を形成しエラストマーが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂がマトリックスを形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物の中から選ばれる少なくとも1種であることを特徴とする請求項6記載のハイブリッド二次電池電槽。  The laminated thermoplastic resin to be laminated on the metal-resin composite plate is an ethylene-vinyl alcohol copolymer, polyamide resin, polyester resin, polycarbonate resin, polyethylene resin, polypropylene resin, polypropylene resin forming a matrix phase and polyphenylene ether resin. Resin composition for forming a dispersed phase, resin composition for forming a matrix phase with polypropylene resin and forming a dispersed phase with a hydrogenated block copolymer, resin composition for forming a dispersed phase with polypropylene resin forming a matrix phase Resin, polyphenylene sulfide resin, resin composition in which polyphenylene sulfide resin forms a matrix phase and elastomer forms a dispersed phase, polyphenylene sulfide resin forms a matrix and polyphenylene ether resin forms a dispersed phase Hybrid secondary battery electrodeposition bath of claim 6, wherein the at least one selected from the resin composition. 樹脂製壁面を形成する熱可塑性樹脂が、ポリオレフィン系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィドから選ばれる少なくとも1種であることを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド二次電池電槽。  The hybrid resin according to any one of claims 1 to 3, wherein the thermoplastic resin forming the resin wall surface is at least one selected from polyolefin resins, polyphenylene ether resins, and polyphenylene sulfide. Next battery battery case. 樹脂製壁面を形成する熱可塑性樹脂が、ポリエチレン樹脂、ポリプロピレン樹脂、ポリプロピレン樹脂がマトリックス相を形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成し水添ブロック共重合体が分散相を形成する樹脂組成物、ポリプロピレン樹脂がマトリックス相を形成しポリエチレンが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂がマトリックス相を形成しエラストマーが分散相を形成する樹脂組成物、ポリフェニレンスルフィド樹脂がマトリックスを形成しポリフェニレンエーテル系樹脂が分散相を形成する樹脂組成物のいずれか1種であることを特徴とする請求項1〜3のいずれか1項に記載のハイブリッド二次電池電槽。  The thermoplastic resin forming the resin wall is a resin composition in which polyethylene resin, polypropylene resin, polypropylene resin forms a matrix phase and polyphenylene ether resin forms a dispersed phase, and polypropylene resin forms a matrix phase and hydrogenated block Resin composition in which copolymer forms dispersed phase, resin composition in which polypropylene resin forms matrix phase and polyethylene forms dispersed phase, resin composition in which polyphenylene sulfide resin forms matrix phase and elastomer forms dispersed phase The hybrid resin according to any one of claims 1 to 3, wherein the product is a resin composition in which a polyphenylene sulfide resin forms a matrix and a polyphenylene ether resin forms a dispersed phase. Next battery battery case. 密閉型二次電池電槽である請求項1〜9のいずれか1項に記載のハイブリッド二次電池電槽。The hybrid secondary battery battery case according to any one of claims 1 to 9, which is a sealed secondary battery battery case .
JP2003111572A 2003-04-16 2003-04-16 Hybrid secondary battery case Expired - Fee Related JP4502245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111572A JP4502245B2 (en) 2003-04-16 2003-04-16 Hybrid secondary battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111572A JP4502245B2 (en) 2003-04-16 2003-04-16 Hybrid secondary battery case

Publications (2)

Publication Number Publication Date
JP2004319260A JP2004319260A (en) 2004-11-11
JP4502245B2 true JP4502245B2 (en) 2010-07-14

Family

ID=33472083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111572A Expired - Fee Related JP4502245B2 (en) 2003-04-16 2003-04-16 Hybrid secondary battery case

Country Status (1)

Country Link
JP (1) JP4502245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182838B2 (en) * 2006-07-25 2013-04-17 株式会社デンソー Sealing plate for lithium battery container, manufacturing method thereof and lithium battery
JP5591569B2 (en) 2010-02-05 2014-09-17 三洋電機株式会社 Square battery, method for manufacturing the same, and assembled battery using the same
JP2012190655A (en) * 2011-03-10 2012-10-04 Kaneka Corp Resin for battery element external packaging material and battery element external packaging material produced using the same
JP2016012390A (en) * 2012-10-29 2016-01-21 三洋電機株式会社 On-vehicle battery system
JP6455274B2 (en) * 2015-03-26 2019-01-23 日本ゼオン株式会社 Electrochemical element packaging, electrochemical element exterior, and electrochemical element

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638566U (en) * 1986-07-03 1988-01-20
JPH10106513A (en) * 1996-10-01 1998-04-24 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH10112295A (en) * 1996-08-12 1998-04-28 Sony Corp Battery and set battery
JP2003323869A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Battery and battery module
JP2004022454A (en) * 2002-06-19 2004-01-22 Daiwa Kasei Ind Co Ltd Battery case and its manufacturing method
JP2004281156A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, vessel collective body for electricity storage, and manufacturing method thereof
JP2004281155A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, and its manufacturing method
JP2004281220A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JP2004319259A (en) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp Hermetic rechargeable battery case
JP2006508503A (en) * 2002-11-27 2006-03-09 アベスター・リミテツド・パートナーシツプ Energy storage casing

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638566U (en) * 1986-07-03 1988-01-20
JPH10112295A (en) * 1996-08-12 1998-04-28 Sony Corp Battery and set battery
JPH10106513A (en) * 1996-10-01 1998-04-24 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JP2003323869A (en) * 2002-04-30 2003-11-14 Matsushita Electric Ind Co Ltd Battery and battery module
JP2004022454A (en) * 2002-06-19 2004-01-22 Daiwa Kasei Ind Co Ltd Battery case and its manufacturing method
JP2006508503A (en) * 2002-11-27 2006-03-09 アベスター・リミテツド・パートナーシツプ Energy storage casing
JP2004281156A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, vessel collective body for electricity storage, and manufacturing method thereof
JP2004281155A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, and its manufacturing method
JP2004281220A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Nickel-hydrogen storage battery
JP2004319259A (en) * 2003-04-16 2004-11-11 Asahi Kasei Chemicals Corp Hermetic rechargeable battery case

Also Published As

Publication number Publication date
JP2004319260A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5080738B2 (en) Resin coated stainless steel foil, container and secondary battery
JP5261961B2 (en) Secondary battery positive electrode, secondary battery negative electrode, secondary battery, and vehicle
TWI711676B (en) Adhesive for the laminating, the multilayer film, and rechargeable battery
JP3452172B2 (en) Flat battery
CN107431152B (en) Battery packaging material, method for producing same, and battery
JP2007294382A (en) Packaging material for battery
CN108431987B (en) Battery packaging material, method for producing same, and battery
JP2016184546A (en) Adhesive film for metal terminal
JP2013038089A (en) Laminated body for solar cell module
KR20170122086A (en) Laminate for battery packages, battery package, method for producing battery package, and battery
JP4502245B2 (en) Hybrid secondary battery case
JP2024026624A (en) Pouch film laminate, pouch-type battery case, and pouch-type secondary battery
EP3373374A1 (en) Method for sealing pouch case of secondary battery
KR20220040347A (en) The Apparatus And The Method For Folding Side
CN109964333B (en) Battery packaging material, method for producing same, and battery
JP4502244B2 (en) Sealed secondary battery battery case
CN1163984C (en) Sealed lead accumulator
JP6686634B2 (en) Battery packaging material, manufacturing method thereof, and battery
JP2014170721A (en) Packaging material for battery
JP4993052B2 (en) Lithium-ion battery packaging materials
WO2019097877A1 (en) Resin molded article and tab lead
JP7276642B1 (en) Adhesive film, method for producing adhesive film, power storage device, and method for producing power storage device
JP7475766B2 (en) Side-folding device and method
KR102638122B1 (en) Method for manufacturing air-cooling plate used in battery and cooling plate manufactured thereby
WO2023058734A1 (en) Adhesive film, adhesive film manufacturing method, power storage device, and power storage device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees