JP2008135374A - Sealed secondary battery - Google Patents

Sealed secondary battery Download PDF

Info

Publication number
JP2008135374A
JP2008135374A JP2007259878A JP2007259878A JP2008135374A JP 2008135374 A JP2008135374 A JP 2008135374A JP 2007259878 A JP2007259878 A JP 2007259878A JP 2007259878 A JP2007259878 A JP 2007259878A JP 2008135374 A JP2008135374 A JP 2008135374A
Authority
JP
Japan
Prior art keywords
secondary battery
storage
sealed secondary
battery case
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007259878A
Other languages
Japanese (ja)
Inventor
Yukihiro Okada
行広 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007259878A priority Critical patent/JP2008135374A/en
Publication of JP2008135374A publication Critical patent/JP2008135374A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealed secondary battery with stabilized characteristics of each electrode group and having high reliability, in one with a plurality of electrode groups stored in a battery case. <P>SOLUTION: The battery case 10 is provided with a plurality of cylindrical housing parts 12a to 12d for housing a plurality of electrode groups 20, respectively, and communication parts 13a to 13c coupling with housing parts 12a to 12d adjoining each other. Inner peripheries of the housing parts 12a to 12d have substantially the same shape as outer peripheries of the electrode groups 20, and the communication parts 13a to 13c are formed along side faces of the housing parts 12a to 12d. The electrode groups 20 have cylindrical shapes each formed by winding a cathode plate 21 and an anode plate 22 through a separator 23 and are stored in the housing parts 12a to 12d, respectively, without substantially any gaps. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動用電源、バックアップ電源等の高容量の密閉型二次電池に関するものである。   The present invention relates to a high-capacity sealed secondary battery such as a driving power source and a backup power source.

密閉型二次電池として、ニッケル水素蓄電池やニッケルカドミウム蓄電池等があるが、中でもリチウムイオン電池に代表される非水電解質二次電池は、軽量、小型で高エネルギー密度であることから、携帯電話を始めとする民生用機器から電気自動車や電動工具等駆動用電源、バックアップ電源まで、各種用途に用いられている。特に、近年、非水電解質二次電池は、駆動用電源、バックアップ電源として注目されており、高容量化に向けての開発が活発化している。   Nickel metal hydride storage batteries and nickel cadmium storage batteries are examples of sealed secondary batteries. Among them, non-aqueous electrolyte secondary batteries represented by lithium ion batteries are lightweight, small, and have high energy density. It is used in various applications, from consumer devices such as electric vehicles to power sources for electric vehicles and power tools and backup power sources. In particular, in recent years, non-aqueous electrolyte secondary batteries have attracted attention as drive power sources and backup power sources, and development toward higher capacities has become active.

電池容量を大きくするためには、例えば、セパレータを介して捲回される正極及び負極の捲回回数を増やして、電極群の電極面積を大きくすることが考えられるが、捲回回数が増えるにつれて、放熱性が悪くなり、その結果、電池内で温度の不均一に起因して電池の寿命が低下するという問題が起きる。また、捲回回数を多くすると、巻きずれが起きるなどの問題が生じ、製造面での課題も多い。   In order to increase the battery capacity, for example, it is conceivable to increase the number of times of winding of the positive electrode and the negative electrode wound through the separator to increase the electrode area of the electrode group, but as the number of times of winding increases. As a result, there is a problem in that the heat dissipation is deteriorated, and as a result, the battery life is reduced due to non-uniform temperature in the battery. In addition, when the number of windings is increased, problems such as winding deviation occur, and there are many problems in manufacturing.

このような電池の大型化に伴う問題を解決する方法として、電極群を複数の小電極群に分離して、容器内に収納する方法が、特許文献1に記載されている。   As a method for solving such a problem associated with an increase in the size of a battery, Patent Document 1 discloses a method in which an electrode group is separated into a plurality of small electrode groups and accommodated in a container.

図10は、特許文献1に記載された電池ケースの構成を示した斜視図で、図10に示すように、樹脂フィルム101で被覆された小電極群102を、複数の金属製の仕切り104によって仕切られた容器103内に収納することによって、金属製の仕切り104を介して、各電極群102で発生した熱を効率的に容器外に放出することができる。   FIG. 10 is a perspective view showing the configuration of the battery case described in Patent Document 1. As shown in FIG. 10, the small electrode group 102 covered with the resin film 101 is divided by a plurality of metal partitions 104. By storing in the partitioned container 103, the heat generated in each electrode group 102 can be efficiently released to the outside of the container via the metal partition 104.

しかしながら、図10に示すように、容器103内に収納された複数の小電極群102は、仕切り104によって完全に分離されているため、例えば、一部の小電極群102に急激なガス発生等の異常が生じた場合、この小電極群102が収納された収納部の内圧が急激に上昇し、その結果、異常発生したガスが容器103から噴出するという問題が生じる。   However, as shown in FIG. 10, since the plurality of small electrode groups 102 housed in the container 103 are completely separated by the partition 104, for example, sudden gas generation occurs in some of the small electrode groups 102. When this abnormality occurs, the internal pressure of the storage portion in which the small electrode group 102 is stored rapidly increases, and as a result, a problem arises in that the abnormally generated gas is ejected from the container 103.

これに対して、特許文献2には、小電極群を収納した複数の容器を連通路によって相互に連通する方法が記載されている。   On the other hand, Patent Document 2 describes a method of communicating a plurality of containers containing small electrode groups with each other through a communication path.

図11及び図12は、特許文献2に記載された電池ケースの構成を示した断面図で、図11に示すように、複数の電極群を収納する電池ケース201は、互いに仕切りされた収納部202を有し、この収納部202に、電極群203がそれぞれ収納されている。そして、図12に示すように、電池ケース201上部に設けられた蓋体204において、隣接する収納部202の境界近傍にそれぞれ通孔205が形成され、さらに、通孔205を互いに連通する連通路206が蓋体204の上方に形成されている。   11 and 12 are cross-sectional views showing the configuration of the battery case described in Patent Document 2. As shown in FIG. 11, the battery case 201 that stores a plurality of electrode groups is divided into storage units separated from each other. 202, and the electrode group 203 is accommodated in the accommodating portion 202, respectively. Then, as shown in FIG. 12, in the lid 204 provided on the upper part of the battery case 201, through holes 205 are formed in the vicinity of the boundary between the adjacent storage portions 202, and further, the communication passages that communicate the through holes 205 with each other. 206 is formed above the lid 204.

このような構成により、互いに仕切りされた収納部202は、連通路206によって互いに空間が共有されているので、劣化が先行した電極群203で発生したガスを、他の収納部202に逃がすことができる。これにより、各電極群203の劣化のバランスを取ることができ、電池全体の寿命の低下を防止することができる。
特開2000−348696号公報 特開2001−057199号公報 特開2001−185225号公報
With such a configuration, the storage units 202 partitioned from each other share a space with each other by the communication path 206, so that the gas generated in the electrode group 203 that has been deteriorated may be released to the other storage units 202. it can. Thereby, the deterioration of each electrode group 203 can be balanced, and the lifetime reduction of the whole battery can be prevented.
JP 2000-348696 A JP 2001-057199 A JP 2001-185225 A

特許文献2に記載された方法は、一部の収納部202で発生したガスを、連通路206を介して他の収納部202に逃がすことができるため、各電極群203の劣化のバランスを取ることができる点では有効であるが、連通路206は、蓋体204の上方に形成されているため、連通路206の占める容積は、収納部202全体の容積に比べて非常に小さい。   The method described in Patent Document 2 can balance the deterioration of each electrode group 203 because the gas generated in some of the storage units 202 can be released to the other storage units 202 via the communication path 206. Although the communication path 206 is formed above the lid 204, the volume occupied by the communication path 206 is very small compared to the volume of the entire storage unit 202.

これは、特許文献2に記載された方法は、ニッケル水素電池に適用することを企図したもので、電解液が収納部202間を移動して自己放電するのを防止する必要があることに起因するもので、それ故、図12に示すように、蓋体204上部に形成された連通路206には、電解液の短絡防止をより確実にするための堰207をさらに設ける等の対策が施されている。   This is because the method described in Patent Document 2 is intended to be applied to a nickel metal hydride battery, and it is necessary to prevent the electrolytic solution from moving between the storage portions 202 and self-discharging. Therefore, as shown in FIG. 12, the communication path 206 formed in the upper part of the lid 204 is provided with a measure such as further providing a weir 207 for preventing the short circuit of the electrolyte. Has been.

このように、ニッケル水素電池においては、連通路206を設ける位置(蓋体204の上方)に制約があるものの、そもそもニッケル水素電池においては、充電末期には常に正極電位が酸素発生電位に近くなるため、収納部202内で常時ガスが発生しており、通常、収納部202で発生したガスは、負極の水素吸蔵合金中のプロトンと反応させることで吸収するような構成が取られている。それ故、連通路206の占める容積は、各収納部202内における内圧のバラツキを均一に保つのに必要な程度の大きさで十分その目的を達成することができる。   As described above, in the nickel metal hydride battery, although the position where the communication path 206 is provided (above the lid 204) is limited, in the first place, in the nickel metal hydride battery, the positive electrode potential is always close to the oxygen generation potential. For this reason, gas is constantly generated in the storage unit 202, and the gas generated in the storage unit 202 is normally configured to be absorbed by reacting with protons in the hydrogen storage alloy of the negative electrode. Therefore, the volume occupied by the communication path 206 is sufficiently large to achieve the purpose of maintaining a uniform internal pressure variation in each storage portion 202.

しかしながら、リチウムイオン電池のような非水電解質二次電池においては、例えば、異物の混入等により正極板と負極板とが短絡し、これが原因で異常電流が発生すると、活性物質の熱分解に伴う気化や、短絡部分の発熱に伴う電解液の蒸発等が急激に発生することがあり、一部の電極群203で、このようなガスが急激に発生した場合、蓋体204上部に形成された連通路206だけでは、異常発生したガスを速やかに他の収納部202に逃がすことは困難である。   However, in a non-aqueous electrolyte secondary battery such as a lithium ion battery, for example, when a positive electrode plate and a negative electrode plate are short-circuited due to foreign matter or the like, and an abnormal current is generated due to this short-circuit, it accompanies thermal decomposition of the active substance. Vaporization, evaporation of the electrolyte accompanying heat generation in the short-circuit portion, etc. may occur suddenly. When such gas is generated suddenly in some electrode groups 203, it is formed on the top of the lid 204. With only the communication path 206, it is difficult to quickly release the abnormally generated gas to the other storage unit 202.

また、リチウムイオン電池の場合、正極板及び負極板を構成する集電体に、非常に薄い金属箔が用いられているため、正極板と負極板とをセパレータを介して捲回された円筒形の電極群にしたとき、一部の収納部202に異常ガスが発生して内圧が上昇すると、電極群の捲きズレが生じるおそれがある。もし、捲きズレが発生すると、それによってさらに異常ガスの発生が助長されるという悪循環が生じてしまう。   In the case of a lithium ion battery, since a very thin metal foil is used for the current collectors constituting the positive electrode plate and the negative electrode plate, a cylindrical shape in which the positive electrode plate and the negative electrode plate are wound with a separator interposed therebetween. When an abnormal gas is generated in a part of the storage portions 202 and the internal pressure rises, there is a risk that the electrode group may be displaced. If a misalignment occurs, a vicious cycle occurs in which the generation of abnormal gas is further promoted.

本発明は、かかる課題に鑑みなされたもので、その主な目的は、複数の電極群が電池ケースに収納された密閉型二次電池において、各電極群の特性が安定し、信頼性の高い密閉型二次電池を提供することにある。   The present invention has been made in view of such problems, and its main purpose is a sealed secondary battery in which a plurality of electrode groups are housed in a battery case, and the characteristics of each electrode group are stable and highly reliable. The object is to provide a sealed secondary battery.

本発明に係わる密閉型二次電池は、正極板と負極板とをセパレータを介して捲回されてなる複数の円筒形の電極群が電池ケースに封入されてなる非水電解質二次電池であって、電池ケースは、複数の電極群をそれぞれ収納する複数の円筒形の収納部と、互いに隣接する収納部を連結する連通部とを備えており、収納部の内周が、電極群の外周と略同一形状をなし、連通部が、収納部の側面に沿って形成されている構成をなすものである。   The sealed secondary battery according to the present invention is a non-aqueous electrolyte secondary battery in which a plurality of cylindrical electrode groups obtained by winding a positive electrode plate and a negative electrode plate through a separator are enclosed in a battery case. The battery case includes a plurality of cylindrical storage portions that respectively store a plurality of electrode groups, and a communication portion that connects storage portions adjacent to each other, and the inner periphery of the storage portion is the outer periphery of the electrode group. And the communication portion is formed along the side surface of the storage portion.

このような構成にすることにより、一部の収納部に異常ガスが発生しても、収納部の側面に沿って形成された連通部を介して、速やかに隣接する収納部にガスを逃がすことができ、かつ、連通部自身の占める容積も大きく取ることができるため、各収納部に収納された電極群の特性を安定させることができる。   By adopting such a configuration, even if abnormal gas is generated in some of the storage units, the gas is quickly released to the adjacent storage unit via the communication portion formed along the side surface of the storage unit. In addition, since the volume occupied by the communication section itself can be increased, the characteristics of the electrode group stored in each storage section can be stabilized.

また、円筒形の電極群は、ほぼ同一形状の内周をなす円筒形の収納部に収納されているため、収納部の内周全体で、電極群の外周を押さえながら維持することができ、収納部に異常ガスが発生して内圧が上昇しても、電極群の捲きズレを抑制することができる。   In addition, since the cylindrical electrode group is stored in a cylindrical storage portion having an inner periphery of substantially the same shape, the entire inner periphery of the storage portion can be maintained while pressing the outer periphery of the electrode group, Even if abnormal gas is generated in the storage portion and the internal pressure rises, it is possible to suppress the displacement of the electrode group.

なお、各収納部に充填される電解液が、非水電解質または有機ゲル電解質である場合、ニッケル水素電池の電解液であるアルカリ水溶液のように水系でないため、異常時に発生するガス量とガス発生速度が大きく、本願の構成が特に有効である。   In addition, when the electrolytic solution filled in each storage part is a non-aqueous electrolyte or an organic gel electrolyte, it is not an aqueous system like an alkaline aqueous solution that is an electrolytic solution of a nickel-metal hydride battery. The speed is large and the configuration of the present application is particularly effective.

さらに、複数の収納部の端部を、各収納部の外周の包絡線にそって、略長円形状に変形された外周をなす開口端にして、この開口端に、開口端の外周と略同一の長円形状からなる封口部で封口するような構成にすれば、容易に、開口端に封口部を溶接等で封口することができる。   Furthermore, the end portions of the plurality of storage portions are formed as open ends that form a substantially elliptical shape along the envelope of the outer periphery of each storage portion. If it is made the structure which seals with the sealing part which consists of the same ellipse shape, a sealing part can be easily sealed by welding etc. to an opening end.

本発明に係わる密閉型二次電池によれば、一部の収納部に異常ガスが発生しても、収納部の側面に沿って形成された連通部を介して、速やかに隣接する収納部にガスを逃がすことができるとともに、収納部の内周全体で電極群の外周を維持しているため、電極群の捲きズレを効果的に抑制することができる。これにより、各電極群の特性が安定し、信頼性及び安全性の高い密閉型二次電池を実現することができる。   According to the sealed secondary battery according to the present invention, even if abnormal gas is generated in a part of the storage units, the storage unit is quickly connected to the adjacent storage unit through the communication unit formed along the side surface of the storage unit. Gas can be released and the outer periphery of the electrode group is maintained over the entire inner periphery of the storage portion, so that the displacement of the electrode group can be effectively suppressed. Thereby, the characteristic of each electrode group is stabilized, and a sealed secondary battery with high reliability and safety can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.

図1は、本発明の実施形態における密閉型二次電池に用いる電池ケース10の構成を模式的に示した斜視図である。   FIG. 1 is a perspective view schematically showing a configuration of a battery case 10 used in a sealed secondary battery according to an embodiment of the present invention.

図1に示すように、電池ケース10は、複数の電極群をそれぞれ収納する複数の円筒形の収納部12a〜12dと、互いに隣接する収納部12a〜12dを連結する連通部13a〜13cとを備えている。そして、収納部12a〜12dの内周は、電極群の外周と略同一形状をなしており、また、連通部13a〜13cは、収納部12a〜12dの側面に沿って形成されている。   As shown in FIG. 1, the battery case 10 includes a plurality of cylindrical storage portions 12 a to 12 d that respectively store a plurality of electrode groups, and communication portions 13 a to 13 c that connect the storage portions 12 a to 12 d adjacent to each other. I have. The inner peripheries of the storage portions 12a to 12d have substantially the same shape as the outer periphery of the electrode group, and the communication portions 13a to 13c are formed along the side surfaces of the storage portions 12a to 12d.

ここで、電池ケース10に収納する電極群20は、図2示すように、正極板21と負極板22とをセパレータ23を介して捲回されてなる円筒形の形状をなし、複数の電極群20は、各収納部12a〜12dに、ほぼ隙間無く収納される。   Here, the electrode group 20 accommodated in the battery case 10 has a cylindrical shape formed by winding a positive electrode plate 21 and a negative electrode plate 22 through a separator 23 as shown in FIG. 20 is stored in each of the storage portions 12a to 12d with almost no gap.

図3は、複数の円筒形の電極群20が電池ケース10に封入された密閉型二次電池30の構成を模式的に示した断面図である。   FIG. 3 is a cross-sectional view schematically showing a configuration of a sealed secondary battery 30 in which a plurality of cylindrical electrode groups 20 are enclosed in a battery case 10.

図3に示すように、電池ケース10の複数の収納部に、電極群20a〜20dがそれぞれ収納されている。正極板21の端部に溶接された正極リード24は、正極集電板31に溶接され、負極板22の端部に溶接された負極リード25は、電池ケース10の底部に溶接されている。また、電池ケース10の上部開口端は、封口板32で溶接されて封口され、正極集電板31は、リード33を介して、封口板32に設けられた極柱34に溶接されている。なお、封口板32と極柱34とは、ガスケット35により絶縁されている。なお、電解質は、封口板32に設けられた注入口36から注入され、封口板32の一部には安全弁37が設けられている。   As shown in FIG. 3, the electrode groups 20 a to 20 d are respectively stored in the plurality of storage portions of the battery case 10. The positive electrode lead 24 welded to the end of the positive electrode plate 21 is welded to the positive electrode current collector plate 31, and the negative electrode lead 25 welded to the end of the negative electrode plate 22 is welded to the bottom of the battery case 10. The upper open end of the battery case 10 is welded and sealed with a sealing plate 32, and the positive electrode current collector plate 31 is welded to a pole column 34 provided on the sealing plate 32 via a lead 33. The sealing plate 32 and the pole column 34 are insulated by a gasket 35. The electrolyte is injected from an injection port 36 provided in the sealing plate 32, and a safety valve 37 is provided in a part of the sealing plate 32.

このように構成された密閉型二次電池は、一部の収納部12a〜12dに異常ガスが発生しても、収納部12a〜12dの側面に沿って形成された連通部13a〜13cを介して、速やかに隣接する収納部12a〜12dにガスを逃がすことができる。   Even if abnormal gas is generated in some of the storage portions 12a to 12d, the sealed secondary battery configured in this way is connected via the communication portions 13a to 13c formed along the side surfaces of the storage portions 12a to 12d. Thus, the gas can be quickly released to the adjacent storage portions 12a to 12d.

また、円筒形の電極群20a〜20dは、ほぼ同一形状の内周をなす円筒形の収納部12a〜12dに収納されているため、収納部12a〜12dの内周全体で、電極群20a〜20dの外周を押さえながら維持することができる。これにより、収納部に異常ガスが発生して内圧が上昇しても、電極群の捲きズレを抑制することができる。   Further, since the cylindrical electrode groups 20a to 20d are accommodated in the cylindrical accommodating portions 12a to 12d having substantially the same inner circumference, the electrode groups 20a to 20d are disposed on the entire inner circumference of the accommodating portions 12a to 12d. The outer periphery of 20d can be maintained while being held down. Thereby, even if abnormal gas is generated in the storage portion and the internal pressure rises, the displacement of the electrode group can be suppressed.

また、各収納部12a〜12dに充填される電解質が非水電解質の材料の場合、異常時に発生するガス量とガス発生速度が大きく、収納部12a〜12dの側面に沿って連通部13a〜13cを形成することよる空間確保の効果が大きい。また、有機ゲル電解質の材料を用いた場合にも、同様の効果を得ることができる。   Moreover, when the electrolyte with which each storage part 12a-12d is filled is a nonaqueous electrolyte material, the gas amount and gas generation speed which generate | occur | produce at the time of abnormality are large, and communication part 13a-13c is along the side surface of storage part 12a-12d. The effect of securing the space by forming is great. The same effect can also be obtained when an organic gel electrolyte material is used.

以上のような作用効果を発揮することによって、各収納部12a〜12dに収納された電極群20a〜20dの特性を安定させることができ、信頼性の高い密閉型二次電池を実現することができる。   By exhibiting the above effects, it is possible to stabilize the characteristics of the electrode groups 20a to 20d housed in the housing portions 12a to 12d, and to realize a highly reliable sealed secondary battery. it can.

なお、収納部12a〜12d及び電極群20a〜20dは、真円状の円筒形に限らず、例えば、円筒形の電極群を押しつぶして形成された楕円状の円筒形(長円筒形)のものであってもよい。   The storage portions 12a to 12d and the electrode groups 20a to 20d are not limited to a perfect circular cylindrical shape, but may be, for example, an elliptical cylindrical shape (long cylindrical shape) formed by crushing a cylindrical electrode group. It may be.

図4は、収納部及び電極群が、長円筒形である場合の本発明の実施形態における密閉型二次電池に用いる電池ケース10の構成を模式的に示した斜視図である。   FIG. 4 is a perspective view schematically showing the configuration of the battery case 10 used in the sealed secondary battery in the embodiment of the present invention when the storage portion and the electrode group are long cylindrical.

図4に示すように、電池ケース10は、複数の電極群をそれぞれ収納する複数の長円筒形の収納部12a〜12dと、互いに隣接する収納部12a〜12dを連結する連通部13a〜13cとを備えている。そして、収納部12a〜12dの内周は、電極群の外周と略同一形状をなしており、また、連通部13a〜13cは、収納部12a〜12dの側面に沿って形成されている。   As shown in FIG. 4, the battery case 10 includes a plurality of long cylindrical storage portions 12 a to 12 d that respectively store a plurality of electrode groups, and communication portions 13 a to 13 c that connect the storage portions 12 a to 12 d adjacent to each other. It has. The inner peripheries of the storage portions 12a to 12d have substantially the same shape as the outer periphery of the electrode group, and the communication portions 13a to 13c are formed along the side surfaces of the storage portions 12a to 12d.

ここで、電池ケース10に収納する電極群20は、図5示すように、正極板21と負極板22とをセパレータ23を介して捲回されてなる長円筒形の形状をなし、複数の電極群20は、各収納部12a〜12dに、ほぼ隙間無く収納される。   Here, the electrode group 20 housed in the battery case 10 has a long cylindrical shape in which a positive electrode plate 21 and a negative electrode plate 22 are wound through a separator 23 as shown in FIG. The group 20 is stored in the storage units 12a to 12d with almost no gap.

このように構成された密閉型二次電池は、一部の収納部12a〜12dに異常ガスが発生しても、収納部12a〜12dの側面に沿って形成された連通部13a〜13cを介して、速やかに隣接する収納部12a〜12dにガスを逃がすことができる。   Even if abnormal gas is generated in some of the storage portions 12a to 12d, the sealed secondary battery configured in this way is connected via the communication portions 13a to 13c formed along the side surfaces of the storage portions 12a to 12d. Thus, the gas can be quickly released to the adjacent storage portions 12a to 12d.

また、長円筒形の電極群20は、ほぼ同一形状の内周をなす長円筒形の収納部12a〜12dに収納されているため、収納部12a〜12dの内周全体で、電極群20の外周を押さえながら維持することができる。これにより、収納部に異常ガスが発生して内圧が上昇しても、電極群の捲きズレを抑制することができる。   In addition, since the long cylindrical electrode group 20 is stored in the long cylindrical storage portions 12a to 12d having an inner periphery of substantially the same shape, the entire inner periphery of the storage portions 12a to 12d It can be maintained while pressing the outer periphery. Thereby, even if abnormal gas is generated in the storage portion and the internal pressure rises, the displacement of the electrode group can be suppressed.

また、収納部12a〜12d及び連通部13a〜13cの材質は特に問わないが、収納部12a〜12d及び連通部13a〜13cを一体的に成形すれば、電池ケース10の強度を増すとともに部品点数も減るためコスト、品質の点で有利である。   The materials of the storage portions 12a to 12d and the communication portions 13a to 13c are not particularly limited. However, if the storage portions 12a to 12d and the communication portions 13a to 13c are formed integrally, the strength of the battery case 10 is increased and the number of parts is increased. This is advantageous in terms of cost and quality.

電池ケース10は、種々の方法で形成することができる。例えば、押し出し工法を用いて、収納部12a〜12d及び連通部13a〜13cを一体的に成形することができる。また、DI(Drawing & Ironing)工法を用いれば、収納部12a〜12d、連通部13a〜13c、及び底部を一体的に形成することもできる。また、長円同形の収納部を形成した後、プレス加工により連通部13a〜13cを形成してもよい。   The battery case 10 can be formed by various methods. For example, the storage portions 12a to 12d and the communication portions 13a to 13c can be integrally formed using an extrusion method. Moreover, if DI (Drawing & Ironing) method is used, the accommodating parts 12a-12d, the communication parts 13a-13c, and a bottom part can also be formed integrally. Moreover, after forming the ellipse-shaped storage part, you may form the communication parts 13a-13c by press work.

なお、本発明における密閉型二次電池は、本実施形態において説明した上記構成以外の構成については、特に限定するものはなく、通常の密閉型二次電池において採用される種々の構成を適用し得る。   The sealed secondary battery in the present invention is not particularly limited with respect to the configuration other than the above-described configuration described in the present embodiment, and various configurations adopted in ordinary sealed secondary batteries are applied. obtain.

例えば、電池ケースの材質としては、鉄、ニッケル、鉄ニッケルメッキ、ステンレス、アルミニウムなどを用いることができる。   For example, as a material of the battery case, iron, nickel, iron nickel plating, stainless steel, aluminum, or the like can be used.

また、正極板を構成する集電体には、アルミニウムの箔または穿孔体等が用いられ、正極活物質には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム等の複合酸化物、若しくはその変性体などを用いることができる。変性体として、アルミニウム、マグネシウム、コバルト、ニッケル、マンガン等の元素を混合して含有させることもできる。また、正極活物質の表面を別の材料でコートしてもよい。導電剤としては、正極電位下で安定な黒鉛、カーボンブラック、導電性酸化物、金属粉末などが用いられる。結着剤としては、正極電位下で安定なポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が用いられる。   The current collector constituting the positive electrode plate is an aluminum foil or a perforated body, and the positive electrode active material is a composite oxide such as lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate. Or a modified product thereof can be used. As a modified body, elements such as aluminum, magnesium, cobalt, nickel and manganese can be mixed and contained. Further, the surface of the positive electrode active material may be coated with another material. As the conductive agent, graphite, carbon black, conductive oxide, metal powder or the like that is stable under the positive electrode potential is used. As the binder, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) or the like that is stable at the positive electrode potential is used.

また、負極板を構成する集電体には、銅箔または銅穿孔体等が用いられ、負極活物質には、天然黒鉛、人造黒鉛、アルミニウムやそれを主体とする種々の合金、酸化スズ、酸化シリコンなどの金属酸化物、金属窒化物を用いることができる。導電剤としては、負極電位下で安定な黒鉛、カーボンブラック、導電性酸化物、金属粉末などが用いられる。結着剤としては、負極電位下で安定なスチレン−ブタジエン共重合体ゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などが用いられる。   In addition, a copper foil or a copper perforated body is used for the current collector constituting the negative electrode plate, and the negative electrode active material includes natural graphite, artificial graphite, aluminum and various alloys mainly composed thereof, tin oxide, A metal oxide such as silicon oxide or a metal nitride can be used. As the conductive agent, graphite, carbon black, conductive oxide, metal powder or the like that is stable under a negative electrode potential is used. As the binder, styrene-butadiene copolymer rubber (SBR), carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), or the like that is stable under a negative electrode potential is used.

また、セパレータには、ポリオレフィンからなる微多孔膜、不織布などが用いられる。   For the separator, a microporous film made of polyolefin, a nonwoven fabric, or the like is used.

なお、図2示した正極板21及び負極板22は、上記の導電剤および結着剤と混練した正極活物質を集電体に塗着し、集電体の一端の未塗着部に正極リード24または負極リード25を溶接して形成される。そして、正極板21及び負極板22を、セパレータ23を介して正極リード24及び負極リード25が違う方向から取り出されるように捲回することにより、電極群20が形成される。   Note that the positive electrode plate 21 and the negative electrode plate 22 shown in FIG. 2 are formed by applying a positive electrode active material kneaded with the above-described conductive agent and binder to a current collector, and forming a positive electrode on an uncoated portion at one end of the current collector. It is formed by welding the lead 24 or the negative electrode lead 25. Then, the electrode group 20 is formed by winding the positive electrode plate 21 and the negative electrode plate 22 through the separator 23 so that the positive electrode lead 24 and the negative electrode lead 25 are taken out from different directions.

また、非水電解質は、主に非水溶媒と溶質とからなり、溶質には、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)等のリチウム塩が用いられる。また、非水溶媒には、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート、ジエチルカーボネートおよびエチルメチルカーボネートなどの鎖状カーボネート類などが用いられる。なお、非水溶媒は、1種を単独で用いてもよいが2種以上を組み合わせてもよい。また、ビニレンカーボネート、シクロヘキシルベンゼン、ジフェニルエーテルなどの添加剤を添加したものでもよい。 The non-aqueous electrolyte mainly includes a non-aqueous solvent and a solute, and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ) is used as the solute. . As the non-aqueous solvent, cyclic carbonates such as ethylene carbonate and propylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are used. In addition, a non-aqueous solvent may be used individually by 1 type, but may combine 2 or more types. Moreover, what added additives, such as vinylene carbonate, cyclohexylbenzene, diphenyl ether, may be used.

また、有機ゲル電解質には、ポリマー材料に非水電解質を含ませたものを用いることができる。   As the organic gel electrolyte, a polymer material containing a non-aqueous electrolyte can be used.

また、ガスケット35として、架橋型ポリプロピレン(PP)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリフェニレンサルファイド(PPS)樹脂、パーフルオロアルコキシアルカン(PFA)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂などが用いられる。   Further, as the gasket 35, a cross-linked polypropylene (PP) resin, polybutylene terephthalate (PBT) resin, polyphenylene sulfide (PPS) resin, perfluoroalkoxyalkane (PFA) resin, polytetrafluoroethylene (PTFE) resin, or the like is used. .

また、封口板32の材質としては、鉄、ニッケル、鉄ニッケルメッキ、ステンレス、アルミニウム、これらのクラッド材などが用いられる。   Further, as the material of the sealing plate 32, iron, nickel, iron nickel plating, stainless steel, aluminum, a clad material thereof, or the like is used.

なお、本発明に好適な非水電解質または有機ゲル電解質の二次電池としては、リチウムイオン電池、リチウムイオンポリマー電池等がある。   Examples of the secondary battery of the nonaqueous electrolyte or organic gel electrolyte suitable for the present invention include a lithium ion battery and a lithium ion polymer battery.

(本実施形態の変形例)
本発明における密閉型二次電池は、複数の電極群を収納部12a〜12dに収納した後、電池ケース10の開口端は、封口部で封口されるが、電池ケース10の開口端は、図1に示すように、連通部13a〜13cにおいてくびれた形状になっているため、例えば、封口部を電池ケース10の開口端に溶接等で封口する場合、通常の溶接に比べて、複雑な工程を要する。
(Modification of this embodiment)
In the sealed secondary battery according to the present invention, after the plurality of electrode groups are accommodated in the accommodating portions 12a to 12d, the opening end of the battery case 10 is sealed by the sealing portion. As shown in FIG. 1, since it has a constricted shape in the communication portions 13a to 13c, for example, when the sealing portion is sealed to the opening end of the battery case 10 by welding or the like, a complicated process is required as compared with normal welding. Cost.

本変形例では、このような製造面での改良を図った電池ケース10の構成を、図6〜図9を参照しながら説明する。   In this modification, the configuration of the battery case 10 that is improved in terms of manufacturing will be described with reference to FIGS. 6 to 9.

図6は、第1の変形例における電池ケース10の構成を示した図で、基本的な構成は、図1に示したものと同じであるが、複数の収納部12a〜12dの一端(図では、上端部)が、各収納部12a〜12dの外周の包絡線にそって略長円形状に変形された開口端14をなしている点に特徴がある。   FIG. 6 is a diagram showing the configuration of the battery case 10 in the first modified example. The basic configuration is the same as that shown in FIG. 1, but one end of the plurality of storage portions 12 a to 12 d (see FIG. 6). Then, the upper end portion) is characterized in that it forms an open end 14 that is deformed into a substantially oval shape along the outer envelope of each of the storage portions 12a to 12d.

このような形状を有する開口端14を封口部で溶接する場合、封口部の形状(平面形状)を、開口端14の外周と略同一の長円形状にすることによって、容易に溶接することができる。   When the opening end 14 having such a shape is welded at the sealing portion, the sealing portion can be easily welded by making the shape (planar shape) of the sealing portion substantially the same as the outer periphery of the opening end 14. it can.

なお、このような構成にしても、電極群20a〜20dは、開口端近傍の領域を除いて、収納部12a〜12dのほとんどの領域において、電極群20a〜20dを押さえながら維持することができるので、収納部に異常ガスが発生して内圧が上昇しても、電極群の捲きズレを抑制する効果は失われない。   Even in such a configuration, the electrode groups 20a to 20d can be maintained while holding the electrode groups 20a to 20d in most of the storage portions 12a to 12d except for the area near the opening end. Therefore, even if abnormal gas is generated in the storage portion and the internal pressure increases, the effect of suppressing the displacement of the electrode group is not lost.

図7は、第2の変形例における電池ケース10の構成を示した図で、複数の収納部12a〜12dの他端(図では下端部)も、図6に示したのと同様に、略長円形状に変形された開口端15にしたものである。例えば、電池ケース10の底部を、収納部12a〜12d及び連通部13a〜13cと一体的に形成しない場合に、電池ケース10の底部を封口部で溶接するのが容易になる。   FIG. 7 is a diagram showing the configuration of the battery case 10 in the second modification, and the other ends (lower end portions in the drawing) of the plurality of storage portions 12a to 12d are also substantially similar to those shown in FIG. The open end 15 is deformed into an oval shape. For example, when the bottom portion of the battery case 10 is not integrally formed with the storage portions 12a to 12d and the communication portions 13a to 13c, it is easy to weld the bottom portion of the battery case 10 with the sealing portion.

図8は、第3の変形例における電池ケース10の構成を示した図で、図6に示した電池ケース10において、収納部12a〜12dの他端(図では下端部)が、平坦な封口部16によって封口されており、さらに、封口部16の内側の表面に、突起部16a〜16dが形成されている点に特徴がある。   FIG. 8 is a diagram illustrating the configuration of the battery case 10 according to the third modification. In the battery case 10 illustrated in FIG. 6, the other ends (lower end portions in the drawing) of the storage portions 12 a to 12 d are flat sealing. It is sealed by the part 16, and is characterized in that protrusions 16a to 16d are formed on the inner surface of the sealing part 16.

本発明においては、円筒形の電極群20a〜20dが、ほぼ同一形状の内周をなす円筒形の収納部12a〜12dに収納されるため、電極群20a〜20dを収納部12a〜12dの内壁で維持することができるが、それでも、電極群20a〜20dを収納部12a〜12dに収納する際の若干の隙間は確保しておかなければならない。その結果、収納部12a〜12dに収納された各電極群20a〜20dの位置に多少のバラツキが生じ、これに起因にて各電極群の特性がばらつく畏れがある。   In the present invention, since the cylindrical electrode groups 20a to 20d are accommodated in the cylindrical accommodating portions 12a to 12d having substantially the same inner periphery, the electrode groups 20a to 20d are placed on the inner walls of the accommodating portions 12a to 12d. However, it is still necessary to secure a slight gap when the electrode groups 20a to 20d are stored in the storage portions 12a to 12d. As a result, the positions of the electrode groups 20a to 20d housed in the housing portions 12a to 12d are slightly varied, which may cause variations in the characteristics of the electrode groups.

このような場合に、各電極群20a〜20dの巻回芯部が、電池ケース10の底部に設けた各突起部16a〜16dと嵌合されるように、電極群20a〜20dを収納部12a〜12dに収納すれば、電極群20a〜20dの位置のバラツキを抑えることができる。   In such a case, the electrode groups 20a to 20d are accommodated in the storage portion 12a so that the winding core portions of the electrode groups 20a to 20d are fitted to the protrusions 16a to 16d provided on the bottom of the battery case 10, respectively. If it accommodates in -12d, the variation in the position of electrode group 20a-20d can be suppressed.

図9は、第4の変形例における電池ケース10の構成を示した図で、図6に示した電池ケース10において、連通部13a〜13cの形状を、少なくともその中央付近において、直線状になるように加工した点に特徴がある。このような構成にすることによって、収納部12a〜12dが電極群20a〜20dを維持する作用効果を損なうことなく、連通部13a〜13cの容積を大きくすることができ、その結果、密閉型二次電池の信頼性及び安全性をより向上させることができる。   FIG. 9 is a diagram illustrating the configuration of the battery case 10 according to the fourth modification. In the battery case 10 illustrated in FIG. 6, the shapes of the communication portions 13 a to 13 c are linear at least near the center. It is characterized by the points processed in this way. By adopting such a configuration, the volume of the communication portions 13a to 13c can be increased without impairing the operation and effect of the storage portions 12a to 12d maintaining the electrode groups 20a to 20d. The reliability and safety of the secondary battery can be further improved.

以下、本発明の実施形態における密閉型二次電池の具体的な製造方法について、リチウムイオン電池(非水電解質二次電池)を例に説明する。   Hereinafter, a specific method for manufacturing a sealed secondary battery according to an embodiment of the present invention will be described by taking a lithium ion battery (nonaqueous electrolyte secondary battery) as an example.

(1)電池ケースの作製
鉄板を押し出し工法を用いて、図1に示したような、約0.25mmの厚みをなす収納部12a〜12d及び連通部13a〜13cの形状を有する電池ケース10を形成する。その後、この形状に合わせた形状を持つ底部をレーザーで溶接する。
(1) Production of Battery Case Using a steel plate extrusion method, a battery case 10 having the shape of storage portions 12a to 12d and communication portions 13a to 13c having a thickness of about 0.25 mm as shown in FIG. Form. Thereafter, the bottom having a shape matching this shape is welded with a laser.

(2)封口板の作製
鉄板を用いて、図3に示したような封口板32を作製する。この封口板32には、薄肉化と溝入れによって内圧が高くなった際に開弁し、ガスを逃がす安全弁37、電解液の注入口36、正極電位を電池ケース10の外に導くためのアルミニウムで作られた極柱34、封口板32と極柱34を絶縁するための架橋型ポリプロピレン(PP)樹脂でつくられたガスケット35を備えている。
(2) Preparation of sealing plate The sealing plate 32 as shown in FIG. 3 is produced using an iron plate. The sealing plate 32 is opened when the internal pressure increases due to thinning and grooving, and a safety valve 37 for releasing gas, an electrolyte injection port 36, and aluminum for guiding the positive electrode potential to the outside of the battery case 10. And the gasket 35 made of a cross-linked polypropylene (PP) resin for insulating the sealing plate 32 and the pole 34 from each other.

(3)正極板の作製
正極合剤としてコバルト酸リチウム粉末を85重量部、導電剤として炭素粉末を10重量部、及び結着剤としてポリフッ化ビニリデン(PVDF)のN−メチル−2−ピロリドン(NMP)溶液を、PVDFが5重量部相当を混合する。この混合物を厚み15μmのアルミニウム箔に、塗布、乾燥した後、圧延して厚みが約100μmの正極板21を作製する。正極板21にはアルミニウムの正極リード24を設ける。
(3) Preparation of positive electrode plate 85 parts by weight of lithium cobaltate powder as a positive electrode mixture, 10 parts by weight of carbon powder as a conductive agent, and N-methyl-2-pyrrolidone of polyvinylidene fluoride (PVDF) as a binder ( NMP) solution is mixed with 5 parts by weight of PVDF. This mixture is applied to an aluminum foil having a thickness of 15 μm, dried, and then rolled to produce a positive electrode plate 21 having a thickness of about 100 μm. The positive electrode plate 21 is provided with a positive electrode lead 24 made of aluminum.

(4)負極板の作製
負極合剤として人造黒鉛粉末を95重量部、及び結着剤としてPVDFのNMP溶液をPVDFが5重量部相当を混合する。この混合物を厚み10μmの銅箔に、塗布、乾燥した後、圧延して厚みが約110μmの負極板22を作製する。負極板22には銅の負極リード25を設ける。
(4) Production of Negative Electrode Plate An artificial graphite powder is mixed with 95 parts by weight as a negative electrode mixture, and an NMP solution of PVDF as a binder is mixed with PVDF corresponding to 5 parts by weight. This mixture is applied to a copper foil having a thickness of 10 μm, dried, and then rolled to produce a negative electrode plate 22 having a thickness of about 110 μm. The negative electrode plate 22 is provided with a copper negative electrode lead 25.

(5)非水電解質の調整
非水溶媒として、エチレンカーボネートとエチルメチルカーボネートを体積比1:1で混合し、これに溶質として、六フッ化リン酸リチウム(LiPF6)が1mol/Lになるように溶解する。このように調製した非水電解質を15ml用いる。
(5) Preparation of non-aqueous electrolyte As a non-aqueous solvent, ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 1: 1, and lithium hexafluorophosphate (LiPF 6 ) is 1 mol / L as a solute. To dissolve. 15 ml of the non-aqueous electrolyte prepared in this way is used.

(6)電極群の作製
正極板21と負極板22の間に、厚み25μmのセパレータ23を配置して捲回し、直径23mm、高さ57mmの円筒形の電極群20a〜20dを作製する。
(6) Production of Electrode Group A separator 23 having a thickness of 25 μm is disposed between the positive electrode plate 21 and the negative electrode plate 22 and wound to produce cylindrical electrode groups 20a to 20d having a diameter of 23 mm and a height of 57 mm.

(7)密閉型二次電池の作製
円筒形の電極群20a〜20dを4個、電池ケース10に挿入し、それぞれの電極群20a〜20dの負極リード25と電池ケース10の底部を抵抗溶接で接続する。また、電極群20a〜20dの正極リード24を集電板31に溶接し、この集電板31と封口板32に設けられた極柱34とを、アルミニウムリード33で溶接する。その後、封口板32と電池ケース10をレーザー溶接で封口する。さらに、封口板32に設けられた注入口36から非水電解質を注入し、最後に、注入口36を封栓し、密閉型の非水電解質二次電池を得る。
(7) Production of sealed secondary battery Four cylindrical electrode groups 20a to 20d are inserted into the battery case 10, and the negative electrode lead 25 of each electrode group 20a to 20d and the bottom of the battery case 10 are resistance-welded. Connecting. Moreover, the positive electrode lead 24 of the electrode groups 20 a to 20 d is welded to the current collector plate 31, and the current collector plate 31 and the pole column 34 provided on the sealing plate 32 are welded with the aluminum lead 33. Thereafter, the sealing plate 32 and the battery case 10 are sealed by laser welding. Further, a nonaqueous electrolyte is injected from an inlet 36 provided in the sealing plate 32, and finally the inlet 36 is sealed to obtain a sealed nonaqueous electrolyte secondary battery.

次に、上記の方法で作製したリチウムイオン電池に対して、電池ケース10の構成を、図1に示した本実施形態における構成、及び図6〜図9に示した第1〜第4の変形例における構成にした場合の、サイクル寿命特性、及び寿命に至るまでのサイクル数のバラツキを評価した。なお、電池の設計容量は8Ahとし、それぞれ10個の電池を作製して評価を行った。また、図13(a)、(b)に示すような従来の電池ケース401を用いて作製したリチウムイオン電池を、比較例として評価した。   Next, with respect to the lithium ion battery manufactured by the above method, the configuration of the battery case 10 is the same as that of the present embodiment shown in FIG. 1 and the first to fourth modifications shown in FIGS. In the case of the configuration in the example, the cycle life characteristics and the variation in the number of cycles until the end of the life were evaluated. The design capacity of the battery was 8 Ah, and 10 batteries were produced and evaluated. Moreover, the lithium ion battery produced using the conventional battery case 401 as shown to Fig.13 (a), (b) was evaluated as a comparative example.

評価方法は、次のとおりである。まず、1Aで4.1Vまで充電した状態で45℃雰囲気下で3日間エージングした。その後、25℃雰囲気下で1Aで3Vまで放電した。その後、45℃雰囲気下で8Aで4.2Vに達するまで定電流充電した後、8Aで3Vまで放電するサイクルを繰り返した。そして、容量が6Ahを切った時の平均のサイクル数、および寿命に至るまでのサイクル数のバラツキをそれぞれ評価した。   The evaluation method is as follows. First, it was aged for 3 days in an atmosphere of 45 ° C. while being charged to 4.1 V at 1 A. Then, it discharged to 3V at 1A in 25 degreeC atmosphere. Thereafter, a constant current charge was performed until the voltage reached 4.2 V at 8 A in a 45 ° C. atmosphere, and then a cycle of discharging to 3 V at 8 A was repeated. And the variation of the average cycle number when capacity | capacitance cut | disconnected 6 Ah, and the cycle number until it reaches a lifetime were each evaluated.

なお、それぞれのバラツキ(分散)Yは、下記の数式1により求めた。   In addition, each variation (dispersion) Y was calculated | required by following Numerical formula 1.

Figure 2008135374
Figure 2008135374

ここで、Yは、容量が6Ahを切った時のサイクル数のバラツキ、Aは、リチウムイオン電池の容量が6Ahを切った時の10個の平均のサイクル数、Bは、10個のリチウムイオン電池のうちのn番目のリチウムイオン電池の容量が6Ahを切った時のサイクル数である。 Here, Y is the variation in the number of cycles when the capacity is less than 6 Ah, A is the average number of cycles of 10 when the capacity of the lithium ion battery is less than 6 Ah, and B n is 10 lithium This is the number of cycles when the capacity of the nth lithium ion battery of the ion batteries is less than 6 Ah.

表1は、電池ケース10の構成を、本実施形態、第1〜第4の変形例、及び比較例における構成にした場合の、それぞれの評価結果を示したものである。   Table 1 shows each evaluation result when the configuration of the battery case 10 is the configuration of the present embodiment, the first to fourth modifications, and the comparative example.

Figure 2008135374
Figure 2008135374

表1の結果から分かるように、電池ケース10の構成を、本実施形態及び第1〜第4の変形例における構成にした場合、どれも、比較例における構成に比べて、安定した特性を有するリチウムイオン電池を得ることができた。   As can be seen from the results in Table 1, when the configuration of the battery case 10 is the configuration of the present embodiment and the first to fourth modifications, all have stable characteristics as compared to the configuration of the comparative example. A lithium ion battery could be obtained.

ところで、複数の長円筒形の電極群が、内部の空間を共有した状態で、収納部に収納された電池ケースが、特許文献3に開示されている。   By the way, Patent Document 3 discloses a battery case in which a plurality of long cylindrical electrode groups are housed in a housing portion in a state where an internal space is shared.

図14は、特許文献3で開示された電池ケース301の構成を示した図で、電池ケース301に、複数(図14では2個)の長円筒形の電極群302が収納された状態を示したものである。そして、電池ケース301と電極群302との間に、放熱用の固体部材304が配置されている。   FIG. 14 is a diagram showing the configuration of the battery case 301 disclosed in Patent Document 3, and shows a state in which a plurality (two in FIG. 14) of long cylindrical electrode groups 302 are accommodated in the battery case 301. It is a thing. A heat dissipating solid member 304 is disposed between the battery case 301 and the electrode group 302.

確かに、固体部材304は、電池ケース301と電極群302との隙間形状に合わせて成形されているため、放熱効果に加えて、電極群302の振動等を抑制する効果も発揮されるため、本発明と構成において一見近いように見える。   Certainly, since the solid member 304 is formed in accordance with the gap shape between the battery case 301 and the electrode group 302, in addition to the heat dissipation effect, the effect of suppressing vibration of the electrode group 302 is also exhibited. Looks similar to the present invention and configuration.

しかしながら、固体部材304は、電池ケース301とは別個の構成をなすもので、実際、電極群302は、電極群302の隙間に固体部材304を挿入した後、電池ケース301に収納されるものである。従って、製造時の位置決め等の工程が複雑になることに加え、工程のバラツキ等により電極群の外周が均一に維持されなくなる結果、収納部に異常ガスが発生して内圧が上昇したときの電極群の捲きズレを均一に抑制することはできない。   However, the solid member 304 is configured separately from the battery case 301. Actually, the electrode group 302 is housed in the battery case 301 after the solid member 304 is inserted into the gap between the electrode groups 302. is there. Therefore, in addition to the complicated process such as positioning at the time of manufacturing, the outer periphery of the electrode group is not maintained uniformly due to process variations, etc., and as a result, abnormal gas is generated in the storage part and the internal pressure rises. It is not possible to uniformly suppress the group deviation.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態において、収納部12a〜12d及び連通部13a〜13cは、同じ肉厚の薄板からなる構成にしたが、少なくとも収納部12a〜12dの内周が、電極群20a〜20dの外周と略同一形状をなしていれば、連通部13a〜13cにおいて、例えば、外形が平坦になるような肉厚になっていてもよい。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above-described embodiment, the storage portions 12a to 12d and the communication portions 13a to 13c are configured of thin plates having the same thickness, but at least the inner periphery of the storage portions 12a to 12d is the outer periphery of the electrode groups 20a to 20d. As long as it has substantially the same shape, the communicating portions 13a to 13c may have a thickness such that the outer shape becomes flat, for example.

また、上記実施形態において、正極板21及び負極板22は、正極リード24及び負極リード25を介して、それぞれ集電板31及び電池ケース10の底部に接続される構成にしたが、正極板21及び負極板22を構成する集電体の端部(合剤の未塗工部)にそれぞれ集電板を溶接した、所謂タブレス構造の電極群20a〜20dを用いて、それぞれの電極群をリードや直接溶接などで、集電板31及び電池ケース10の底部に接続される構成にしてもよい。   In the above embodiment, the positive electrode plate 21 and the negative electrode plate 22 are connected to the current collector plate 31 and the bottom of the battery case 10 via the positive electrode lead 24 and the negative electrode lead 25, respectively. The electrode groups 20a to 20d having a so-called tabless structure, in which the current collector plates are welded to the end portions of the current collectors constituting the negative electrode plate 22 (uncoated portions of the mixture), lead each electrode group. Alternatively, it may be configured to be connected to the current collector 31 and the bottom of the battery case 10 by direct welding or the like.

本発明は、複数の電極群が電池ケースに収納された密閉型二次電池において、各電極群の特性が安定し、信頼性の高い密閉型二次電池に有用である。   INDUSTRIAL APPLICABILITY The present invention is a sealed secondary battery in which a plurality of electrode groups are housed in a battery case, and the characteristics of each electrode group are stable and useful for a highly reliable sealed secondary battery.

本発明の実施形態における電池ケースの構成を示した斜視図である。It is the perspective view which showed the structure of the battery case in embodiment of this invention. 本実施形態における電極群の構成を示した図である。It is the figure which showed the structure of the electrode group in this embodiment. 本実施形態における密閉型二次電池の構成を示した断面図である。It is sectional drawing which showed the structure of the sealed secondary battery in this embodiment. 本発明の実施形態における電池ケースの構成を示した斜視図である。It is the perspective view which showed the structure of the battery case in embodiment of this invention. 本実施形態における電極群の構成を示した図である。It is the figure which showed the structure of the electrode group in this embodiment. 第1の変形例における電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case in a 1st modification. 第2の変形例における電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case in a 2nd modification. 第3の変形例における電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case in a 3rd modification. 第4の変形例における電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case in a 4th modification. 従来の密閉型二次電池の電池ケースの構成を示した斜視図である。It is the perspective view which showed the structure of the battery case of the conventional sealed secondary battery. 従来の密閉型二次電池の電池ケースの構成を示した断面図である。It is sectional drawing which showed the structure of the battery case of the conventional sealed secondary battery. 従来の電池ケースに設けられた連通路の構成を示した断面図である。It is sectional drawing which showed the structure of the communicating path provided in the conventional battery case. 比較例における電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case in a comparative example. 従来の密閉型二次電池の電池ケースの構成を示した図である。It is the figure which showed the structure of the battery case of the conventional sealed secondary battery.

符号の説明Explanation of symbols

10 電池ケース
12a〜12d 収納部
13a〜13c 連通部
14、15 開口端
16 封口部
16a〜16d 突起部
20、20a〜20d 電極群
21 正極板
22 負極板
23 セパレータ
24 正極リード
25 負極リード
30 密閉型二次電池
31 正極集電板
32 封口板(封口部)
33 アルミニウムリード
34 極柱
35 ガスケット
36 注入口
37 安全弁
DESCRIPTION OF SYMBOLS 10 Battery case 12a-12d Storage part 13a-13c Communication part 14,15 Open end 16 Sealing part 16a-16d Protrusion part 20, 20a-20d Electrode group 21 Positive electrode plate 22 Negative electrode plate 23 Separator 24 Positive electrode lead 25 Negative electrode lead 30 Sealing type Secondary battery 31 Positive electrode current collector plate 32 Sealing plate (sealing part)
33 Aluminum reed 34 Polar column 35 Gasket 36 Inlet 37 Safety valve

Claims (7)

正極板と負極板とをセパレータを介して捲回されてなる複数の円筒形の電極群が電池ケースに封入されてなる密閉型二次電池であって、
前記電池ケースは、
前記複数の電極群をそれぞれ収納する複数の円筒形の収納部と、
互いに隣接する前記収納部を連結する連通部と
を備えており、
前記収納部の内周は、前記電極群の外周と略同一形状をなしており、
前記連通部は、前記収納部の側面に沿って形成されている、密閉型二次電池。
A sealed secondary battery in which a plurality of cylindrical electrode groups obtained by winding a positive electrode plate and a negative electrode plate through a separator are enclosed in a battery case,
The battery case is
A plurality of cylindrical storage portions that respectively store the plurality of electrode groups;
A communication portion that connects the storage portions adjacent to each other,
The inner periphery of the storage part has substantially the same shape as the outer periphery of the electrode group,
The communication part is a sealed secondary battery formed along a side surface of the storage part.
前記収納部に充填される電解液は、非水電解質または有機ゲル電解質からなる、請求項1に記載の密閉型二次電池。   The sealed secondary battery according to claim 1, wherein the electrolytic solution filled in the storage portion is made of a non-aqueous electrolyte or an organic gel electrolyte. 前記収納部及び前記電極群は、長円筒形をなしている、請求項1に記載の密閉型二次電池。   The sealed secondary battery according to claim 1, wherein the storage portion and the electrode group have a long cylindrical shape. 前記複数の収納部の端部は、各収納部の外周の包絡線にそって略長円形状に変形された開口端をなしており、
前記開口端は、該開口端の外周と略同一の長円形状からなる封口部によって封口されている、請求項1に記載の密閉型二次電池。
The end portions of the plurality of storage portions have open ends that are deformed into a substantially oval shape along the outer envelope of each storage portion,
2. The sealed secondary battery according to claim 1, wherein the opening end is sealed by a sealing portion having an oval shape substantially the same as the outer periphery of the opening end.
前記複数の収納部及び該収納部を連結する連通部は、一体的に成形されている、請求項1に記載の密閉型二次電池。   The sealed secondary battery according to claim 1, wherein the plurality of storage units and the communication unit that connects the storage units are integrally formed. 前記収納部の端部は、平坦な封口部によって封口されており、
前記封口部の内側の表面に、突起部が形成されており、
前記電極群の巻回芯部が、前記突起部と嵌合されている、請求項1に記載の密閉型二次電池。
The end of the storage part is sealed by a flat sealing part,
A protrusion is formed on the inner surface of the sealing portion,
The sealed secondary battery according to claim 1, wherein a winding core portion of the electrode group is fitted with the protrusion.
前記密閉型二次電池は、リチウムイオン電池からなる、請求項1に記載の密閉型二次電池。   The sealed secondary battery according to claim 1, wherein the sealed secondary battery is a lithium ion battery.
JP2007259878A 2006-10-24 2007-10-03 Sealed secondary battery Pending JP2008135374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259878A JP2008135374A (en) 2006-10-24 2007-10-03 Sealed secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006288970 2006-10-24
JP2007259878A JP2008135374A (en) 2006-10-24 2007-10-03 Sealed secondary battery

Publications (1)

Publication Number Publication Date
JP2008135374A true JP2008135374A (en) 2008-06-12

Family

ID=39560058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259878A Pending JP2008135374A (en) 2006-10-24 2007-10-03 Sealed secondary battery

Country Status (1)

Country Link
JP (1) JP2008135374A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
JP2011060767A (en) * 2009-09-10 2011-03-24 Samsung Sdi Co Ltd Secondary battery
JP2011096660A (en) * 2009-10-29 2011-05-12 Samsung Sdi Co Ltd Secondary battery
JP2013054900A (en) * 2011-09-04 2013-03-21 Toyota Industries Corp Battery
JP2013143271A (en) * 2012-01-11 2013-07-22 Toshiba Corp Lithium ion secondary battery and battery
KR101406240B1 (en) 2013-12-05 2014-06-12 엔블록셀유한책임회사 An enbloc clip shaped lithium secondary battery pack that is compatible with 2 or 4 cell battery compartment of electronic devices
US9005803B2 (en) 2010-07-12 2015-04-14 Samsung Sdi Co., Ltd. Secondary battery
JP2015520935A (en) * 2012-05-21 2015-07-23 エー123 システムズ, リミテッド ライアビリティ カンパニー Multi-cell lithium-ion battery
US9178188B2 (en) 2011-08-08 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery with collector plates having insulators and conductors
US9196888B2 (en) 2009-12-01 2015-11-24 Samsung Sdi Co., Ltd. Rechargeable battery
KR101812195B1 (en) * 2016-02-15 2018-01-25 허진우 Cell outer case for electric energy storage device module, and electric energy storage device module having the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109395A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Cell and battery
JPH10334953A (en) * 1997-03-24 1998-12-18 Alcatel Alsthom Co General Electricite Temperature control device for electrochemical cell battery
JP2001297741A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Battery pack
JP2003234094A (en) * 2002-02-08 2003-08-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2004265830A (en) * 2003-03-04 2004-09-24 Japan Storage Battery Co Ltd Battery pack
JP2004281155A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, and its manufacturing method
JP2009515304A (en) * 2005-11-08 2009-04-09 ビーワイディー カンパニー リミテッド Lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109395A (en) * 1991-10-17 1993-04-30 Matsushita Electric Ind Co Ltd Cell and battery
JPH10334953A (en) * 1997-03-24 1998-12-18 Alcatel Alsthom Co General Electricite Temperature control device for electrochemical cell battery
JP2001297741A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Battery pack
JP2003234094A (en) * 2002-02-08 2003-08-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2004265830A (en) * 2003-03-04 2004-09-24 Japan Storage Battery Co Ltd Battery pack
JP2004281155A (en) * 2003-03-14 2004-10-07 Toyo Aluminium Kk Vessel for electricity storage, and its manufacturing method
JP2009515304A (en) * 2005-11-08 2009-04-09 ビーワイディー カンパニー リミテッド Lithium ion battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010267457A (en) * 2009-05-13 2010-11-25 Hitachi Vehicle Energy Ltd Spiral wound battery
US8815437B2 (en) 2009-09-10 2014-08-26 Samsung Sdi Co., Ltd. Rechargeable battery
JP2011060767A (en) * 2009-09-10 2011-03-24 Samsung Sdi Co Ltd Secondary battery
JP2011096660A (en) * 2009-10-29 2011-05-12 Samsung Sdi Co Ltd Secondary battery
US8546007B2 (en) 2009-10-29 2013-10-01 Samsung Sdi Co., Ltd. Rechargeable battery
EP2317587A3 (en) * 2009-10-29 2014-04-09 Samsung SDI Co., Ltd. Rechargeable battery
US9196888B2 (en) 2009-12-01 2015-11-24 Samsung Sdi Co., Ltd. Rechargeable battery
US9005803B2 (en) 2010-07-12 2015-04-14 Samsung Sdi Co., Ltd. Secondary battery
US9178188B2 (en) 2011-08-08 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery with collector plates having insulators and conductors
JP2013054900A (en) * 2011-09-04 2013-03-21 Toyota Industries Corp Battery
JP2013143271A (en) * 2012-01-11 2013-07-22 Toshiba Corp Lithium ion secondary battery and battery
JP2015520935A (en) * 2012-05-21 2015-07-23 エー123 システムズ, リミテッド ライアビリティ カンパニー Multi-cell lithium-ion battery
US10128536B2 (en) 2012-05-21 2018-11-13 A123 Systems, LLC Multi-cell lithium-ion batteries
KR101406240B1 (en) 2013-12-05 2014-06-12 엔블록셀유한책임회사 An enbloc clip shaped lithium secondary battery pack that is compatible with 2 or 4 cell battery compartment of electronic devices
WO2015083912A1 (en) * 2013-12-05 2015-06-11 엔블록셀유한책임회사 Lithium secondary battery pack having enbloc clip form combined to coincide with two or four battery compartments of electronic device
US9444087B1 (en) 2013-12-05 2016-09-13 Enbloc Cell Llc Enbloc clip-type lithium secondary battery pack capable of fitting into two-cell or four cell battery compartment of electronic device
KR101812195B1 (en) * 2016-02-15 2018-01-25 허진우 Cell outer case for electric energy storage device module, and electric energy storage device module having the same

Similar Documents

Publication Publication Date Title
US8323826B2 (en) Sealed secondary battery
JP2008135374A (en) Sealed secondary battery
JP5774752B2 (en) Battery and battery pack
JP6538650B2 (en) Cylindrical sealed battery
US9203059B2 (en) Battery with insulating member including bus bar fixing section
JP4563264B2 (en) Lithium secondary battery
JP5165482B2 (en) Winding type secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
KR101903913B1 (en) Non-aqueous secondary battery
KR20090106841A (en) Electrode assembly and secondary battery using the same
JP2016189248A (en) Square secondary battery and battery pack using the same
WO2011145205A1 (en) Secondary battery
US10944125B2 (en) Production method for lithium-ion secondary battery
KR101707335B1 (en) Nonaqueous electrolyte secondary battery
JP2011210390A (en) Battery and battery module
JP2019160734A (en) Assembled battery, battery pack, vehicle, stationary power supply
CN115552684A (en) Secondary battery
US9023517B2 (en) Secondary battery
KR102137706B1 (en) Pouch case and pouch type secondary natter using the same
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
US11417874B2 (en) Non-aqueous electrolyte secondary battery
KR101515672B1 (en) Electrode assembly including anode and cathod electrode more than 2 and electrochemical device using the same
US20190067729A1 (en) Lithium ion electrochemical devices having excess electrolyte capacity to improve lifetime
JP2016091711A (en) Secondary battery and method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604