JP2004279195A - 走査型プローブ顕微鏡 - Google Patents
走査型プローブ顕微鏡 Download PDFInfo
- Publication number
- JP2004279195A JP2004279195A JP2003070612A JP2003070612A JP2004279195A JP 2004279195 A JP2004279195 A JP 2004279195A JP 2003070612 A JP2003070612 A JP 2003070612A JP 2003070612 A JP2003070612 A JP 2003070612A JP 2004279195 A JP2004279195 A JP 2004279195A
- Authority
- JP
- Japan
- Prior art keywords
- cantilever
- scanning
- probe microscope
- data
- scanning probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
【課題】検出系のアライメント調整を無くして装置の小型化を実現可能な走査型プローブ顕微鏡を提供する。
【解決手段】走査型プローブ顕微鏡であって、試料211の形状を計測するための探針209を備えるカンチレバー207と、試料211に関するX,Y,Z走査を制御するZ、XY走査手駆動制御部263,264と、カンチレバー207の照射に関連して取得される光ビームを検出して検出信号を出力するCCD234と、CCD234から出力された検出信号に対して所定の演算処理を行うCPU275と、CPU275で処理されたデータをCCD234の受光面で得られる輝度データとして記憶する記憶部271と、CPU275で処理されたデータを表示する表示部255とを具備する。
【選択図】 図1
【解決手段】走査型プローブ顕微鏡であって、試料211の形状を計測するための探針209を備えるカンチレバー207と、試料211に関するX,Y,Z走査を制御するZ、XY走査手駆動制御部263,264と、カンチレバー207の照射に関連して取得される光ビームを検出して検出信号を出力するCCD234と、CCD234から出力された検出信号に対して所定の演算処理を行うCPU275と、CPU275で処理されたデータをCCD234の受光面で得られる輝度データとして記憶する記憶部271と、CPU275で処理されたデータを表示する表示部255とを具備する。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は走査型プローブ顕微鏡に関するものである。
【0002】
【従来の技術】
走査型プローブ顕微鏡の1つに原子間力顕微鏡(AFM)がある。これは微細加工によって作られたカンチレバーを試料に接触(又は近接)させ、カンチレバーの先端に形成された探針と試料間に働く原子間力によるカンチレバーのたわみを検出することにより、試料表面の形状を測定するものである。カンチレバーのたわみを測定する手段としては、光テコ法、光干渉計、ピエゾ抵抗等があげられるが、最も簡便な手段である光テコ法が最も多く用いられている。
【0003】
以下に従来のAFM装置の典型的な構成例について説明する。図8は、従来の典型的なAFMの全体構成を示す模式図である。試料211は、3次元アクチュエータ(XYZスキャナ)213によって支持されており、X,Y,Z方向に走査される。3次元アクチュエータ213は、通常、圧電体を用いたピエゾアクチュエータ式のものが用いられる。Z走査駆動制御部263は試料211のZ方向の走査を制御する。XY走査駆動制御部264は試料211のX,Y方向の走査を制御する。
【0004】
カンチレバー207の先端部下面には、探針209が下方に突出するように形成されており試料211の表面に接触可能となっている。
【0005】
カンチレバー207の上方にはレーザ発振器221が配置されており、このレーザ発振器221からのレーザ光(入射光231)は集光レンズ260により焦点が合った状態でカンチレバー207上面に照射される。この入射光231はカンチレバー207上面で反射して反射光233となり、3次元アクチュエータ213の上方に設置されている2分割検出器(PD)235に照射される。この2分割検出器235は図9(a)に示すように上下(AB)2分割型(光センサが上下に2分割されている)の構成をとることにより、反射光233の入射位置を検出することができる。
【0006】
例えば、反射光233が2分割検出器235の上部に当たると、上側(A)センサの光量の方が下側(B)のセンサの光量よりも多くなる。また、反射光233が2分割検出器235の下部に当たると、下側(B)センサの光量の方が上側(A)のセンサの光量よりも多くなる。2分割検出器235で検出された信号は、A/D変換器261によりデジタル信号に変換され、データ処理部262にて表面形状のデータとして処理される。制御部275は、Z走査駆動制御部263及びXY走査駆動制御部264及び表示部255を制御する。
【0007】
次に、上記した図8のAFMの調整及び動作について説明する。まずレーザ発振器221からのレーザ光をカンチレバー207の表面上かつ先端部分に合わせる必要がある。ここでは、位置と焦点面が一致するように、レーザ発振器221を移動するとともに、集光レンズ260の位置を精密に調整する。
【0008】
次に、カンチレバー207からの反射光233を2分割検出器235の指定した中心位置に合わせる調整が必要である。2分割検出器235の和信号(A+B)が最大になるように入射光231の位置を調整し、次に差信号(A−B)が最小になるように2分割検出器235の位置を調整する。
【0009】
これらの調整が終わった後にカンチレバー207を試料211に接触させ、サンプルスキャンの場合は試料211をカンチレバー207に対して走査する。このとき2分割検出器235の差信号をモニタすることによって、試料211表面の形状を表示部255で画像化することができる。また、2分割検出器235の差信号が一定になるように、すなわちカンチレバー207と試料211間に働く力が一定になるようにフィードバックをかけながら、試料211表面の形状を画像化することも可能である。
【0010】
また、検出器は上記した2分割のものに限られず、4分割のものも存在する。図9(b)は、光センサが4分割された構成をもつ4分割検出器280の一例を示している。図9(b)に示す構成では、試料211と反対側へのカンチレバー207のたわみにより生じるレーザ光の変位方向の分割部をA,Cとし、他の部分をB,Dとする。各分割部分A,B,C,Dの出力をそれぞれa,b,c,dとすると、たわみ量は(a+c)−(b+d)で算出され、ねじれ量は(a+b)−(c+d)の絶対値として算出される。
【0011】
このようにして算出された、たわみ、ねじれの各々を設定値と比較し、このときの比較結果に基づいて制御を行うべく、Z方向の圧電体に制御電圧を印加する。すなわち、カンチレバー207のたわみは試料211表面の凹凸に応じて変化するため、たわみが設定値よりも大きくなるときは、試料211がカンチレバー207から離れる方向、即ち圧電体がZ方向へ縮むように制御電圧を印加する。逆に、たわみが設定値よりも小さくなるときは、試料211がカンチレバー207に近づく方向、即ち圧電体がZ方向へ延びるように制御電圧を印加する。
【0012】
また、カンチレバー207のねじれは、試料211に略垂直な形状部分が存在するときに、この部分とカンチレバー207の先端部に設けた探針209とが衝突することにより生じる。従って、このようなねじれが設定値よりも大きくなるときは、試料211がカンチレバー207から離れる方向に制御電圧を印加する。
【0013】
上記の方法により、たわみとねじれが一定値になるように制御しながら試料211を走査し、各々の制御電圧の結果を画像化することにより、試料表面の形状を把握することができる。
【0014】
【発明が解決しようとする課題】
従来の光テコ法では、光学的なアライメントを行うために、測定前に入射位置や検出器の位置を調整しなければならない。従って、多くの調整時間と手間が発生する。さらに、各部の調整箇所に調整可能な駆動機構を設けるなど、装置が複雑化する。また、レーザ光、カンチレバー、検出器が一定の位置関係になる必要があるので、光学系全体を動かして調整し、また試料を動かす等して調整する必要があり、装置構成が大型になるという欠点があった。
【0015】
特開平7−248333号公報においては、検出器にPDアレイを採用しアライメント調整を不要にすることを開示しているが、この構成では多数の検出器が必要になるため大型化してしまう。
【0016】
また、上記したような、検出器の中心部を決め4つの指定エリアごとにデータ加算する処理では、ガウスビームの積算結果のみを情報として得ることになるので、受光面のビーム形状が変形している場合はレーザ光の受光面周辺に載るノイズをも積算してしまうので測定精度が落ちてしまう。
【0017】
また、基本モード(TEM00)のレーザを前提として、検出器の中心位置と検出エリアを分けているので、レーザ光の形状が円でなく楕円であったり、基本モード以外、例えばTEM01,11といったその他の、レーザの発振モードに対応できない。
【0018】
また、カンチレバーが傾いた状態で取り付けられている場合には、検出する受光面の変位する方向が、受光面上の画素の分割軸方向と一致しなくなる可能性がある。これがねじれ量として検出され測定精度が低下してしまう。これらを光学系上で軸合わせをすると、平行、垂直と合わせ込むための光学調整が必要となってしまう。
【0019】
本発明はこのような課題に着目してなされたものであり、検出系のアライメント調整を無くして装置の小型化を実現可能な走査型プローブ顕微鏡を提供することにある。
【0020】
さらに本発明は、信号処理に多様性をもたせ、ノイズ除去機能やカンチレバー取り付け時の傾きを補正する機能を設けて測定精度を上げ、また各種のレーザ光源に対応できる機能を設けて、使いやすさを向上した走査型プローブ顕微鏡を提供することを目的とする。
【0021】
【課題を解決するための手段】
上記の目的を達成するために、第1の発明は、走査型プローブ顕微鏡であって、試料の形状を計測するための探針を備えるカンチレバーと、前記試料に関するX,Y,Z走査を制御する走査手段と、前記カンチレバーの照射に関連して取得される光ビームを検出して検出信号を出力するエリアセンサと、前記エリアセンサから出力された検出信号に対して所定の演算処理を行うデータ処理部と、前記データ処理部で処理されたデータを前記エリアセンサの受光面で得られる輝度データとして記憶する記憶部と、前記データ処理部で処理されたデータを表示する表示部とを具備する。
【0022】
また、第2の発明は、第1の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記記憶部に記憶された輝度データから最高輝度の位置を光量の中心位置として割り出し、この中心位置に基づいて検出エリアを複数に分割する。
【0023】
また、第3の発明は、第2の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記中心位置を割り出した後に、当該中心位置から離れた周辺の低輝度部分のデータをノイズとしてみなして前記検出信号から除外する処理を行うことにより検出エリアを決定する。
【0024】
また、第4の発明は、第2または第3の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記走査手段による走査時における前記光ビームの移動軌跡に基づいて、前記検出エリアを分割する境界軸を補正する。
【0025】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0026】
(第1実施形態)
以下、図面を参照して本発明の第1実施形態を詳細に説明する。図1は、本発明の一実施形態に係る走査型プローブ顕微鏡の概略構成を示す図である。図1において、レーザ発振器221からのレーザ光(入射光231)がカンチレバー207の上面に照射された後、反射して反射光233となるまでの構成は図8で説明した通りであるが、ここでの実施形態では、反射光233が3次元アクチュエータ231の上方に設置されているエリアセンサとしてのCCD234に入射される点が異なっている。
【0027】
ここでは、レーザ発振器221からのレーザ光(入射光231)をカンチレバー207の表面上かつ先端部分に合わせる必要が有る。ここでは位置と焦点面が一致するように、その反射光233をCCD234の指定した受光面に合わせることになる。本構成では、CCD234は、カンチレバー207からの反射光233を受光可能な位置に配置されているので、CCD234の受光面内のおおよそ中心に受光できれば良く、特に長時間、細かな調整を行う必要もなくなり、アライメントが不要となる。これによってカンチレバーの交換時に行われる作業を簡素化することができ、作業効率が向上する。
【0028】
尚、上記したCCD234は、通常の画像を撮像する際に用いられ、複数の微少なマトリックス形状の受光素子をアレー状に配置したものである。また、検出信号の走査にはフレームインターライン方式などがあるが、これは映像信号の処理に用いられるものなので、通常の検出器の処理とは異なり、CCD制御部270からの制御に従ってデータを任意時間蓄積するとともに所定のタイミングで読み出しを行うようにする。
【0029】
読み出された信号はA/D変換器261によりデジタル信号化され、記憶部271に蓄えられる。記憶部271のデータは受光したレーザ光の2次元輝度データを表すことになり、位置分解能はCCD234の画素サイズに依存することになる。以下、画素サイズを基本ピッチとして、レーザ光の輝度中心を算出する。
【0030】
図2は、CCD234の受光面に反射光233が入射した状態を示している。図3は、反射光233のプロファイルと分割された検出エリアについて説明するための図である。102はレーザ受光面、101は検出エリア、103はX断面のビームプロファイル、104はY断面のビームプロファイル、104はノイズ成分のカットに用いられるしきい値である。
【0031】
CCD234の受光面に入射した反射光233は、基本モードレーザが用いられた場合、そのビーム形状(ビームプロファイル103,105)は図3に示すようにほぼガウス型となる。ここでは、CCD234の受光面における受光輝度の中心位置100を割り出し、検出エリア101を4つの領域A,B,C,Dに分割する。ここでは、最高輝度の位置を中心位置100とし、CCD画素の垂直方向と水平方向をそれぞれX軸,Y軸の基本軸を検出エリア分割線X、YとしてA,B,C,Dの領域に分割する。
【0032】
この分割処理は、記憶部271に記憶されたCCD234の受光面での受光データをもとにCPU275により受光データを比較して割り出す。理想的には、中心位置100は4つの領域A,B,C,Dのそれぞれの明るさの積分値が等分になる位置とし、その位置に従って境界を分ける。
【0033】
しかしながら、ビーム形状(ビームプロファイル103,105)が理想的なガウス型でない場合はこの限りでない。実際にガウス型から崩れたビーム形状が多数存在したりする。実際、レーザ光のビーム形状が楕円形状のものも存在する。これを円形に修正するためにはシリンドリカルレンズ等を用いればよいが、これによって光学系が複雑になる。ビームプロファイル103,105が、ガウス型から崩れていても、最高輝度の部分がビーム中心となりレーザ光の中心として変位する。従って最高輝度を中心位置にすることが測定精度の向上に必要である。
【0034】
本実施形態では、ビーム形状が楕円であっても、その光量中心を求めて検出エリアを4分割することが可能である。その為、検出値は必ずしも4つの領域A,B,C,Dが等領域とはならないが、たわみ量(a+c)−(b+d)と、ねじれ量(a+b)−(c+d)はカンチレバー207の停止位置(無変位)でそれぞれある初期値を持たせ、演算処理を行う。
【0035】
検出エリア101の中心位置100を決めた後はノイズ除去領域の決定を行う。ガウスビームの周辺の低輝度部分はほとんどがノイズ成分である為に、周辺の低輝度部分におけるノイズ成分を検出信号から除外する処理を行う。通常使われる(a+c)−(b+d)の信号処理では、各領域に均等に乗るノイズ成分が(a+c)信号と(b+d)信号との差分でカットできるが、形状が対称でないビームに関してはノイズ成分が偏ってしまい完全なノイズ除去とならない。
【0036】
しかし本実施形態では、例えば受光光量の95%の周辺輝度部分を不要なノイズとしてカット処理し、又は理想的なガウスビーム形状としてその輝度の95%の部分を検出対象とする等といった処理を行い各領域毎にノイズの除去を行う。これにより、形状が対称でないビーム形状の場合のノイズも除去でき、本来の信号のみの演算が可能である。尚、これはCCD等の性能により、ノイズカットしきい値104を任意に設定可能である。これらの一連の処理もCPU275により算出して行う。
【0037】
以上の処理により検出エリア101が決定されたならば、CPU275により対象となるデータを記憶部271から読み出して加算を行う。例えば、A領域の加算は、CCD234の画素の(H,V)=(100,150)、(101,151)、の位置といったように、画素を指定してデータを全て加算する。尚、(H,V)はCCD234上の画素位置に対応している。この場合、加算対象外のビーム周辺のノイズ部分はもちろん加算されない。このようにして、CPU275により4つの領域A,B,C,Dの加算結果を算出してたわみ量、ねじれ量を決定する。以上の方法により、試料211上の一点での変位に関するデータを取得することができる。
【0038】
実際の試料211面のXY走査では、XY走査駆動制御部264を移動させ、試料211の表面上をカンチレバー207で走査する。XY走査駆動制御部264が次の検出位置に移動したとき、カンチレバー207がたわむと、CCD234の受光領域も変化することになる。
【0039】
次に、上述した方法と同様の方法により中心位置を割り出し、検出エリアを決め、初めに設定された境界を境に、A,B,C,Dの各領域でそれぞれ受光した光量に対して加算を行ってたわみ量及びねじれ量を求める。
【0040】
図4(a)、(b)は、CCD234の受光面における時間T1での検出光(図4(a))と、時間T2での検出光(図4(b))を示す。101は検出エリア、102はレーザ受光面、100は中心位置である。図4(a)、(b)からわかるように、時間T2に移動したときには各領域A,B,C,Dの値が時間T1に比べて変化しており、これがT1とT2間の変位量として記録される。この走査を一定速度で行うことで試料211の表面形状を求め、表示部255に当該形状を表示させて観察することができる。
【0041】
尚、上述した実施形態では、光量中心の算出、加算領域の算出は、記憶部271とCPU275を用いることにより行ったが、これに限定されず専用のデータ処理部を設けてもよく、特にCPUの処理範囲は限定しない。
【0042】
(第2実施形態)
通常では単一縦モード(基本モードTEM00)のレーザが使用されるが、高次のモードのレーザを使用した場合にはビーム形状が分散してCCD234の受光面が異なってくる。例えば、マルチモードレーザにおいて光量が図5の301〜304のごとく分散分布している場合には、各受光ビームの光量の中心を求めるようにする。TEM11モードの場合、図5の4つの受光ビーム301〜304の各々の中心位置を割り出し、その変位を第1実施形態と同様の方法により求める。さらに、4つの受光ビーム301〜304についての演算結果の平均値を最終結果とする。
【0043】
このような方法を適用することで、レーザ発振のモードが基本モードTEM00(ガウス)の場合だけでなく、他の発振モード(例えばTEM11モード)のレーザにおいてもたわみ量やねじれ量を測定可能となり、レーザ光源の選択の自由度が大きい。
【0044】
(第3実施形態)
カンチレバー207は試料面に対して平行に取り付けられるべきであるが、カンチレバー207の取り付け位置が試料面に対して平行でなく傾いている場合がある。この場合、図6に示すように、試料211がその表面において上下方向の変位をするならば、CCD受光面上に投影される反射光233の移動方向が当該受光面上の画素の垂直軸から傾いていく。
【0045】
通常の4分割検出器ならばこのような現象はねじれによるものであると判断できるが、この場合には、ねじれでなくカンチレバー207そのものが傾いて取付けられていることによるものと考えられる。したがって、本来の上下移動する境界の軸を求め、基本の境界軸を変換する必要がある。本実施形態では、基準段差サンプルで校正測定を行い、段差面に対してカンチレバー207を上下動させたときに、CCD受光面で受光されるレーザ光400の明るさ中心402,403,404の軌跡を追い、その直線の動き、すなわち軌跡を新たな境界の軸とする(図7参照)。そのときのずれ角を他の軸にも適用し、補正した後のX,Y軸を基準に測定を行う。これにより、カンチレバー取り付けの誤差も補正可能となり、測定精度が向上する。
【0046】
以上の手法は、CCD面上を2分割で処理する場合も、適応可能である。また、これらの処理は、ハードウェアでも、ソフトウェアどちらでも実現可能である。これらの処理は、ラスタスキャンの画像に限らず、各種のレーザ走査に適用でき、また走査速度、走査サイズ等に制限はない。また、光検出器としてCCDを用いたが、フォトダイオードアレー、CMD等、光電変換が効率よくできれば他のセンサであってもよい。
【0047】
上記した実施形態によれば、エリアセンサとしてCCDを用い、その受光面でレーザ光を受光するようにしたので、微細な位置合わせを不要とし簡単かつ短時間で測定の準備を行うことができるだけでなく、その処理方法にも多様性を持たせることが可能になる。さらに、輝度の中心位置を割り出し、かつビーム周辺に乗る不要なノイズを信号処理によってカットすることで、測定精度を向上させることができる。
【0048】
また、ガウスビーム形状だけでなく、楕円形状であっても受光面を分割できるので、各種レーザへの適用範囲が広くなる。さらにレーザは発振の基本モードTEM00(ガウス)だけでなく、他の発振モードTEM01,TEM02,…,TEM10,TEM20であっても測定できるのでレーザ光源の種類や発振モードの選択に制限がない。
【0049】
また、カンチレバーの取り付け位置が傾いた状態でも、レーザ光の動く位置方向を割り出し、軸方向を補正することでさらに正確な測定ができる。
【0050】
【発明の効果】
本発明によれば、検出系のアライメント調整を無くして装置の小型化を実現した走査型プローブ顕微鏡が提供される。
【0051】
また、本発明によれば、信号処理に多様性をもたせることができ、ノイズ除去機能やカンチレバー取り付け時の傾きを補正する機能により測定精度を上げ、また各種のレーザ光源にも対応することができるので、使いやすさを向上した走査型プローブ顕微鏡が提供される。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る走査型プローブ顕微鏡の概略構成を示す図である。
【図2】CCD234の受光面に反射光233が入射した状態を示す図である。
【図3】反射光233のプロファイルと分割された検出エリアについて説明するための図である。
【図4】CCD234の受光面における時間T1での検出光(図4(a))と、時間T2での検出光(図4(b))を示す図である。
【図5】本発明の第2実施形態において、TEM11モードの受光面と検出領域とを示す図である。
【図6】本発明の第3実施形態において、カンチレバーが傾いたようすを示す図である。
【図7】検出面に受光されるレーザ光400の移動の軌跡を示す図である。
【図8】従来の典型的なAFMの全体構成を示す模式図である。
【図9】従来のAFMで用いられる検出器について説明するための図である。
【符号の説明】
207…カンチレバー、209…探針、211…試料、213…3次元アクチュエータ、221…レーザ発振器、231…入射光、233…反射光、234…CCD、255…表示部、260…集光レンズ、261…A/D変換器、263…Z走査駆動制御部、264…XY走査駆動制御部、270…CCD制御部、271…記憶部、275…CPU。
【発明の属する技術分野】
本発明は走査型プローブ顕微鏡に関するものである。
【0002】
【従来の技術】
走査型プローブ顕微鏡の1つに原子間力顕微鏡(AFM)がある。これは微細加工によって作られたカンチレバーを試料に接触(又は近接)させ、カンチレバーの先端に形成された探針と試料間に働く原子間力によるカンチレバーのたわみを検出することにより、試料表面の形状を測定するものである。カンチレバーのたわみを測定する手段としては、光テコ法、光干渉計、ピエゾ抵抗等があげられるが、最も簡便な手段である光テコ法が最も多く用いられている。
【0003】
以下に従来のAFM装置の典型的な構成例について説明する。図8は、従来の典型的なAFMの全体構成を示す模式図である。試料211は、3次元アクチュエータ(XYZスキャナ)213によって支持されており、X,Y,Z方向に走査される。3次元アクチュエータ213は、通常、圧電体を用いたピエゾアクチュエータ式のものが用いられる。Z走査駆動制御部263は試料211のZ方向の走査を制御する。XY走査駆動制御部264は試料211のX,Y方向の走査を制御する。
【0004】
カンチレバー207の先端部下面には、探針209が下方に突出するように形成されており試料211の表面に接触可能となっている。
【0005】
カンチレバー207の上方にはレーザ発振器221が配置されており、このレーザ発振器221からのレーザ光(入射光231)は集光レンズ260により焦点が合った状態でカンチレバー207上面に照射される。この入射光231はカンチレバー207上面で反射して反射光233となり、3次元アクチュエータ213の上方に設置されている2分割検出器(PD)235に照射される。この2分割検出器235は図9(a)に示すように上下(AB)2分割型(光センサが上下に2分割されている)の構成をとることにより、反射光233の入射位置を検出することができる。
【0006】
例えば、反射光233が2分割検出器235の上部に当たると、上側(A)センサの光量の方が下側(B)のセンサの光量よりも多くなる。また、反射光233が2分割検出器235の下部に当たると、下側(B)センサの光量の方が上側(A)のセンサの光量よりも多くなる。2分割検出器235で検出された信号は、A/D変換器261によりデジタル信号に変換され、データ処理部262にて表面形状のデータとして処理される。制御部275は、Z走査駆動制御部263及びXY走査駆動制御部264及び表示部255を制御する。
【0007】
次に、上記した図8のAFMの調整及び動作について説明する。まずレーザ発振器221からのレーザ光をカンチレバー207の表面上かつ先端部分に合わせる必要がある。ここでは、位置と焦点面が一致するように、レーザ発振器221を移動するとともに、集光レンズ260の位置を精密に調整する。
【0008】
次に、カンチレバー207からの反射光233を2分割検出器235の指定した中心位置に合わせる調整が必要である。2分割検出器235の和信号(A+B)が最大になるように入射光231の位置を調整し、次に差信号(A−B)が最小になるように2分割検出器235の位置を調整する。
【0009】
これらの調整が終わった後にカンチレバー207を試料211に接触させ、サンプルスキャンの場合は試料211をカンチレバー207に対して走査する。このとき2分割検出器235の差信号をモニタすることによって、試料211表面の形状を表示部255で画像化することができる。また、2分割検出器235の差信号が一定になるように、すなわちカンチレバー207と試料211間に働く力が一定になるようにフィードバックをかけながら、試料211表面の形状を画像化することも可能である。
【0010】
また、検出器は上記した2分割のものに限られず、4分割のものも存在する。図9(b)は、光センサが4分割された構成をもつ4分割検出器280の一例を示している。図9(b)に示す構成では、試料211と反対側へのカンチレバー207のたわみにより生じるレーザ光の変位方向の分割部をA,Cとし、他の部分をB,Dとする。各分割部分A,B,C,Dの出力をそれぞれa,b,c,dとすると、たわみ量は(a+c)−(b+d)で算出され、ねじれ量は(a+b)−(c+d)の絶対値として算出される。
【0011】
このようにして算出された、たわみ、ねじれの各々を設定値と比較し、このときの比較結果に基づいて制御を行うべく、Z方向の圧電体に制御電圧を印加する。すなわち、カンチレバー207のたわみは試料211表面の凹凸に応じて変化するため、たわみが設定値よりも大きくなるときは、試料211がカンチレバー207から離れる方向、即ち圧電体がZ方向へ縮むように制御電圧を印加する。逆に、たわみが設定値よりも小さくなるときは、試料211がカンチレバー207に近づく方向、即ち圧電体がZ方向へ延びるように制御電圧を印加する。
【0012】
また、カンチレバー207のねじれは、試料211に略垂直な形状部分が存在するときに、この部分とカンチレバー207の先端部に設けた探針209とが衝突することにより生じる。従って、このようなねじれが設定値よりも大きくなるときは、試料211がカンチレバー207から離れる方向に制御電圧を印加する。
【0013】
上記の方法により、たわみとねじれが一定値になるように制御しながら試料211を走査し、各々の制御電圧の結果を画像化することにより、試料表面の形状を把握することができる。
【0014】
【発明が解決しようとする課題】
従来の光テコ法では、光学的なアライメントを行うために、測定前に入射位置や検出器の位置を調整しなければならない。従って、多くの調整時間と手間が発生する。さらに、各部の調整箇所に調整可能な駆動機構を設けるなど、装置が複雑化する。また、レーザ光、カンチレバー、検出器が一定の位置関係になる必要があるので、光学系全体を動かして調整し、また試料を動かす等して調整する必要があり、装置構成が大型になるという欠点があった。
【0015】
特開平7−248333号公報においては、検出器にPDアレイを採用しアライメント調整を不要にすることを開示しているが、この構成では多数の検出器が必要になるため大型化してしまう。
【0016】
また、上記したような、検出器の中心部を決め4つの指定エリアごとにデータ加算する処理では、ガウスビームの積算結果のみを情報として得ることになるので、受光面のビーム形状が変形している場合はレーザ光の受光面周辺に載るノイズをも積算してしまうので測定精度が落ちてしまう。
【0017】
また、基本モード(TEM00)のレーザを前提として、検出器の中心位置と検出エリアを分けているので、レーザ光の形状が円でなく楕円であったり、基本モード以外、例えばTEM01,11といったその他の、レーザの発振モードに対応できない。
【0018】
また、カンチレバーが傾いた状態で取り付けられている場合には、検出する受光面の変位する方向が、受光面上の画素の分割軸方向と一致しなくなる可能性がある。これがねじれ量として検出され測定精度が低下してしまう。これらを光学系上で軸合わせをすると、平行、垂直と合わせ込むための光学調整が必要となってしまう。
【0019】
本発明はこのような課題に着目してなされたものであり、検出系のアライメント調整を無くして装置の小型化を実現可能な走査型プローブ顕微鏡を提供することにある。
【0020】
さらに本発明は、信号処理に多様性をもたせ、ノイズ除去機能やカンチレバー取り付け時の傾きを補正する機能を設けて測定精度を上げ、また各種のレーザ光源に対応できる機能を設けて、使いやすさを向上した走査型プローブ顕微鏡を提供することを目的とする。
【0021】
【課題を解決するための手段】
上記の目的を達成するために、第1の発明は、走査型プローブ顕微鏡であって、試料の形状を計測するための探針を備えるカンチレバーと、前記試料に関するX,Y,Z走査を制御する走査手段と、前記カンチレバーの照射に関連して取得される光ビームを検出して検出信号を出力するエリアセンサと、前記エリアセンサから出力された検出信号に対して所定の演算処理を行うデータ処理部と、前記データ処理部で処理されたデータを前記エリアセンサの受光面で得られる輝度データとして記憶する記憶部と、前記データ処理部で処理されたデータを表示する表示部とを具備する。
【0022】
また、第2の発明は、第1の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記記憶部に記憶された輝度データから最高輝度の位置を光量の中心位置として割り出し、この中心位置に基づいて検出エリアを複数に分割する。
【0023】
また、第3の発明は、第2の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記中心位置を割り出した後に、当該中心位置から離れた周辺の低輝度部分のデータをノイズとしてみなして前記検出信号から除外する処理を行うことにより検出エリアを決定する。
【0024】
また、第4の発明は、第2または第3の発明に係る走査型プローブ顕微鏡において、前記データ処理部は、前記走査手段による走査時における前記光ビームの移動軌跡に基づいて、前記検出エリアを分割する境界軸を補正する。
【0025】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を詳細に説明する。
【0026】
(第1実施形態)
以下、図面を参照して本発明の第1実施形態を詳細に説明する。図1は、本発明の一実施形態に係る走査型プローブ顕微鏡の概略構成を示す図である。図1において、レーザ発振器221からのレーザ光(入射光231)がカンチレバー207の上面に照射された後、反射して反射光233となるまでの構成は図8で説明した通りであるが、ここでの実施形態では、反射光233が3次元アクチュエータ231の上方に設置されているエリアセンサとしてのCCD234に入射される点が異なっている。
【0027】
ここでは、レーザ発振器221からのレーザ光(入射光231)をカンチレバー207の表面上かつ先端部分に合わせる必要が有る。ここでは位置と焦点面が一致するように、その反射光233をCCD234の指定した受光面に合わせることになる。本構成では、CCD234は、カンチレバー207からの反射光233を受光可能な位置に配置されているので、CCD234の受光面内のおおよそ中心に受光できれば良く、特に長時間、細かな調整を行う必要もなくなり、アライメントが不要となる。これによってカンチレバーの交換時に行われる作業を簡素化することができ、作業効率が向上する。
【0028】
尚、上記したCCD234は、通常の画像を撮像する際に用いられ、複数の微少なマトリックス形状の受光素子をアレー状に配置したものである。また、検出信号の走査にはフレームインターライン方式などがあるが、これは映像信号の処理に用いられるものなので、通常の検出器の処理とは異なり、CCD制御部270からの制御に従ってデータを任意時間蓄積するとともに所定のタイミングで読み出しを行うようにする。
【0029】
読み出された信号はA/D変換器261によりデジタル信号化され、記憶部271に蓄えられる。記憶部271のデータは受光したレーザ光の2次元輝度データを表すことになり、位置分解能はCCD234の画素サイズに依存することになる。以下、画素サイズを基本ピッチとして、レーザ光の輝度中心を算出する。
【0030】
図2は、CCD234の受光面に反射光233が入射した状態を示している。図3は、反射光233のプロファイルと分割された検出エリアについて説明するための図である。102はレーザ受光面、101は検出エリア、103はX断面のビームプロファイル、104はY断面のビームプロファイル、104はノイズ成分のカットに用いられるしきい値である。
【0031】
CCD234の受光面に入射した反射光233は、基本モードレーザが用いられた場合、そのビーム形状(ビームプロファイル103,105)は図3に示すようにほぼガウス型となる。ここでは、CCD234の受光面における受光輝度の中心位置100を割り出し、検出エリア101を4つの領域A,B,C,Dに分割する。ここでは、最高輝度の位置を中心位置100とし、CCD画素の垂直方向と水平方向をそれぞれX軸,Y軸の基本軸を検出エリア分割線X、YとしてA,B,C,Dの領域に分割する。
【0032】
この分割処理は、記憶部271に記憶されたCCD234の受光面での受光データをもとにCPU275により受光データを比較して割り出す。理想的には、中心位置100は4つの領域A,B,C,Dのそれぞれの明るさの積分値が等分になる位置とし、その位置に従って境界を分ける。
【0033】
しかしながら、ビーム形状(ビームプロファイル103,105)が理想的なガウス型でない場合はこの限りでない。実際にガウス型から崩れたビーム形状が多数存在したりする。実際、レーザ光のビーム形状が楕円形状のものも存在する。これを円形に修正するためにはシリンドリカルレンズ等を用いればよいが、これによって光学系が複雑になる。ビームプロファイル103,105が、ガウス型から崩れていても、最高輝度の部分がビーム中心となりレーザ光の中心として変位する。従って最高輝度を中心位置にすることが測定精度の向上に必要である。
【0034】
本実施形態では、ビーム形状が楕円であっても、その光量中心を求めて検出エリアを4分割することが可能である。その為、検出値は必ずしも4つの領域A,B,C,Dが等領域とはならないが、たわみ量(a+c)−(b+d)と、ねじれ量(a+b)−(c+d)はカンチレバー207の停止位置(無変位)でそれぞれある初期値を持たせ、演算処理を行う。
【0035】
検出エリア101の中心位置100を決めた後はノイズ除去領域の決定を行う。ガウスビームの周辺の低輝度部分はほとんどがノイズ成分である為に、周辺の低輝度部分におけるノイズ成分を検出信号から除外する処理を行う。通常使われる(a+c)−(b+d)の信号処理では、各領域に均等に乗るノイズ成分が(a+c)信号と(b+d)信号との差分でカットできるが、形状が対称でないビームに関してはノイズ成分が偏ってしまい完全なノイズ除去とならない。
【0036】
しかし本実施形態では、例えば受光光量の95%の周辺輝度部分を不要なノイズとしてカット処理し、又は理想的なガウスビーム形状としてその輝度の95%の部分を検出対象とする等といった処理を行い各領域毎にノイズの除去を行う。これにより、形状が対称でないビーム形状の場合のノイズも除去でき、本来の信号のみの演算が可能である。尚、これはCCD等の性能により、ノイズカットしきい値104を任意に設定可能である。これらの一連の処理もCPU275により算出して行う。
【0037】
以上の処理により検出エリア101が決定されたならば、CPU275により対象となるデータを記憶部271から読み出して加算を行う。例えば、A領域の加算は、CCD234の画素の(H,V)=(100,150)、(101,151)、の位置といったように、画素を指定してデータを全て加算する。尚、(H,V)はCCD234上の画素位置に対応している。この場合、加算対象外のビーム周辺のノイズ部分はもちろん加算されない。このようにして、CPU275により4つの領域A,B,C,Dの加算結果を算出してたわみ量、ねじれ量を決定する。以上の方法により、試料211上の一点での変位に関するデータを取得することができる。
【0038】
実際の試料211面のXY走査では、XY走査駆動制御部264を移動させ、試料211の表面上をカンチレバー207で走査する。XY走査駆動制御部264が次の検出位置に移動したとき、カンチレバー207がたわむと、CCD234の受光領域も変化することになる。
【0039】
次に、上述した方法と同様の方法により中心位置を割り出し、検出エリアを決め、初めに設定された境界を境に、A,B,C,Dの各領域でそれぞれ受光した光量に対して加算を行ってたわみ量及びねじれ量を求める。
【0040】
図4(a)、(b)は、CCD234の受光面における時間T1での検出光(図4(a))と、時間T2での検出光(図4(b))を示す。101は検出エリア、102はレーザ受光面、100は中心位置である。図4(a)、(b)からわかるように、時間T2に移動したときには各領域A,B,C,Dの値が時間T1に比べて変化しており、これがT1とT2間の変位量として記録される。この走査を一定速度で行うことで試料211の表面形状を求め、表示部255に当該形状を表示させて観察することができる。
【0041】
尚、上述した実施形態では、光量中心の算出、加算領域の算出は、記憶部271とCPU275を用いることにより行ったが、これに限定されず専用のデータ処理部を設けてもよく、特にCPUの処理範囲は限定しない。
【0042】
(第2実施形態)
通常では単一縦モード(基本モードTEM00)のレーザが使用されるが、高次のモードのレーザを使用した場合にはビーム形状が分散してCCD234の受光面が異なってくる。例えば、マルチモードレーザにおいて光量が図5の301〜304のごとく分散分布している場合には、各受光ビームの光量の中心を求めるようにする。TEM11モードの場合、図5の4つの受光ビーム301〜304の各々の中心位置を割り出し、その変位を第1実施形態と同様の方法により求める。さらに、4つの受光ビーム301〜304についての演算結果の平均値を最終結果とする。
【0043】
このような方法を適用することで、レーザ発振のモードが基本モードTEM00(ガウス)の場合だけでなく、他の発振モード(例えばTEM11モード)のレーザにおいてもたわみ量やねじれ量を測定可能となり、レーザ光源の選択の自由度が大きい。
【0044】
(第3実施形態)
カンチレバー207は試料面に対して平行に取り付けられるべきであるが、カンチレバー207の取り付け位置が試料面に対して平行でなく傾いている場合がある。この場合、図6に示すように、試料211がその表面において上下方向の変位をするならば、CCD受光面上に投影される反射光233の移動方向が当該受光面上の画素の垂直軸から傾いていく。
【0045】
通常の4分割検出器ならばこのような現象はねじれによるものであると判断できるが、この場合には、ねじれでなくカンチレバー207そのものが傾いて取付けられていることによるものと考えられる。したがって、本来の上下移動する境界の軸を求め、基本の境界軸を変換する必要がある。本実施形態では、基準段差サンプルで校正測定を行い、段差面に対してカンチレバー207を上下動させたときに、CCD受光面で受光されるレーザ光400の明るさ中心402,403,404の軌跡を追い、その直線の動き、すなわち軌跡を新たな境界の軸とする(図7参照)。そのときのずれ角を他の軸にも適用し、補正した後のX,Y軸を基準に測定を行う。これにより、カンチレバー取り付けの誤差も補正可能となり、測定精度が向上する。
【0046】
以上の手法は、CCD面上を2分割で処理する場合も、適応可能である。また、これらの処理は、ハードウェアでも、ソフトウェアどちらでも実現可能である。これらの処理は、ラスタスキャンの画像に限らず、各種のレーザ走査に適用でき、また走査速度、走査サイズ等に制限はない。また、光検出器としてCCDを用いたが、フォトダイオードアレー、CMD等、光電変換が効率よくできれば他のセンサであってもよい。
【0047】
上記した実施形態によれば、エリアセンサとしてCCDを用い、その受光面でレーザ光を受光するようにしたので、微細な位置合わせを不要とし簡単かつ短時間で測定の準備を行うことができるだけでなく、その処理方法にも多様性を持たせることが可能になる。さらに、輝度の中心位置を割り出し、かつビーム周辺に乗る不要なノイズを信号処理によってカットすることで、測定精度を向上させることができる。
【0048】
また、ガウスビーム形状だけでなく、楕円形状であっても受光面を分割できるので、各種レーザへの適用範囲が広くなる。さらにレーザは発振の基本モードTEM00(ガウス)だけでなく、他の発振モードTEM01,TEM02,…,TEM10,TEM20であっても測定できるのでレーザ光源の種類や発振モードの選択に制限がない。
【0049】
また、カンチレバーの取り付け位置が傾いた状態でも、レーザ光の動く位置方向を割り出し、軸方向を補正することでさらに正確な測定ができる。
【0050】
【発明の効果】
本発明によれば、検出系のアライメント調整を無くして装置の小型化を実現した走査型プローブ顕微鏡が提供される。
【0051】
また、本発明によれば、信号処理に多様性をもたせることができ、ノイズ除去機能やカンチレバー取り付け時の傾きを補正する機能により測定精度を上げ、また各種のレーザ光源にも対応することができるので、使いやすさを向上した走査型プローブ顕微鏡が提供される。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る走査型プローブ顕微鏡の概略構成を示す図である。
【図2】CCD234の受光面に反射光233が入射した状態を示す図である。
【図3】反射光233のプロファイルと分割された検出エリアについて説明するための図である。
【図4】CCD234の受光面における時間T1での検出光(図4(a))と、時間T2での検出光(図4(b))を示す図である。
【図5】本発明の第2実施形態において、TEM11モードの受光面と検出領域とを示す図である。
【図6】本発明の第3実施形態において、カンチレバーが傾いたようすを示す図である。
【図7】検出面に受光されるレーザ光400の移動の軌跡を示す図である。
【図8】従来の典型的なAFMの全体構成を示す模式図である。
【図9】従来のAFMで用いられる検出器について説明するための図である。
【符号の説明】
207…カンチレバー、209…探針、211…試料、213…3次元アクチュエータ、221…レーザ発振器、231…入射光、233…反射光、234…CCD、255…表示部、260…集光レンズ、261…A/D変換器、263…Z走査駆動制御部、264…XY走査駆動制御部、270…CCD制御部、271…記憶部、275…CPU。
Claims (4)
- 走査型プローブ顕微鏡であって、
試料の形状を計測するための探針を備えるカンチレバーと、
前記試料に関するX,Y,Z走査を制御する走査手段と、
前記カンチレバーの照射に関連して取得される光ビームを検出して検出信号を出力するエリアセンサと、
前記エリアセンサから出力された検出信号に対して所定の演算処理を行うデータ処理部と、
前記データ処理部で処理されたデータを前記エリアセンサの受光面で得られる輝度データとして記憶する記憶部と、
前記データ処理部で処理されたデータを表示する表示部と、
を具備することを特徴とする走査型プローブ顕微鏡。 - 前記データ処理部は、前記記憶部に記憶された輝度データから最高輝度の位置を光量の中心位置として割り出し、この中心位置に基づいて検出エリアを複数に分割することを特徴とする請求項1記載の走査型プローブ顕微鏡。
- 前記データ処理部は、前記中心位置を割り出した後に、当該中心位置から離れた周辺の低輝度部分のデータをノイズとしてみなして前記検出信号から除外する処理を行うことにより検出エリアを決定することを特徴とする請求項2記載の走査型プローブ顕微鏡。
- 前記データ処理部は、前記走査手段による走査時における前記光ビームの移動軌跡に基づいて、前記検出エリアを分割する境界軸を補正することを特徴とする請求項2または3記載の走査型プローブ顕微鏡。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003070612A JP2004279195A (ja) | 2003-03-14 | 2003-03-14 | 走査型プローブ顕微鏡 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003070612A JP2004279195A (ja) | 2003-03-14 | 2003-03-14 | 走査型プローブ顕微鏡 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004279195A true JP2004279195A (ja) | 2004-10-07 |
Family
ID=33287315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003070612A Withdrawn JP2004279195A (ja) | 2003-03-14 | 2003-03-14 | 走査型プローブ顕微鏡 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004279195A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150110953A (ko) * | 2014-03-21 | 2015-10-05 | 한국표준과학연구원 | 검출기의 좌표보정이 가능한 탐침현미경, 검출기의 좌표보정방법, 탐침현미경 초기화 방법 및 기록매체 |
CN109406453A (zh) * | 2018-09-11 | 2019-03-01 | 江苏大学 | 一种改进的z扫描测量方法 |
-
2003
- 2003-03-14 JP JP2003070612A patent/JP2004279195A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150110953A (ko) * | 2014-03-21 | 2015-10-05 | 한국표준과학연구원 | 검출기의 좌표보정이 가능한 탐침현미경, 검출기의 좌표보정방법, 탐침현미경 초기화 방법 및 기록매체 |
KR101587342B1 (ko) * | 2014-03-21 | 2016-01-21 | 한국표준과학연구원 | 검출기의 좌표보정이 가능한 탐침현미경, 검출기의 좌표보정방법, 탐침현미경 초기화 방법 및 기록매체 |
CN109406453A (zh) * | 2018-09-11 | 2019-03-01 | 江苏大学 | 一种改进的z扫描测量方法 |
CN109406453B (zh) * | 2018-09-11 | 2021-04-20 | 江苏大学 | 一种自动确定最优入射光强的z扫描测量方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6825454B2 (en) | Automatic focusing device for an optical appliance | |
US4707610A (en) | Method and apparatus for measuring surface profiles | |
JPS6314426A (ja) | 表面輪郭決定装置 | |
JP4115624B2 (ja) | 3次元形状測定装置 | |
JP2010101959A (ja) | 顕微鏡装置 | |
KR20130102465A (ko) | 높이 측정 방법 및 높이 측정 장치 | |
US6697163B2 (en) | Shape measuring apparatus | |
US20110025823A1 (en) | Three-dimensional measuring apparatus | |
JP3509088B2 (ja) | 3次元形状計測用光学装置 | |
JP2005070225A (ja) | 表面画像投影装置及び表面画像投影方法 | |
JPH10318718A (ja) | 光学式高さ検出装置 | |
US20070159666A1 (en) | Compensation apparatus for image scan | |
JP4603177B2 (ja) | 走査型レーザ顕微鏡 | |
JP2004279195A (ja) | 走査型プローブ顕微鏡 | |
JP4382315B2 (ja) | ウェーハバンプの外観検査方法及びウェーハバンプの外観検査装置 | |
JP2000223057A (ja) | 電子プローブマイクロアナライザー | |
US7330312B2 (en) | Image blur compensation device | |
JP4787012B2 (ja) | 断面形状測定装置及び断面形状測定方法 | |
US6812479B2 (en) | Sample positioning method for surface optical diagnostics using video imaging | |
JP2003014611A (ja) | 走査型プローブ顕微鏡 | |
JP4819991B2 (ja) | 走査型光学顕微鏡の倍率調整方法及びその装置 | |
JP2003057553A (ja) | 共焦点走査型顕微鏡 | |
JP3859245B2 (ja) | チャートの中心位置出し方法 | |
JP4792239B2 (ja) | 走査型共焦点レーザ顕微鏡 | |
JP3460872B2 (ja) | 位置検出方法及び位置決め装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060606 |