JP2004279092A - 測距装置 - Google Patents

測距装置 Download PDF

Info

Publication number
JP2004279092A
JP2004279092A JP2003067981A JP2003067981A JP2004279092A JP 2004279092 A JP2004279092 A JP 2004279092A JP 2003067981 A JP2003067981 A JP 2003067981A JP 2003067981 A JP2003067981 A JP 2003067981A JP 2004279092 A JP2004279092 A JP 2004279092A
Authority
JP
Japan
Prior art keywords
transmission
light
optical system
distance measuring
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003067981A
Other languages
English (en)
Inventor
Satoru Fukumoto
哲 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Nikon Trimble Co Ltd
Original Assignee
Nikon Corp
Nikon Trimble Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nikon Trimble Co Ltd filed Critical Nikon Corp
Priority to JP2003067981A priority Critical patent/JP2004279092A/ja
Publication of JP2004279092A publication Critical patent/JP2004279092A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】レーザーダイオード光源から送信光学系への、送信光量の損失を小さく抑えることができると共に、光軸調整が容易な送信リレー光学系を持つ測距装置を得る。
【解決手段】光束変更レンズ3は一体成型からなるガリレオ型のアフォーカル系を構成し、レーザダイオードの発光部1の長手方向において無屈折力である。また、光束変更レンズ3は発光部1の短手方向において、ビーム広がり角を小さくする作用を持つ。このように、送信リレー光学系2はレーザダイオードの発光部1の長手方向と短手方向とで異なる倍率を有する。したがって、発光部像の短手方向寸法と長手方向寸法をファイバ径よりも小さいか、或いはほぼ同じにすれば、レーザダイオードから供給された送信レーザ光が送信ファイバ4または対物光学系においてけられる現象を有効に抑えることができる。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、測距装置に関し、特にレーザダイオードのような半導体レーザからのパルスレーザ光を利用して目標物までの距離を測定するタイプの測距装置に関する。
【0002】
【従来の技術】
一般に、パルスレーザダイオードの発光部は、数μm×数十〜数百μmの矩形形状を有する。そして、発光部の長手方向におけるビーム広がり角(全角)は10°程度であり、発光部の短手方向におけるビーム広がり角(全角)は30°程度である。このように、縦横比の大きく異なる矩形形状と、直交する軸で大きく異なるビーム広がり角を持つという特徴を併せ持っている。
【0003】
図4は、従来の測距装置の構成の一部を概略的に示す斜視図である。従来のこの種の測距装置では、レーザダイオードの発光部1からのパルスレーザ光を送信リレー光学系2を介して送信ファイバ4の入射端に導く。そして、送信ファイバ4の射出端を二次光源とし、この二次光源からの光を送信光学系(不図示)を介して目標物に照射する。
【0004】
送信リレー光学系2は、例えば一対の回転対称非球面レンズ2aおよび2bから構成されている。そして、この送信リレー光学系2の作用により、送信ファイバ4の入射端には、レーザダイオードの発光部1の等倍像が形成される。一般に、上述のタイプの測距装置では、レーザダイオードの短手方向の開口数が送信光学系の開口数よりもかなり大きい。このため、等倍の送信リレー光学系を用いた場合には、送信光学系において入射光束の一部がけられてしまう。
【0005】
一方、送信ファイバ4への送信効率を高めるために、送信リレー光学系2に2倍弱程度の倍率を付与することもある。この場合、送信ファイバの入射端に形成される発光部像の長手方向寸法がファイバ径(直径)よりも大きくなり、送信ファイバにおいて入射光束の一部がけられてしまう。すなわち、いずれの場合にも送信光量の損失が起こる。その結果、送信光量が不足するか、あるいは送信光量の不足を回避するために出力の高いレーザダイオードを用いなければならないという不都合があった。この問題を解決するために、シリンドリカルレンズを利用した方法が提示されている(特許文献1)。特許文献1に記載の送信リレー光学系は、図5に示すように、回転対称非球面レンズ2aおよび2b間に二つの分離したシリンドリカルレンズ3aおよび3bを有する。
【0006】
【特許文献1】
特開平10−332816号公報
【0007】
【発明が解決しようとする課題】
特許文献1の装置では、二つの分離したシリンドリカルレンズを採用しているために、光軸調整が煩わしく、また部品点数が増え、コストもかかるという問題点があった。
【0008】
本発明は、レーザーダイオード光源から送信光学系への、送信光量の損失を小さく抑えることができると共に、光軸調整が容易な送信リレー光学系を持つ測距装置を提供するものである。
【0009】
【課題を解決するための手段】
請求項1に記載の発明は、目標物に光を照射するための送光系と、該送光系によって光照射された目標物からの反射光を受光するための受光系とを備えた測距装置に適用される。そして、送光系は、送信レーザ光を供給するための半導体レーザ光源と、該半導体レーザ光源の発光部の像を所定位置に形成するための送信リレー光学系と、所定位置の近傍に位置決めされた一端を介して入射した送信レーザ光を他端まで伝播するための送信ファイバと、該送信ファイバの他端から射出された送信レーザ光を目標物へ送光するための送信光学系とを有し、送信リレー光学系は、一体成型からなる光束変更レンズを有し、該光束変更レンズは、入射面及び射出面の各面において、直交する二つの軸に対し、異なる曲率半径を持つ事を特徴とする。
請求項2に記載の発明は、請求項1に記載の測距装置において、光束変更レンズの各レンズ面は、非球面からなることを特徴とする。
請求項3に記載の発明は、請求項2に記載の測距装置において、光束変更レンズは、送信リレー光学系の光軸を含む軸に第一の倍率を持ち、第一の倍率を持つ軸に直交する軸に第二の倍率を持つことを特徴とする。
請求項4に記載の発明は、請求項3に記載の測距装置において、光束変更レンズの第二の倍率を有する軸は、屈折力を持たないことを特徴とする。
請求項5に記載の発明は、請求項1〜4のいずれかに記載の測距装置において、光束変更レンズの送信レーザ光の入射面は正の屈折力を有し、射出面は負の屈折力を有していることを特徴とする。
請求項6に記載の発明は、請求項1〜5のいずれかに記載の測距装置において、送信リレー光学系は、第一の回転対称レンズと、光束変更レンズと、第二の回転対称レンズとからなることを特徴とする。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。図1は、本発明の実施例にかかる測距装置の全体構成を概略的に示す図である。まず、測距に使用される光学系について説明する。図1の測距装置において、レーザダイオード等の半導体レーザ光源5から射出されたパルスレーザ光、すなわち送信レーザ光は、送信リレー光学系2を介して、送信ファイバ4の入射端の近傍にレーザダイオード5の発光部の像を形成する。送信ファイバ4の入射端に導かれた送信レーザ光は、送信ファイバ4を伝播した後、その射出端に二次光源を形成する。
【0011】
送信ファイバ4の射出端から射出された送信レーザ光(図中白抜き部分)は、分割プリズム14で反射された後、ダイクロイックプリズム6に入射する。ダイクロイックプリズム6の分割面6aに形成されたダイクロイック膜は、送信レーザ光を反射し、且つ可視光を透過する特性を有する。したがって、ダイクロイックプリズム6に入射した送信レーザ光は、分割面6aで反射され、ダイクロイックプリズム6から射出される。
【0012】
次に、送信レーザ光は、合焦レンズ7bと対物レンズ7aとからなる対物光学系7により、目標物(不図示)に照射される。なお、合焦レンズ7bは、対物光学系7の光軸AXに沿って移動可能に構成されている。目標物からの反射光すなわち受信レーザ光(図中斜線部分)は、対物光学系7を介してダイクロイックプリズム6に入射する。ダイクロイックプリズム6の分割面6aで反射された受信レーザ光は、分割プリズム14を透過した後、受信ファイバ8の入射端上に集光する。こうして、受信ファイバ8の入射端に導かれた受信レーザ光は、受信ファイバ8を伝播した後、その射出端から射出され、受信リレー光学系9を介して、光検出器10に達する。光検出器10からの出力信号は、図示を省略した信号処理回路に供給される。
【0013】
次に、目標物を視準する光学系について説明する。目標物からの反射光のうちダイクロイックプリズム6の分割面6aを透過した可視光は、正立プリズム(ポロプリズム)11を介して、焦点板12上に目標物の像として形成され、接眼レンズ13によって拡大観察される。
【0014】
本実施例では、送信ファイバ4の射出端と焦点板12とは、対物光学系7によってほぼ共役に位置決めされている。したがって、合焦レンズ7bを光軸AXに沿って移動させながら接眼レンズ13を介して目標物を合焦状態で視準した状態において、送信レーザ光は目標物上に集光する。
【0015】
また、この様な目標物上に送信レーザ光を集光する光学系では、送信ファイバ径の発光部の大きさがそのまま目標物上での送信レーザ光の光束径として反映されるので、目標物上での送信レーザ光の光束径を大きくしたくない場合は、送信ファイバ径を大きくすることはできない。
【0016】
本実施例では、接眼レンズにより目標物の視準を行っているが、接眼レンズを使用せずに、焦点板位置にCCD等を採用すれば、モニタ上での視準を行うことも可能である。
【0017】
図2を用いて本実施例の送信リレー光学系を説明する。送信リレー光学系2は、レーザダイオード側から順に、回転対称非球面レンズ2aと、光束変更レンズ3と、回転対称非球面レンズ2bとから構成されている。ここで、光束変更レンズ3は一体成型からなるガリレオ型のアフォーカル系を構成しており、レーザダイオードの発光部1の長手方向軸線と送信リレー光学系2の光軸とを含む面において、すなわち発光部1の長手方向において無屈折力である。また、光束変更レンズ3は発光部1の短手方向軸線と光軸とを含む面において、すなわち発光部1の短手方向において、ビーム広がり角を小さくする作用を持つ。なお、送信リレー光学系2の光軸AXが折り曲げられた場合にも、発光部1の長手方向および短手方向は展開光路図において上述のように定義されるものとする。
【0018】
こうして、本実施例では、送信リレー光学系2は、レーザダイオードの発光部1の長手方向と短手方向とで異なる倍率を有する。したがって、送信リレー光学系2の作用により、たとえば送信ファイバ4への入射レーザ光の長手方向における開口数を変化させる事なく、短手方向の開口数を送信光学系である対物光学系7の開口数に応じて1/n(n>1)に小さくすることができる。
【0019】
この場合、送信ファイバ4の入射端に形成される発光部像の長手方向寸法は発光部1の長手方向寸法と等しく、発光部1の短手方向寸法は発光部1の短手方向寸法のn倍で大きくなる。したがって、発光部像の短手方向寸法と長手方向寸法をファイバ径よりも小さいか、或いはほぼ同じにすれば、レーザダイオード5から供給された送信レーザ光が送信ファイバ4または対物光学系7においてけられる現象を有効に抑えることができ、送信光量の損失を実質的に回避することができる。
【0020】
また、一般的な測量装置においては、限られたスペースに光学系を配置しなければならず、光学部品の小型化は非常に重要である。そこで、本発明では、光束変更レンズ3を一体成型とし、更に両面に非球面を採用することでレンズの小型化を達成している。
【0021】
一般的に、レンズ系の小型化を行うと、屈折力が大きくなり、収差の補正は難しくなる。本実施例のようなガリレオ型のアフォーカル系を構成する場合も、全長を短くするなどの小型化を図ろうとすると、凸面、凹面のそれぞれの屈折力を大きくしなければならず、その結果、ファイバ端での結像性能などに影響する収差が悪化し、送信レーザ光を光量損失なく送信ファイバに入射させる事ができなくなる。そこで、本発明では、非球面を採用することで、小型化による収差の悪化を抑え、更に一体成型にすることで部品点数の削減、光軸の調整の簡略化も達成した。
【0022】
以下、本実施例の測距装置の送信光量損失について検証する。レーザダイオード5の発光部1は、2μm×90μmの矩形形状を有するものとする。また、レーザダイオード5の長手方向におけるレーザ広がり角(全角)θ1は10°(開口数=0.087)であり、短手方向におけるレーザ広がり角(全角)θ2は30°(開口数=0.026)であるとする。また、送信光学系である対物レンズ7の開口数が0.08、送信ファイバの直径は100μmとする。
【0023】
この場合、本実施例では、回転対称非球面レンズ2a、2bを等倍でリレーし、回転対称非球面レンズ2a、2bの間のアフォーカル部分に、長手方向の倍率を1倍、短手方向の倍率を3倍とする光束変更レンズ3を配置することで対応できる。これにより、長手方向のレーザ広がり角、及び寸法には変化を与えず、短手方向のレーザ広がり角を1/3(10°、開口数=0.087)にし、寸法は3倍(6μm)とする事ができる。こうすることで、今まで光量損失となっていた短手方向の送信レーザ光を有効に活用する事ができる。
【0024】
具体的な例として、本実施例と、分離型シリンドリカルレンズを使用したタイプとの比較を行う。上記と同じように、レーザダイオード5の発光部1を、2μm×90μmの矩形形状を有するものとし、レーザダイオード5の長手方向におけるレーザ広がり角(全角)θ1は10°(開口数=0.087)であり、短手方向におけるレーザ広がり角(全角)θ2は30°(開口数=0.026)であるとする。また、送信光学系である対物レンズ7の開口数が0.08、送信ファイバの直径は100μmとする。
【0025】
そこでまず、3倍の倍率を持つ分離型シリンドリカルレンズの構成を持つ送信リレー光学系において、送信ファイバ端面に結像されるレーザダイオードの像の崩れ(スポット径)を、像の周辺部で5μm程度に抑える場合の光学系を考える。この場合、等倍でリレーする回転対称非球面レンズ2a、2bによる像の崩れはほぼ無いとし、光束変更レンズとして平凸、平凹球面シリンドリカルレンズを使用すると、正シリンドリカルレンズの焦点距離を+21mm、負シリンドリカルレンズの焦点距離を−7mmとすると達成できる。この場合、正シリンドリカルレンズの入射面から、負シリンドリカルレンズの射出面までの実質的な間隔は、約15mm程度になる。
【0026】
次に、本発明の実施例について検証する。同じように送信ファイバ端でのレーザダイオードの像の周辺部での崩れ(スポット径)を5μm程度にするように設計した、非球面採用の一体成型の光束変更レンズの場合を考えてみる。本来は一体成型のレンズであるが、正シリンドリカルレンズと負シリンドリカルレンズに分割した場合の焦点距離にすると、正シリンドリカルレンズは+6mm、負シリンドリカルレンズは−2mmまでにする事ができ、一体型とさせた場合の全長(中心厚)は6mm程度にまで小型にする事が可能となっている。
【0027】
また、本実施例では樹脂による一体成型レンズを採用したが、光学ガラスによる一体成型レンズでも構わない。
【0028】
図3は、本発明による実施例のレンズデータを示す図である。第1面は光束変更レンズ3の凸面に、第2面は光束変更レンズ3の凹面に、それぞれ対応する。これらの面は、非球面式に各面のR、K、C…の各値を代入することによって求められる。
【0029】
以上の説明では、3倍の作用を与える光束変更レンズを実施例として挙げたが、この倍率はレーザダイオードや、対物レンズの開口数等の仕様により、任意の倍率に変更することが出来る。
【0030】
また、回転対称非球面レンズによるリレー倍率も、任意の値にする事ができるので、送信レーザ光を有効に活用できるように、その都度最適な構成にすることが可能である。
【0031】
さらにまた、本実施例ではガリレオ型のアフォーカル光学系を採用したが、ケプラー型を採用しても構わない。しかしながら、コンパクトという点では、ガリレオ型の方が有利といえる。
【0032】
上述の実施例では、対物光学系7が合焦レンズを含んだ合焦式測距装置を例にとって本発明を説明しているが、ほぼ平行なレーザ光を目標物に照射するように構成することもできる。この場合、合焦レンズは対物光学系には含めず、例えば視準系のダイクロイックプリズムと焦点板との間の光路中に配置される。また、上述の実施例では、送信光学系と受信光学系とが共通の対物光学系7で構成されているが、送信光学系と受信光学系とを別の光学系で構成することもできる。
【0033】
本発明による測距装置では、送信リレー光学系が、半導体レーザ光源の発光部の長手方向と短手方向とで異なる倍率を有する。したがって、この送信リレー光学系の作用により、たとえば送信ファイバへの入射レーザ光の長手方向における開口数を変化させることなく、送信ファイバへの入射レーザ光の短手方向における開口数を送信光学系の開口数に応じて小さくすることができる。この場合、送信ファイバの入射端に形成される発光部像の長手方向寸法は発光部の長手方向寸法と等しく、発光部像の短手方向寸法は発光部の短手方向寸法よりも大きくなる。そして、発光部像の短手方向寸法も長手方向寸法もファイバ径よりも小さいか少なくとも同じになる。その結果、半導体レーザ光源から供給された送信レーザ光が送信ファイバまたは送信光学系において、けられる現象を有効に抑えることができ、送信光量の損失を実質的に回避することができる。これにより、光量増加による測距距離の延長化、或いは光量が多すぎる場合には半導体レーザ光源の電圧を下げることで、半導体レーザの寿命を延ばすことにもなる。
【0034】
さらに、光束変更レンズを、非球面を採用した一体成型のレンズとする事で、送信リレー光学系の小型化を達成すると共に、調整の簡略化を実現している。また、結像性能を良好に保ったまま光束変更レンズを小型化にする事ができたので、測距装置全体の小型化も達成している。
【0035】
特許請求の範囲における各構成要素と、発明の実施の形態における各構成要素との対応について説明する。送光系は、たとえば、レーザダイオード5、送信リレー光学系2、送信ファイバ4、分割プリズム14、ダイクロイックプリズム6、および対物光学系7によって構成される。受光系は、たとえば、対物光学系7、ダイクロイックプリズム6、分割プリズム14、受信ファイバ8、受信リレー光学系9および光検出器10によって構成される。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【0036】
【発明の効果】
本発明によれば、半導体レーザ光源の発光部の長手方向と短手方向とで異なる倍率を有する送信リレー光学系の作用により、送信光学系および送信ファイバにおけるケラレを実質的に回避することができる。その結果、送信光量の損失を抑えることができる効率的な測距装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例にかかる測距装置の全体構成を概略的に示す図。
【図2】本発明の送信リレー光学系を示す図。
【図3】レンズデータを示す図。
【図4】従来の送信リレー光学系を示す図。
【図5】従来の分離型の送信リレー光学系を示す図。
【符号の説明】
1…レーザダイオードの発光部
2…送信リレー光学系
3…光束変更レンズ
4…送信ファイバ
5…レーザダイオード(半導体レーザ光源)
6…ダイクロイックプリズム
7…対物光学系(送信光学系および受信光学系)
8…受信ファイバ
9…受信リレー光学系
10…光検出器
11…ポロプリズム
12…焦点板
13…接眼レンズ
14…分割プリズム

Claims (6)

  1. 目標物に光を照射するための送光系と、該送光系によって光照射された前記目標物からの反射光を受光するための受光系とを備えた測距装置において、
    前記送光系は、送信レーザ光を供給するための半導体レーザ光源と、該半導体レーザ光源の発光部の像を所定位置に形成するための送信リレー光学系と、前記所定位置の近傍に位置決めされた一端を介して入射した送信レーザ光を他端まで伝播するための送信ファイバと、該送信ファイバの他端から射出された送信レーザ光を前記目標物へ送光するための送信光学系とを有し、
    前記送信リレー光学系は、一体成型からなる光束変更レンズを有し、該光束変更レンズは、入射面及び射出面の各面において、直交する二つの軸に対し、異なる曲率半径を持つ事を特徴とする測距装置。
  2. 請求項1に記載の測距装置において、
    前記光束変更レンズの各レンズ面は、非球面からなることを特徴とする測距装置。
  3. 請求項2に記載の測距装置において、
    前記光束変更レンズは、前記送信リレー光学系の光軸を含む軸に第一の倍率を持ち、前記第一の倍率を持つ軸に直交する軸に第二の倍率を持つことを特徴とする測距装置。
  4. 請求項3に記載の測距装置において、
    前記光束変更レンズの第二の倍率を有する軸は、屈折力を持たないことを特徴とする測距装置。
  5. 請求項1〜4のいずれかに記載の測距装置において、
    前記光束変更レンズの送信レーザ光の入射面は正の屈折力を有し、射出面は負の屈折力を有していることを特徴とする測距装置。
  6. 請求項1〜5のいずれかに記載の測距装置において、
    前記送信リレー光学系は、第一の回転対称レンズと、前記光束変更レンズと、第二の回転対称レンズとからなることを特徴とする測距装置。
JP2003067981A 2003-03-13 2003-03-13 測距装置 Pending JP2004279092A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003067981A JP2004279092A (ja) 2003-03-13 2003-03-13 測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003067981A JP2004279092A (ja) 2003-03-13 2003-03-13 測距装置

Publications (1)

Publication Number Publication Date
JP2004279092A true JP2004279092A (ja) 2004-10-07

Family

ID=33285432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003067981A Pending JP2004279092A (ja) 2003-03-13 2003-03-13 測距装置

Country Status (1)

Country Link
JP (1) JP2004279092A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877353A (zh) * 2022-11-24 2023-03-31 苏州大学 一种激光测距的接收光机系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115877353A (zh) * 2022-11-24 2023-03-31 苏州大学 一种激光测距的接收光机系统
CN115877353B (zh) * 2022-11-24 2023-08-25 苏州大学 一种激光测距的接收光机系统

Similar Documents

Publication Publication Date Title
US8022332B2 (en) Laser processing device
KR101616635B1 (ko) 레이저 합성 광학 장치
JPH08171054A (ja) 反射屈折光学系
JP2007316157A (ja) 投光光学系及びそれを備えた投光装置
JP2015223462A5 (ja)
JP2019184729A (ja) 光源モジュール
US20120050890A1 (en) Collection Optics
US10386031B2 (en) Light device with movable scanning means and optical fiber
JPH0421845B2 (ja)
WO2018051450A1 (ja) レーザ装置
US20040095969A1 (en) Fiber laser apparatus
US20090323176A1 (en) Single wavelength ultraviolet laser device
JP2004279092A (ja) 測距装置
JP3091243B2 (ja) 多点測距装置
US20210373305A1 (en) Optical system
JP4686135B2 (ja) レーザ加工装置
KR102072623B1 (ko) 광학 빔 성형 유닛, 거리 측정 디바이스 및 레이저 조명기
JPH08220432A (ja) 投影光学系および該光学系を備えた露光装置
JPH10332816A (ja) 測距装置
JP6636062B2 (ja) レーザ合成光学装置
US11187915B2 (en) Parallel light generation device
JP2010091763A (ja) ビーム光投受光装置
JP2023097356A (ja) 照明光学系
US20210231964A1 (en) Light source device, projection device using same, and fluorescence excitation device
CN118020006A (zh) 细径光束生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403