JP2004278853A - Microwave heating device with steam generation function - Google Patents

Microwave heating device with steam generation function Download PDF

Info

Publication number
JP2004278853A
JP2004278853A JP2003068222A JP2003068222A JP2004278853A JP 2004278853 A JP2004278853 A JP 2004278853A JP 2003068222 A JP2003068222 A JP 2003068222A JP 2003068222 A JP2003068222 A JP 2003068222A JP 2004278853 A JP2004278853 A JP 2004278853A
Authority
JP
Japan
Prior art keywords
steam
heating
water
evaporating dish
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003068222A
Other languages
Japanese (ja)
Other versions
JP3761176B2 (en
Inventor
Koji Kanzaki
浩二 神崎
Yuji Hayakawa
雄二 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003068222A priority Critical patent/JP3761176B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to US10/548,479 priority patent/US7304278B2/en
Priority to CN200710006115A priority patent/CN100578081C/en
Priority to CN2007100061147A priority patent/CN101012922B/en
Priority to PCT/JP2004/003187 priority patent/WO2004081455A1/en
Priority to EP04719586A priority patent/EP1607684A1/en
Priority to CNB2004800065890A priority patent/CN100381758C/en
Publication of JP2004278853A publication Critical patent/JP2004278853A/en
Application granted granted Critical
Publication of JP3761176B2 publication Critical patent/JP3761176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • H05B6/6479Aspects related to microwave heating combined with other heating techniques combined with convection heating using steam

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Ovens (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave heating device with a steam generation device of good heating efficiency capable of evaporating dropped water at remarkable high speed when water is dropped on an evaporation tray. <P>SOLUTION: This microwave heating device with a steam generation device is provided with a microwave generation part and a steam generation part composed of the evaporation tray provided on a bottom surface of a heating chamber storing an object to be heated and a heating device heating the evaporation tray to generate steam in the heating chamber. The heating device 11 has a sheathed wire heater 113 embedded in aluminum die casting 111 and is directly attached on a reverse side of the evaporation tray 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波加熱と蒸気加熱とを組み合わせて被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置に関するもので、特にその蒸気加熱に関するものである。
【0002】
【従来の技術】
従来の高周波加熱装置は、加熱用の高周波発生装置を備えた電子レンジや、この電子レンジに熱風を発生させるコンベクションヒータを付加したコンピネーションレンジ等がある。また、蒸気を加熱室に導入して加熱するスチーマーや、スチーマーにコンベクションヒータを付加したスチームコンベクションオーブン等も加熱調理器として利用されている。
【0003】
上記の加熱調理器により食品等を加熱調理する際、食品の加熱仕上がり状態が最も良好な状態になるように加熱調理器を制御する。即ち、高周波加熱と熱風加熱とを組み合わせた調理はコンビネーションレンジ、蒸気加熱と熱風加熱とを組み合わせた調理はスチームコンベクションオーブンによりそれぞれ制御することができる。しかし、高周波加熱と蒸気加熱とを組み合わせた調理は、それぞれの加熱処理を別個の加熱調理器間で加熱食品を移し替えて行う等の手間が生じることになる。その不便を解消するために、高周波加熱と、蒸気加熱と、電熱加熱とを一台の加熱調理器で実現したものがある。この加熱調理器は、例えば特許文献1にに開示されている。
【0004】
【特許文献1】
特開昭54−115448号公報
【0005】
ところが、上記公報の構成によれば、加熱蒸気発生のための気化室が加熱室の下方に埋設されており、常に貯水タンクから一定水位で水が供給されるようになっている。従って、日常における加熱室周辺の清掃作業が行いにくく、特に気化室においては、蒸気発生の過程で水分中のカルシウムやマグネシウム等が濃縮され、気化室底部やパイプ内に沈殿固着し、蒸気発生量が少なくなり、その結果、カビ等の繁殖しやすい不衛生な環境となる問題があった。
【0006】
また、蒸気を加熱室に導入する方法として、加熱室の外側に配置されたボイラー等の加熱手段により蒸気を発生させ、ここで発生した蒸気を加熱室に供給する方式も考えられるが、蒸気導入のためのパイプに雑菌の繁殖、凍結による破損、錆等による異物混入等の問題を生じ、また、加熱手段の分解・清掃が困難であることが多く、食品を扱うために特に衛生上配慮の必要がある加熱調理器においては、外部から蒸気を導入する方式は採用し難いものであった。
【0007】
さらに、加熱調理器には被加熱物の温度を測定する赤外線センサ等の温度センサを設ける場合が多いが、蒸気が加熱室内に充満すると、赤外線センサは、被加熱物の温度ではなく、被加熱物との間に存在する蒸気の浮遊粒子の温度を測定するようになる。このため、被加熱物の温度を正確に計ることができなくなる。すると、赤外線センサの温度検出結果に基づいてなされる加熱制御が正常に動作しなくなり、例えば加熱不足、加熱過剰等の不具合が発生し、特にシーケンシャルな手順で自動調理を行う場合には、加熱不良のまま次のステップに進むことになり、単なる再加熱や放冷等により対処できず、調理が失敗に終わる可能性もある。
【0008】
また、被加熱物の種類や冷凍品、冷蔵品等といった各温度状態に応じて、必ずしも加熱効率の高い加熱パターンで加熱することができず、加熱時間が長くなるという問題があった。
【0009】
そこで、上記事情を考慮して、本出願人は先に、先行発明として、蒸気発生部が清掃容易で常に衛生的に保つことができ、また、被加熱物の温度を正確に測定することで適正な加熱処理を行うことができるようにし、また、加熱効率を高めることのできる蒸気発生機能付き高周波加熱装置を開発した(特許文献2参照)。
【0010】
【特許文献2】
特願2002−216875
【0011】
図1〜図7は本出願人の先行発明に係る蒸気発生部を備えた蒸気発生機能付き高周波加熱装置を示している。
図1は高周波加熱装置の開閉扉を開けた状態を示す正面図、図2はこの装置に用いられる蒸気発生部の蒸発皿を示す斜視図、図3は蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図、図4は蒸気発生部の断面図である。
この蒸気発生機能付き高周波加熱装置60は、被加熱物を収容する加熱室62に、高周波(マイクロ波)と蒸気との少なくともいずれかを供給して被加熱物を加熱処理する加熱調理器であって、高周波を発生する高周波発生部としてのマグネトロン70と、加熱室62内で蒸気を発生する蒸気発生部69と、加熱室62内の空気を撹拌・循環させる循環ファン64と、加熱室62内を循環する空気を加熱する室内気加熱ヒータとしてのコンベクションヒータ66と、加熱室62の壁面に設けた検出用孔を通じて加熱室62内の温度を検出する赤外線センサ63とを備えている。
【0012】
加熱室62は、前面開放の箱形の本体ケース61内部に形成されており、本体ケース61の前面に、加熱室62の被加熱物取出口を開閉する透光窓71a付きの開閉扉71が設けられている。開閉扉71は、下端が本体ケース61の下縁にヒンジ結合されることで、上下方向に開閉可能となっている。加熱室62と本体ケース61との壁面間には所定の断熱空間が確保されており、必要に応じてその空間には断熱材が装填されている。特に加熱室62の背後の空間は、循環ファン64及びその駆動モータ84(図7参照)を収容した循環ファン室67となっており、加熱室62の後面の壁が、加熱室62と循環ファン室67とを画成する仕切板68となっている。仕切板68には、加熱室62側から循環ファン室67側への吸気を行う吸気用通風孔65と、循環ファン室67側から加熱室62側への送風を行う送風用通風孔72とが形成エリアを区別して設けられている。各通風孔65,72は、多数のパンチ孔として形成されている。
【0013】
循環ファン64は、矩形の仕切板68の中央部に回転中心を位置させて配置されており、循環ファン室67内には、この循環ファン64を取り囲むようにして矩形環状のコンベクションヒータ66が設けられている。そして、仕切板68に形成された吸気用通風孔65は循環ファン64の前面に配置され、送風用通風孔72は矩形環状のコンベクションヒータ66に沿って配置されている。循環ファン64を回すと、風は循環ファン64の前面側から駆動モータ84のある後面側に流れるように設定されているので、加熱室62内の空気が、吸気用通風孔65を通して循環ファン64の中心部に吸い込まれ、循環ファン室67内のコンベクションヒータ66を通過して、送風用通風孔72から加熱室62内に送り出される。従って、この流れにより、加熱室62内の空気が、撹拌されつつ循環ファン室67を経由して循環されるようになっている。
【0014】
マグネトロン70は、例えば加熱室62の下側の空間に配置されており、マグネトロンより発生した高周波を受ける位置にはスタラー羽根73が設けられている。そして、マグネトロン70からの高周波を、回転するスタラー羽根73に照射することにより、該スタラー羽根73によって高周波を加熱室62内に撹拌しながら供給するようになっている。なお、マグネトロン70やスタラー羽根73は、加熱室62の底部に限らず、加熱室62の上面や側面側に設けることもできる。
【0015】
蒸気発生部69は、図2に示すように加熱により蒸気を発生する水溜凹所75aを有した蒸発皿75と、蒸発皿75の下側に配設され、図3及び図4に示すように蒸発皿75を加熱する蒸発皿加熱ヒータ76と、該ヒータの輻射熱を蒸発皿75に向けて反射する断面略U字形の反射板77とから構成されている。蒸発皿75は、例えばステンレス製の細長板状のもので、加熱室62の被加熱物取出口とは反対側の奥側底面に長手方向を仕切板68に沿わせた向きで配設されている。なお、蒸発皿加熱ヒータ76としては、ガラス管ヒータ、シーズヒータ、プレートヒータ等が利用できる。
【0016】
図5は蒸気発生機能付き高周波加熱装置60を制御するための制御系のブロック図である。この制御系は、例えばマイクロプロセッサを備えてなる制御部701を中心に構成されている。制御部701は、主に、電源部703、記憶部705、入力操作部707、表示パネル709、加熱部711、冷却用ファン81等との間で信号の授受を行っている。
【0017】
入力操作部707には、加熱の開始を指示するスタートスイッチ719、高周波加熱や蒸気加熱等の加熱方法を切り替える切替スイッチ721、予め用意されているプログラムをスタートさせる自動調理スイッチ723等の種々の操作スイッチが接続されている。
加熱部711には、高周波発生部70、蒸気発生部69、循環ファン64、赤外線センサ63等が接続されている。また、高周波発生部70は、電波撹拌部(スタラー羽根の駆動部)73と協働して動作し、蒸気発生部69には、蒸発皿加熱ヒータ76、室内気加熱ヒータ66(コンベクションヒータ)等が接続されている。なお、このブロック図には、上で説明した機械的構成要素以外の要素(例えば、送水ポンプ80や扉送風用ダンパ82、排気用ダンパ83等)も含まれているが、これらについては後の実施形態で説明する。
【0018】
次に、上述した蒸気発生機能付き高周波加熱装置60の基本的な動作について、図6のフローチャートを参照しながら説明する。
操作の手順としては、まず、加熱しようとする食品を皿等に載せて加熱室62内に入れ、開閉扉71を閉める。そして、加熱方法、加熱温度又は時間を入力操作部707により設定して(ステップ10、以降はS10と略記する)、スタートスイッチをONにする(S11)。すると、制御部701の動作によって自動的に加熱処理が行われる(S12)。
【0019】
即ち、制御部701は、設定された加熱温度・時間を読み取り、それに基づいて最適な調理方法を選択・実行し、設定された加熱温度・時間に達したか否かを判断して(S13)、設定値に達したときに、各加熱源を停止して加熱処理を終了する(S14)。なお、S12では、蒸気発生、室内気加熱ヒータ、循環ファン回転、高周波加熱を、それぞれ個別或いは同時に行う。
【0020】
上記した動作の際に、例えば「蒸気発生+循環ファンON」のモードが選択・実行された場合の作用を説明する。このモードが選択されると、図7に本高周波加熱装置60の動作説明図を示すように、蒸発皿加熱ヒータ76がONされることで、蒸発皿75の水が加熱され蒸気Sが発生する。蒸発皿75から上昇する蒸気Sは、仕切板68の略中央部に設けた吸気用通風孔65から循環ファン64の中心部に吸引され、循環ファン室67を経由して、仕切板68の周部に設けた送風用通風孔72から、加熱室62内へ向けて吹き出される。吹き出された蒸気は、加熱室62内において撹拌されて、再度、仕切板68の略中央部の吸気用通風孔65から循環ファン室67側に吸引される。これにより加熱室62内と循環ファン室67に循環経路が形成される。なお、仕切板68の循環ファン64の配置位置下方には送風用通風孔72を設けずに、発生した蒸気を吸気用通風孔65に導かれるようにしている。そして、図中白抜き矢印で示すように、蒸気が加熱室62を循環することによって、被加熱物Mに蒸気が吹き付けられる。
【0021】
この際、室内気加熱ヒータ66をONにすることによって、加熱室62内の蒸気を加熱できるので、加熱室62内を循環する蒸気の温度を高温に設定することができる。従って、いわゆる過熱蒸気が得られて、被加熱物Mの表面に焦げ目を付けた加熱調理も可能となる。また、高周波加熱を行う場合は、マグネトロン70をONにし、スタラー羽根73を回転することで、高周波を加熱室62内に撹拌しながら供給して、ムラのない高周波加熱調理を行うことができる。
【0022】
このように、先行発明の高周波加熱装置によれば、加熱室62の外部ではなく内部で蒸気を発生する構成にしているので、加熱室62内を清掃する場合と同様に、蒸気を発生する蒸発皿75の清掃を簡単に行うことができる。例えば、蒸気発生の過程では、水分中のカルシウムやマグネシウム、塩素化合物等が濃縮されて蒸発皿75の底部に沈殿固着することがあるが、蒸発皿75の表面に付着したものを布等で拭き取るだけできれいに払拭することができる。
また、図4で説明したように、高周波加熱装置の内部に設置された蒸発皿を加熱ヒータで輻射加熱しており、さらに加熱ヒータからの輻射熱を反射板で蒸発皿へ反射するようにしているので、加熱効率がアップする。
【0023】
【発明が解決しようとする課題】
このようにして、先行発明においては、加熱効率が従来装置よりも大きく改善され、かつ手入れも簡単に行えるようになった。
しかしながら、本出願人はまだこれに満足せず、さらに加熱効率のアップを求め、また反射板が嵩張るため小型化の流れにそぐわなかったので、これを使用しないことを考えた。
本発明は、これらの欠点を改良するもので、同じワット数でありながら、水を滴下したときに滴下された水の蒸発に至るまでの速さが著しく速くなる小型化された蒸気発生部を有する高周波加熱装置を提供することを目的としている。
【0024】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の蒸気発生機能付き高周波加熱装置の発明は、高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿および該蒸発皿を加熱するヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、前記ヒータ装置をアルミダイキャストにシーズヒータを埋め込んで成るヒータ装置とし、これを前記蒸発皿の裏側に直付けしたことを特徴とする。
このような構成にすることにより、従来装置および先行発明と同じワット数でありながら、水を滴下したときに滴下された水の蒸発に至るまでの速さが著しく速くすることができる。
【0025】
請求項2記載の蒸気発生機能付き高周波加熱装置の発明は、高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿対応開口部および該蒸発皿対応開口部を塞ぐヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、前記ヒータ装置をアルミダイキャストの上面を蒸発皿としその下面にシーズヒータを埋設して成るヒータ装置とし、前記蒸発皿対応開口部に前記ヒータ装置の前記蒸発皿が臨むようにして前記ヒータ装置を取り付けたことを特徴とする。
このような構成にすることにより、請求項1記載の発明より、さらに水の加熱が速くなる。
【0026】
請求項3記載の発明は、請求項2記載の蒸気発生機能付き高周波加熱装置において、前記蒸発皿対応開口部と前記ヒータ装置との間に金属シールが施されたことを特徴とする。
このような構成にすることにより、蒸発皿対応開口部とヒータ装置との間から漏れ出る虞のあるマイクロ波の電波漏洩を完全に防ぐことができる。
【0027】
請求項4記載の発明は、請求項1〜3のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記アルミダイキャストにサーミスタを配設し、該サーミスタからの温度情報によって前記蒸発皿からの蒸発量の制御および前記蒸発皿に水が無くなったときの異常時の制御を行うことを特徴とする。
このような構成にすることにより、蒸発量の制御および異常時の過熱制御を簡単な構成で行うことができる。
請求項5記載の発明は、請求項1〜4のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記サーミスタのオフレベルを連続2回又はそれ以上の所定回行われた場合に前記ヒータ装置への給電を中止し、スチーム加熱を停止させることを特徴とする。
このような構成にすることにより、異常時の過熱制御を迅速に行うことができるようになる。
請求項6記載の発明は、請求項1〜5のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記ヒータ装置が前記アルミダイキャストに前記シーズヒータをU字状に埋め込んで成り、該U字状の2本の長軸間に開けられた孔にサーミスタを取り付けたことを特徴とする。
このように構成することにより、サーミスタが蒸発皿近傍の温度を正確に検知することができるようになる。
【0028】
請求項7記載の発明は、請求項1〜6のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記蒸気発生部を前記加熱室の被加熱物取出口とは反対側の奥の片側又は両側に設けたことを特徴とする。
このように構成することにより、蒸気発生部が調理の障害物とならず、またやけどのおそれもなくなり、さらに複数個設置することでスチーム量の制御がし易くなる。
【0029】
請求項8記載の発明は、請求項1〜7のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記アルミダイキャストに給水パイプを固定したことを特徴とする。
このように構成することにより、給水パイプ内の水が加熱されるのでこの水を蒸発皿に供給することで蒸発時間の短縮化が図られ、また給水パイプ内の水の熱膨張を利用することにより蒸発皿へサイフォンによるポンプレス給水ができるようになる。
【0030】
請求項9記載の蒸気発生機能付き高周波加熱装置の発明は、水貯留タンクから前記蒸発皿に所定量の水を供給する給水管路の一部に前記請求項8記載の給水パイプを用い、該給水パイプから蒸発皿に向かう給水管路の途中に大気圧採り入れ口を設けておき、前記給水パイプ内の水を急速加熱させることによって水を膨張させ、この膨張水が空気採り入れ口を通過してサイフォン機能を開始させることを特徴とする。
このように構成することにより、送水ポンプが要らなくなり、省部品点数、省スペース、省エネに寄与するようになる。
【発明の実施の形態】
以下、本発明の蒸気発生機能付き高周波加熱装置の好適な実施の形態について図面を参照して詳細に説明する。
図8は本発明に係る加熱装置の概略構成を示す側面断面図で、A1は本発明の第1の実施の形態、A2は第2の実施の形態、Bは上述した先行発明のものをそれぞれ示している。
〔第1の実施の形態〕
第1の実施の形態を示す図8の(A1)において、10は装置本体筺体、11は平板状ヒータ装置である。平板状ヒータ装置11は、アルミニウムダイキャストにU字型シーズヒータを埋め込んだヒータ装置を平板状に仕上げたもので、この平板状部分を鉄板製蒸発皿の裏側に直付けしているのが特徴である。
図9は平板状ヒータ装置の分解斜視図で、(A)は蒸発皿、(B)はヒータ装置の斜視図をそれぞれ表し、うち(B1)は蒸発皿への取り付け側、(B2)は裏側の各斜視図である。
(A)において、20は金属製蒸発皿で、皿の側面21と底部22とで皿部を構成し、ビス孔23が開けられている。
(B1)において、11はアルミダイキャストで作られたヒータ装置、111は蒸発皿底部11への当接部、112は取付部、113は鋳込まれたU字型シーズヒータである。ビス孔117と(A)のビス孔23がビス19で固定される。(B2)において、(B1)と同じ符号は同一物を指すので説明は省略する。ここでは、シーズヒータ113がU字型をして鋳込まれているのが判る。また、アルミダイキャストの裏側には、2個の隆起部11a、11bが形成されており、図で左側の第1の隆起部11aには後述するサーミスタを挿入するための挿入孔が形成されている。
また、図で右側の第2の隆起部11bには後述する給水パイプ114が固定されている。
このような構成にすることにより、シーズヒータ113で発熱した熱はアルミダイキャスト当接部111から蒸発皿20に直接熱伝導されることになるので、図8の(B)に示す従来の管ヒータ13と反射板14による輻射式加熱装置15と比べて熱伝導が著しく速くなり、従ってスチームによる加熱調理が速くなる。
また、装置も小型化となる。
【0031】
表1は同じワット数のヒータを用いた本発明のスチーム発生機構と先行発明としての従来例のそれとの比較表である。
【0032】
【表1】

Figure 2004278853
【0033】
ヒータ装置に電流を流してから蒸発開始するまでの時間を計測したところ、従来例では約60秒かかったが、本発明によれば約30秒で約30秒の短縮ができた。
また、発生する蒸気量についてみると、従来例では1分につき10ccであるのに対して本発明によれば1分につき12〜13ccであり、20〜30%も多く蒸発させることができた。このように、開始時間の短縮と蒸発量のアップによる調理時間の短縮が可能となる。
【0034】
〔第2の実施の形態〕
第2の実施の形態を示す図8の(A2)において、10は装置本体筺体、12は深皿容器状ヒータ装置である。深皿容器状ヒータ装置12は、アルミニウムダイキャストにシーズヒータを埋め込んだヒータ装置を深皿容器状に仕上げ、一方鉄板で作った蒸発皿の一部分を刳(く)り抜き、その刳り抜き部分に深皿容器状ヒータ装置を嵌め込んだのが特徴である。
図10は深皿容器状ヒータ装置の分解斜視図で、(A)は蒸発皿部を刳り抜いた金属板、(B)はヒータ装置の斜視図をそれぞれ表し、うち(B1)は金属板への取り付け側、(B2)は裏側の各斜視図である。
(A)において、30は金属板32から蒸発皿に対応する部分を刳り抜いた刳り抜き部分31が設けられている蒸発皿対応板である。126は金属シール、33はビス孔である。
(B1)において、12はアルミダイキャストで作られたヒータ装置で、これは刳り抜き部分31に対向する蒸発皿部121と取付部122とから構成されている。123は鋳込まれたU字型シーズヒータ、124は給水パイプである。
(B2)において、(B1)と同じ符号は同一物を指すので説明は省略する。ここでは、シーズヒータ123がU字型をして鋳込まれているのが判る。
また、アルミダイキャストの裏側には、2個の隆起部12a、12bが形成されており、図で左側の第1の隆起部12aには後述するサーミスタを挿入するための挿入孔125が形成されている。
さらに、図で右側の第2の隆起部12bには後述する給水パイプ124が固定されている。
このような構成にすることにより、シーズヒータ123で発熱した熱はアルミダイキャスト内の蒸発皿121に直接熱伝導されることになるので、図8の(B)に示す従来の管ヒータ13と反射板14による輻射式加熱装置15と比べて熱伝導が著しく速くなるばかりか、図8の(A1)に示す第1の実施の形態よりもさらに熱伝導のロスが少なくなり、蒸気量が増えることにより、水の加熱が速くなり、従ってスチームによる加熱調理が速くなる。また、装置も小型化となる。
【0035】
金属板32の刳り抜き部31と深皿容器状ヒータ装置12とを組み合わせた場合その間に隙間があるとそこからマイクロ波の電波漏洩が生じる虞があるので、深皿容器状ヒータ装置12の蒸発皿121の回りに金属シール126を施しておくと、殆どの場所で互いに接触するので、λ/4以上の隙間ができる可能性は殆どなくなる。したがって、マイクロ波の電波漏洩を防ぐことができる。
また、ビス孔33同士の間隔もλ/4以下としてあるので、同じ理由からマイクロ波の電波漏洩を防ぐことができる。また、部分接触による異常過熱やスパークを防ぐことにもなる。
【0036】
〔第3の実施の形態〕
図11は本発明に係る高周波加熱装置における蒸発皿の設置個所と個数を説明する図で、(a)は高周波加熱装置の開閉扉を開けた状態を示す正面図、(b)は蒸発皿の位置を示す概略正面図である。
図(a)において、40は蒸気発生機能付き高周波加熱装置、41は加熱室内の上天井、42は右側壁、43は左側壁、44は底面、45は蒸発皿付き金属板、46Rは右蒸発皿、46Lは左蒸発皿、47Rは右給水口、47Lは左給水口、49は循環ファンである。
本発明に係る蒸発皿46は上述のように、蒸発能力が大きいので従来のような電子レンジの奥に横に横断して設ける(図1の15参照)必要はなく、図11(b)のように電子レンジの奥の右隅か左隅に1ヵ所((b)の(イ))か又は(ロ)のように電子レンジの奥の左右両隅に2ヶ所に設けるようにすればよい。
この場合、従来と同程度の蒸発能力を得るのであれば1個で十分である。
ただ、料理の種類によって瞬時的にスチームを多く必要とする場合等には2個あるのが便利で、その場合両方を使い、スチームをそれほど必要としない場合は一方だけで済ませるようにすればスチームのコントロールをすることができるようになる。また、別の使い方としては、一方を連続加熱動作させながら、もう一方を停止または断続動作させてスチーム調整を行うことも可能である。
【0037】
表2は、調理対象物を冷凍シュウマイと焼きとりを例にして加熱を行なう前の重さに対する加熱後の重さの増加分比を示した線図である。
【0038】
【表2】
Figure 2004278853
【0039】
表2において、冷凍シュウマイに、輻射熱によるスチーム(従来例)と伝導熱によるスチーム(本発明)を当てて調理したところ、その重量変化率が、従来例では0.9%増しであるのに対して、本発明では1.6%増しとなった。すなわち、伝導熱により高速蒸発させたスチームの熱と電波を併用して温めると、輻射熱によるよりも、庫内に早く蒸気が行き渡って食品表面に付くので、食品に水分を与えながら温めることができ、輻射熱によるスチームの増加(0.9%増し)よりもさらに水分が増え(1.6%増し)、よりしっとりとしたシューマイが出来上がることとなる。
【0040】
また、焼きとりの調理では従来例では2.6%減となるのに対して本発明では2.3%減となった。すなわち、伝導熱により高速蒸発させたスチームの熱と電波を併用して温めると、輻射熱による従来装置よりも、庫内に早く蒸気が行き渡って調理が早く終了するので、電波加熱による食品の乾燥を早く止めることができ、従来装置の乾燥による重量の減少(2.6%減)よりも、乾燥が少ない(2.3減)ため、パサパサ感がより少なくなることとなる。
このように、本発明によれば加熱に要する時間が従来よりも短くなるので電波で加熱する時間も短くなり、したがってその間対象物の水分が蒸発してゆく時間も短くなり、対象物の水分の減り方が少なくなる。
【0041】
〔第4の実施の形態〕
図12は第4の実施の形態に係るヒータ装置周辺を縦断面図で示している。第4の実施の形態は、ヒータ装置(アルミダイキャスト)自身の温度をヒータ中心部に埋設したサーミスタで検出して検出値が所定値を超えたらヒータ装置に電流を流さなくする通常の温度制御(蒸発量の制御)の他に、前記蒸発皿に水が無くなったときの異常時の制御をも行なわせることができる。その具体例としては、サーミスタのオフレベルを連続2回又はそれ以上の所定回行われた場合にヒータ装置への給電を中止し、スチーム加熱を停止させるようにするのがよい。このような構成にすることにより、異常時の過熱制御を迅速に行うことができるようになる。その過熱保護動作は次のようになる。
【0042】
図13は本発明に係る空焚きによる過熱保護動作を説明する線図である。
サーミスタ50(図12)は、図13に示すように、貯水タンクより給水されて給水受け皿45に水が充填されている場合には、加熱手段113の温度上昇に伴い検出温度レベルが上昇する。しかし、図中記号aで示す給水受け皿45に水が無くなった場合、加熱手段113には通電が行われているので、検出温度レベルが急激に上昇し、bで示す上限基準値を超える。
図示略の制御回路は、上限基準値を超えた時点で加熱手段113への通電を遮断する。この時点でオーバシュートは有るものの、サーミスタ50の検出温度レベルは降下する。やがて、サーミスタ50の検出温度レベルが、cで示す下限基準値に達した時点で、制御回路は、再び、加熱手段113への通電を実施してヒータを加熱する。しかし、給水受け皿45には水が無いため、サーミスタ50の検出温度レベルは再び上昇して、dで示す上限基準値を超える。この時点で、制御回路は、給水受け皿45に水が無く加熱手段113が空焼き状態であると判断して、eで示すように、加熱手段113への通電を遮断すると共に、警報を発して蒸気加熱処理を停止させる制御を行う。
【0043】
本実施の形態では、上記したように、単一のサーミスタで、蒸気量の発生制御と蒸発皿に水が無くなったときの異常検出を行うことができる。
また、上記した制御によって、ヒータの長寿命化と蒸発皿の耐熱温度内での使用を可能にして蒸発皿のフッ素樹脂コーティング面の劣化を防止することができる。
【0044】
サーミスタの取付け位置はU字型シーズヒータ113の2本の長軸間にの中央で、かつ蒸発皿45の正確な温度を検出すべく、蒸発皿45に向けてアルミダイキャスト111に孔111aを開け、その中にサーミスタ50を取り付けるようにしている。
なお、図12では図9のヒータ装置を用いているが、もちろん図10のヒータ装置でも同じである。
【0045】
サイフォンによるポンプレス方式を採用するとき、図9又は図10に示した給水パイプをアルミダイキャストに固定したヒータ装置を用いるとよい。
図14はサイフォンによるポンプレス方式の動作説明図である。
図14において、蒸気供給機構91は装置本体90は着脱可能に装備される1基の貯水タンク92と、加熱室93内に装備される2つの金属製蒸発皿20と、これらの金属製蒸発皿20を加熱して金属製蒸発皿20上の水を蒸発させるヒータ装置94と、貯水タンク92の水をヒータ装置94による加熱域を経由して蒸発皿20に導く給水路95と、貯水タンク92と給水路95との接続部に装備されて貯水タンク92の取り外し時に貯水タンク92及び給水路95内の水の漏れ出しを防止するタンク側の止水弁96a及び給水路側の止水弁96bと、給水路側の止水弁96bよりも下流に配置されて給水路29から貯水タンク92への水の逆流を防止する逆止弁97とを備えて構成される。
【0046】
給水路95は貯水タンク92の接続口22bに接続される基端配管部95aと、この基端配管部95aからヒータ装置94による加熱域を経由するように加熱室93の底板98の下に配索される水平配管部95bと、この水平配管部95bの先端から加熱室93の側方を垂直に立ち上がる垂直配管部95cと、この垂直配管部95cの上端から給水受け皿45の上方に延出して、垂直配管部95cから圧送された水を給水受け皿45に滴下する上部配管部95eと、空気採り入れ口95dと、上部配管部95eの先端を形成する水吹出し口95fとから構成される。
水平配管部95bはヒータ装置94のアルミダイキャスト94aに接触するように配管されていてヒータ装置94による熱が速やかに伝導され、水平配管部95b内の水が膨張して蒸発皿94に供給される。
【0047】
ここで蒸気発生の原理について詳述する。
貯水タンク92がタンク収納部35に差し込まれ、水平配管部95b,95b内に水が充満した状態で、ヒータ装置94が発熱すると、アルミダイキャスト94aとの接触部で配管内の水に熱が供給されて水が膨張する。
逆止弁97は膨張する配管内の水の圧力を一次的に止めるため、圧力が垂直配管部95cの方向に向か、膨張した水は、上部配管部95eを通過して水吹出し口95fより滴下され、蒸発皿20に供給されことになる。
【0048】
基端配管部95aは、貯水タンク92が取り外された際に水平配管部95b側からの漏水を防止するための管側の止水弁96bが装備される共に、水平配管部95bとの接続部には、水平配管部95bでの水の熱膨張による水平配管部95b側からの逆流を防止する逆止弁47が装備されている。
【0049】
図14に示すように、上部配管部95eが接続される垂直配管部95cの上端は、貯水タンク92内における貯水の最高レベル位置Hmaxよりも高い位置に設定されている。これは、貯水タンク92側の貯水が、連通管作用で、不用意に、また連続的に、上部配管部95e側に流出することを防止するためである。
また、給水路95は、貯水タンク92における貯水の最低レベルHminよりも更に下がった位置で、基端配管部95aを介して、貯水タンク92に接続される。これは、貯水タンク92内の貯水を、残さず、給水路95側に取り込み可能にするためである。
【0050】
蒸発皿20に供給される水は、ヒータ装置94の発生熱で昇温した状態にあるため、蒸発皿20に供給されてから蒸気の発生までの所要時間を短縮することができ迅速な蒸気加熱が可能になる。
【0051】
加熱を中断すれば給水路95中の垂直配管部95cの水が膨張しなくなり、空気採り入れ口95dまで達することができず、空気採り入れ口95dから大気圧が管内に入って給水は中止する。
【0052】
また、上記の構成において、貯水タンク92の残量が0(ゼロ)になって、蒸発皿20上の残水量が減ると、水の蒸発に費やされる熱量が減るため、ヒータ装置94や蒸発皿20自体の温度の昇温が起こる。しかし本実施の形態の蒸気供給機構91は、上述のように、ヒータ装置94の温度を検出するサーミスタ50を備えているため、そのサーミスタ50の検出信号を監視することで、比較的に簡単に貯水タンク92の残量0検出が可能で、空だき等の不都合の発生を防止することができる。
更に、サーミスタの検出信号を利用して、例えば、貯水タンク92の残量0の検出時に、ヒータ装置94の動作を停止させたり、給水用の警報を行うなどの多種の制御が可能で、高周波加熱装置100の取り扱い性を向上させることができる。
【0053】
以上は、図11の(b)の(イ)の1個の蒸発皿の場合について説明したが、(ロ)の2個の蒸発皿の場合のポンプレス・サイフォンについても原理は同じである。しかし、この場合は蒸発皿20に装備される給水路95は、ヒータの接触部から配管先端の水吹出し口までの距離を等距離に設定した構成とすると、それぞれの給水路95での供給量を揃えることができ、加熱室93内での加熱蒸気の均等供給を安価に実現することができる。
【0054】
以上のように、シーズヒータに電流を流すとアルミダイキャストが急速に加熱し、給水パイプ内の水も急速に加熱されて、膨張し、この膨張した水が管内の大気圧採り入れ口95dを通過して最終的に基準水面より下方位置に設けられている給水口まで到達してサイフォン動作が開始し、放水タンクからの水が給水パイプの先端の給水口から蒸発皿に給水される。そして給水は加熱がなされている間継続する。加熱を中断すれば給水パイプ内の水が膨張しなくなり、空気採り入れ口95dまで達することができず、空気採り入れ口95dから大気圧が管内に入って給水は中止する。
このように、図9又は図10に示した本発明に係るヒータ装置を用いると、急速高温加熱ができるので、給水パイプ内の水が急速に大きく膨張できることから、サイフォンを使ったポンプレス駆動が初めて可能となる。
【0055】
【発明の効果】
以上のように、請求項1記載の蒸気発生機能付き高周波加熱装置の発明によれば、高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿および該蒸発皿を加熱するヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、前記ヒータ装置をアルミダイキャストにシーズヒータを埋め込んで成るヒータ装置とし、これを前記蒸発皿の裏側に直付けしたので、従来装置および先行発明と同じワット数でありながら、水を滴下したときに滴下された水の蒸発に至るまでの速さが著しく速くすることができるようになる。
【0056】
請求項2記載の蒸気発生機能付き高周波加熱装置の発明によれば、高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿対応開口部および該蒸発皿対応開口部を塞ぐヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、前記ヒータ装置をアルミダイキャストの上面を蒸発皿としその下面にシーズヒータを埋設して成るヒータ装置とし、前記蒸発皿対応開口部に前記ヒータ装置の前記蒸発皿が臨むようにして前記ヒータ装置を取り付けたので、請求項1記載の発明より、さらに水の加熱が速くなる。
【0057】
請求項3記載の発明によれば、請求項2記載の蒸気発生機能付き高周波加熱装置において、前記蒸発皿対応開口部と前記ヒータ装置との間に金属シールを施したので、蒸発皿対応開口部とヒータ装置との間から漏れ出る虞のあるマイクロ波の電波漏洩を完全に防ぐことができるようになる。
【0058】
請求項4記載の発明によれば、請求項1〜3のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記アルミダイキャストにサーミスタを配設し、該サーミスタからの温度情報によって前記蒸発皿からの蒸発量の制御および前記蒸発皿に水が無くなったときの異常時の制御を行うようにしているので、蒸発量の制御および異常時の過熱制御を簡単な構成で行うことができる。
【0059】
請求項5記載の発明によれば、請求項1〜4のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記サーミスタのオフレベルを連続2回又はそれ以上の所定回行われた場合に前記ヒータ装置への給電を中止し、スチーム加熱を停止させるようにしているので、異常時の過熱制御を迅速に行うことができるようになる。
【0060】
請求項6記載の発明によれば、請求項1〜5のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記ヒータ装置が前記アルミダイキャストに前記シーズヒータをU字状に埋め込んで成り、該U字状の2本の長軸間に開けられた孔にサーミスタを取り付けたので、サーミスタが蒸発皿近傍の温度を正確に検知することができるようになる。
【0061】
請求項7記載の発明によれば、請求項1〜6のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記蒸気発生部を前記加熱室の被加熱物取出口とは反対側の奥の片側又は両側に設けたので、蒸気発生部が調理の障害物とならず、またやけどのおそれもなくなり、さらに複数個設置することでスチーム量の制御がし易くなる。
【0062】
請求項8記載の発明によれば、請求項1〜7のいずれか1項記載の蒸気発生機能付き高周波加熱装置において、前記アルミダイキャストに給水パイプを固定したので、給水パイプ内の水が加熱されることによって蒸発皿へサイフォンによるポンプレス給水ができるようになる。
【0063】
請求項9記載の蒸気発生機能付き高周波加熱装置の発明は、水貯留タンクから前記蒸発皿に所定量の水を供給する給水管路の一部に前記請求項8記載の給水パイプを用い、該給水パイプから蒸発皿に向かう給水管路の途中に大気圧採り入れ口を設けておき、前記給水パイプ内の水を急速加熱させることによって水を膨張させ、この膨張水が空気採り入れ口を通過してサイフォン機能を開始させるようにしたので、送水ポンプが要らなくなり、省部品点数、省スペース、省エネに寄与するようになる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の蒸気発生機能付き高周波加熱装置の扉を開けた状態を示す正面図である。
【図2】図1の蒸気発生機能付き高周波加熱装置に用いられる蒸気発生部の蒸発皿を示す斜視図である。
【図3】蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図である。
【図4】同装置の蒸気発生部の断面図である。
【図5】蒸気発生機能付き高周波加熱装置を制御するための制御系のブロック図である。
【図6】蒸気発生機能付き高周波加熱装置の基本的な動作を説明するフローチャートである。
【図7】蒸気発生機能付き高周波加熱装置の動作説明図である。
【図8】本発明に係る加熱装置の概略構成を示す側面断面図で、A1は本発明の第1の実施の形態、A2は第2の実施の形態、Bは上述した先行発明のものをそれぞれ示している。
【図9】第1の実施の形態に係る平板状ヒータ装置の分解斜視図で、(A)は蒸発皿、(B)はヒータ装置の斜視図をそれぞれ表し、うち(B1)は蒸発皿への取り付け側、(B2)は裏側の各斜視図である。
【図10】第2の実施の形態に係る深皿容器状ヒータ装置の分解斜視図で、(A)は蒸発皿部を刳り抜いた金属板、(B)はヒータ装置の斜視図をそれぞれ表し、うち(B1)は金属板への取り付け側、(B2)は裏側の各斜視図である。
【図11】第3の実施の形態に係る高周波加熱装置における蒸発皿の設置個所と個数を説明する図で、(a)は高周波加熱装置の開閉扉を開けた状態を示す正面図、(b)は蒸発皿の位置を示す概略正面図である。
【図12】第4の実施の形態に係るヒータ装置周辺を縦断面図で示している。
【図13】本発明に係る空焚きによる過熱保護動作を説明する線図である。
【図14】給水受け皿が一つの場合の蒸気供給機構の概略構成図である。
【符号の説明】
10 装置本体筺体、
11 平板状ヒータ装置
11a、11b 隆起部
111 アルミダイキャスト当接部、
111a サーミスタ収容孔
112 取付部、
113 U字型シーズヒータ
114 給水パイプ
117 ビス孔
12 深皿容器状ヒータ装置
12a、12b 隆起部
121 蒸発皿部
123 U字型シーズヒータ、
124 給水パイプ
126 金属シール
19 ビス
20 金属製蒸発皿
21 皿の側面
22 底部
23 ビス孔
30 蒸発皿対応板
31 刳り抜き部分
32 金属板
33 ビス孔
45 蒸発皿
50 サーミスタ
90 装置本体
91 蒸気供給機構
92 貯水タンク
93 加熱室
94 ヒータ装置
95 給水路
96 止水弁
96a タンク側止水弁
96b 給水路側止水弁
97 逆止弁
95a 基端配管部
95b 水平配管部
95c 垂直配管部
95d 空気採り入れ口
95e 上部配管部
95f 水吹出し口
98 底板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency heating device with a steam generating function for heating an object to be heated by a combination of high-frequency heating and steam heating, and particularly to the steam heating.
[0002]
[Prior art]
Conventional high-frequency heating devices include a microwave oven provided with a high-frequency generator for heating, and a combination range in which a convection heater for generating hot air is added to the microwave oven. Further, a steamer that introduces steam into a heating chamber to heat it, a steam convection oven in which a convection heater is added to the steamer, and the like are also used as the heating cooker.
[0003]
When cooking food or the like with the above-mentioned heating cooker, the heating cooker is controlled so that the finished state of heating of the food becomes the best state. That is, cooking combining high frequency heating and hot air heating can be controlled by a combination range, and cooking combining steam heating and hot air heating can be controlled by a steam convection oven. However, cooking using a combination of high-frequency heating and steam heating requires time and effort such as transferring the heated food between different heating cookers for each heating process. In order to solve the inconvenience, there is one in which high-frequency heating, steam heating, and electric heating are realized by one heating cooker. This heating cooker is disclosed, for example, in Patent Document 1.
[0004]
[Patent Document 1]
JP-A-54-115448
[0005]
However, according to the configuration of the above publication, a vaporization chamber for generating heated steam is buried below the heating chamber, and water is always supplied from the water storage tank at a constant water level. Therefore, it is difficult to clean the surroundings of the heating chamber on a daily basis. Particularly in the vaporization chamber, calcium, magnesium, and the like in the water are concentrated in the process of generating steam, and settle and adhere to the bottom of the vaporization chamber and in the pipe, and the amount of generated steam is reduced. As a result, there has been a problem that an unsanitary environment in which molds and the like are liable to breed is obtained.
[0006]
As a method of introducing steam into the heating chamber, a method of generating steam by a heating means such as a boiler arranged outside the heating chamber and supplying the generated steam to the heating chamber may be considered. Problems such as the propagation of bacteria, damage due to freezing, and contamination by foreign substances due to rust, etc., and it is often difficult to disassemble and clean the heating means. It is difficult to adopt a method of introducing steam from the outside in a heating cooker that needs to be used.
[0007]
Further, a heating cooker is often provided with a temperature sensor such as an infrared sensor for measuring the temperature of the object to be heated, but when steam fills the heating chamber, the infrared sensor detects the temperature of the object to be heated instead of the temperature of the object to be heated. The temperature of the suspended particles of the vapor existing between the object and the object is measured. For this reason, the temperature of the object to be heated cannot be measured accurately. Then, the heating control performed based on the temperature detection result of the infrared sensor does not operate normally. For example, a malfunction such as insufficient heating or excessive heating occurs. As it proceeds to the next step as it is, it cannot be dealt with simply by reheating or cooling, and cooking may fail.
[0008]
In addition, there is a problem that heating cannot be performed in a heating pattern having a high heating efficiency depending on the type of the object to be heated and each temperature state such as a frozen product and a refrigerated product, and the heating time is prolonged.
[0009]
Therefore, in consideration of the above circumstances, the present applicant has previously made it possible to maintain the steam generating portion easily clean and always sanitary as a prior invention, and to accurately measure the temperature of the object to be heated. A high-frequency heating device with a steam generation function capable of performing appropriate heating treatment and increasing the heating efficiency has been developed (see Patent Document 2).
[0010]
[Patent Document 2]
Japanese Patent Application 2002-216875
[0011]
1 to 7 show a high-frequency heating apparatus having a steam generating function provided with a steam generating section according to the prior invention of the present applicant.
FIG. 1 is a front view showing a state in which an opening / closing door of a high-frequency heating device is opened, FIG. 2 is a perspective view showing an evaporating dish of a steam generating section used in this apparatus, and FIG. FIG. 4 is a perspective view showing the plate, and FIG. 4 is a cross-sectional view of the steam generating section.
This high-frequency heating device 60 with a steam generating function is a heating cooker that supplies at least one of high frequency (microwave) and steam to a heating chamber 62 that accommodates an object to be heated and heats the object to be heated. A magnetron 70 as a high frequency generator for generating high frequency, a steam generator 69 for generating steam in the heating chamber 62, a circulation fan 64 for stirring and circulating air in the heating chamber 62, A convection heater 66 as an indoor air heater for heating the air circulating through the air, and an infrared sensor 63 for detecting the temperature in the heating chamber 62 through a detection hole provided in the wall surface of the heating chamber 62.
[0012]
The heating chamber 62 is formed inside a box-shaped main body case 61 having an open front, and an opening / closing door 71 having a light-transmitting window 71 a for opening and closing a heated object outlet of the heating chamber 62 is provided on the front surface of the main body case 61. Is provided. The lower end of the opening / closing door 71 is hingedly connected to the lower edge of the main body case 61, so that the opening / closing door 71 can be opened and closed in the vertical direction. A predetermined heat insulating space is secured between the wall surfaces of the heating chamber 62 and the main body case 61, and a heat insulating material is loaded in the space as needed. In particular, the space behind the heating chamber 62 is a circulation fan chamber 67 that houses a circulation fan 64 and its drive motor 84 (see FIG. 7). A partition plate 68 defining a chamber 67 is provided. The partition plate 68 has a ventilation hole 65 for intake from the heating chamber 62 side to the circulation fan chamber 67 side and a ventilation hole 72 for ventilation from the circulation fan chamber 67 side to the heating chamber 62 side. The formation areas are provided separately. Each of the ventilation holes 65 and 72 is formed as a number of punch holes.
[0013]
The circulation fan 64 is arranged at the center of the rectangular partition plate 68 with the center of rotation positioned. A circular annular convection heater 66 is provided in the circulation fan chamber 67 so as to surround the circulation fan 64. Have been. The ventilation holes 65 formed on the partition plate 68 are arranged on the front surface of the circulation fan 64, and the ventilation holes 72 are arranged along a rectangular annular convection heater 66. When the circulation fan 64 is turned, the wind is set to flow from the front side of the circulation fan 64 to the rear side of the drive motor 84, so that the air in the heating chamber 62 flows through the ventilation holes 65 for intake and the circulation fan 64. And passes through the convection heater 66 in the circulation fan chamber 67 and is sent out into the heating chamber 62 from the ventilation holes 72. Therefore, by this flow, the air in the heating chamber 62 is circulated through the circulation fan chamber 67 while being stirred.
[0014]
The magnetron 70 is disposed, for example, in a space below the heating chamber 62, and a stirrer blade 73 is provided at a position where the magnetron 70 receives a high frequency generated from the magnetron. By irradiating the rotating stirrer blade 73 with the high frequency from the magnetron 70, the high frequency is supplied to the heating chamber 62 while being stirred by the stirrer blade 73. The magnetron 70 and the stirrer blades 73 are not limited to the bottom of the heating chamber 62, but may be provided on the upper surface or the side surface of the heating chamber 62.
[0015]
The steam generating section 69 is provided with an evaporating dish 75 having a water recess 75a for generating steam by heating as shown in FIG. 2 and a lower side of the evaporating dish 75, as shown in FIG. 3 and FIG. An evaporating dish heater 76 for heating the evaporating dish 75 and a reflector 77 having a substantially U-shaped cross section for reflecting the radiant heat of the heater toward the evaporating dish 75 are provided. The evaporating dish 75 is, for example, an elongated plate made of stainless steel. The evaporating dish 75 is disposed on the bottom surface on the far side of the heating chamber 62 on the opposite side to the outlet for the object to be heated, with the longitudinal direction along the partition plate 68. I have. In addition, as the evaporating dish heater 76, a glass tube heater, a sheath heater, a plate heater, or the like can be used.
[0016]
FIG. 5 is a block diagram of a control system for controlling the high-frequency heating device 60 with a steam generation function. This control system mainly includes a control unit 701 having a microprocessor, for example. The control unit 701 mainly exchanges signals with the power supply unit 703, the storage unit 705, the input operation unit 707, the display panel 709, the heating unit 711, the cooling fan 81, and the like.
[0017]
Various operations such as a start switch 719 for instructing the start of heating, a changeover switch 721 for switching between heating methods such as high-frequency heating and steam heating, and an automatic cooking switch 723 for starting a prepared program are provided on the input operation unit 707. Switch is connected.
The heating unit 711 is connected to a high-frequency generator 70, a steam generator 69, a circulation fan 64, an infrared sensor 63, and the like. The high-frequency generator 70 operates in cooperation with a radio wave agitator (a stirrer blade driving unit) 73, and the steam generator 69 includes an evaporating dish heater 76, a room air heater 66 (convection heater), and the like. Is connected. Note that this block diagram also includes elements other than the mechanical components described above (for example, the water supply pump 80, the door blower damper 82, the exhaust damper 83, and the like), which will be described later. The embodiment will be described.
[0018]
Next, the basic operation of the high-frequency heating device 60 with a steam generating function described above will be described with reference to the flowchart of FIG.
As an operation procedure, first, the food to be heated is placed on a dish or the like, placed in the heating chamber 62, and the opening / closing door 71 is closed. Then, a heating method, a heating temperature or a time is set by the input operation unit 707 (Step 10, hereinafter abbreviated as S10), and a start switch is turned ON (S11). Then, the heating process is automatically performed by the operation of the control unit 701 (S12).
[0019]
That is, the control unit 701 reads the set heating temperature and time, selects and executes an optimal cooking method based on the set heating temperature and time, and determines whether the set heating temperature and time have been reached (S13). When the set value is reached, each heating source is stopped to end the heating process (S14). In S12, the steam generation, the indoor air heater, the circulation fan rotation, and the high frequency heating are individually or simultaneously performed.
[0020]
At the time of the above-described operation, for example, an operation when a mode of “steam generation + circulation fan ON” is selected and executed will be described. When this mode is selected, as shown in FIG. 7 showing the operation of the high-frequency heating device 60, when the evaporating dish heater 76 is turned on, the water in the evaporating dish 75 is heated and steam S is generated. . The steam S rising from the evaporating dish 75 is sucked into the center of the circulation fan 64 from the ventilation hole 65 for intake provided substantially in the center of the partition plate 68, passes through the circulation fan chamber 67, and moves around the partition plate 68. Air is blown into the heating chamber 62 from the ventilation holes 72 provided in the section. The blown-out steam is stirred in the heating chamber 62, and is again sucked into the circulation fan chamber 67 through the air intake hole 65 substantially at the center of the partition plate 68. Thereby, a circulation path is formed in the heating chamber 62 and the circulation fan chamber 67. It is to be noted that the generated steam is guided to the intake vent 65 without providing the ventilation vent 72 below the position of the circulation fan 64 of the partition plate 68. Then, as shown by a white arrow in the drawing, the steam circulates through the heating chamber 62, so that the steam is blown to the object to be heated M.
[0021]
At this time, the steam in the heating chamber 62 can be heated by turning on the indoor air heater 66, so that the temperature of the steam circulating in the heating chamber 62 can be set to a high temperature. Therefore, so-called superheated steam is obtained, and heating cooking in which the surface of the object to be heated M is browned becomes possible. When high-frequency heating is performed, the magnetron 70 is turned on and the stirrer blades 73 are rotated to supply high-frequency waves into the heating chamber 62 while stirring, so that high-frequency heating cooking without unevenness can be performed.
[0022]
As described above, according to the high-frequency heating device of the prior invention, since the steam is generated inside the heating chamber 62 instead of outside, the evaporation generating the steam is performed similarly to the case where the inside of the heating chamber 62 is cleaned. The plate 75 can be easily cleaned. For example, in the process of generating steam, calcium, magnesium, chlorine compounds, and the like in the water may be concentrated and settle and adhere to the bottom of the evaporating dish 75, but those attached to the surface of the evaporating dish 75 are wiped off with a cloth or the like. Just wipe it clean.
Further, as described with reference to FIG. 4, the evaporating dish installed inside the high-frequency heating device is radiantly heated by the heater, and the radiant heat from the heater is reflected by the reflecting plate to the evaporating dish. Therefore, the heating efficiency is improved.
[0023]
[Problems to be solved by the invention]
As described above, in the prior invention, the heating efficiency is greatly improved as compared with the conventional apparatus, and the maintenance can be easily performed.
However, the present applicant has not been satisfied with this yet, and has further sought to increase the heating efficiency. Further, since the reflector was bulky and did not fit the trend of miniaturization, he considered not using it.
The present invention improves on these drawbacks, and provides a miniaturized steam generator that, while having the same wattage, drastically increases the speed at which the dropped water evaporates when the water is dropped. It is an object of the present invention to provide a high-frequency heating device having the same.
[0024]
[Means for Solving the Problems]
In order to solve the above problem, an invention of a high-frequency heating device with a steam generation function according to claim 1 is provided with a high-frequency generation unit, an evaporating dish provided on a bottom surface of a heating chamber for accommodating an object to be heated, and heating the evaporating dish. A high-frequency heating device with a steam generating function, comprising: a heater device configured to generate steam in the heating chamber; and a heater device including a sheathed heater embedded in an aluminum die-cast. This is directly attached to the back side of the evaporating dish.
With such a configuration, it is possible to remarkably increase the speed at which the dropped water evaporates when the water is dropped, while having the same wattage as the conventional device and the prior invention.
[0025]
The invention of a high-frequency heating device with a steam generation function according to claim 2 is a high-frequency generation unit, an opening corresponding to an evaporating dish provided on a bottom surface of a heating chamber accommodating an object to be heated, and a heater closing the opening corresponding to the evaporating dish. A high-frequency heating device with a steam generating function, comprising: a steam generating section configured to generate steam in the heating chamber; and The heater device is buried, and the heater device is attached so that the evaporating dish of the heater device faces the opening corresponding to the evaporating dish.
With such a configuration, heating of water is further accelerated as compared with the first aspect of the invention.
[0026]
According to a third aspect of the present invention, in the high-frequency heating device with a steam generating function according to the second aspect, a metal seal is provided between the opening corresponding to the evaporating dish and the heater device.
With such a configuration, it is possible to completely prevent microwave radio wave leakage that may leak from between the opening corresponding to the evaporating dish and the heater device.
[0027]
According to a fourth aspect of the present invention, in the high-frequency heating apparatus with a steam generating function according to any one of the first to third aspects, a thermistor is provided on the aluminum die-cast, and the evaporating dish is provided by temperature information from the thermistor. It is characterized in that the control of the amount of evaporation from water and the control at the time of abnormality when water is exhausted in the evaporating dish are performed.
With such a configuration, the control of the evaporation amount and the overheating control at the time of abnormality can be performed with a simple configuration.
According to a fifth aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to fourth aspects, when the off-level of the thermistor is performed twice or more predetermined times continuously. Power supply to the heater device is stopped, and steam heating is stopped.
With such a configuration, it becomes possible to quickly perform overheating control at the time of abnormality.
According to a sixth aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to fifth aspects, the heater device has the sheathed heater embedded in the aluminum die-cast in a U-shape, A thermistor is attached to a hole formed between the two long axes of the U-shape.
With this configuration, the thermistor can accurately detect the temperature near the evaporating dish.
[0028]
According to a seventh aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to sixth aspects, the steam generating unit is provided at a position on the opposite side of the heating chamber from the object to be heated. It is characterized by being provided on one side or both sides.
With this configuration, the steam generating section does not become an obstacle to cooking and there is no risk of burns, and the steam amount can be easily controlled by installing a plurality of the steam generating sections.
[0029]
According to an eighth aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to seventh aspects, a water supply pipe is fixed to the aluminum die cast.
With this configuration, since the water in the water supply pipe is heated, the water is supplied to the evaporating dish to shorten the evaporation time, and the thermal expansion of the water in the water supply pipe is utilized. Thereby, pumpless water can be supplied to the evaporating dish by a siphon.
[0030]
The invention of a high-frequency heating device with a steam generating function according to claim 9 uses the water supply pipe according to claim 8 as a part of a water supply pipe for supplying a predetermined amount of water from a water storage tank to the evaporating dish. An atmospheric pressure intake is provided in the middle of a water supply pipe from the water supply pipe to the evaporating dish, and water is expanded by rapidly heating the water in the water supply pipe, and the expanded water passes through the air intake. A siphon function is started.
This configuration eliminates the need for a water pump and contributes to saving parts, space, and energy.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a high-frequency heating device with a steam generating function according to the present invention will be described in detail with reference to the drawings.
FIG. 8 is a side sectional view showing a schematic configuration of a heating device according to the present invention, wherein A1 is the first embodiment of the present invention, A2 is the second embodiment, and B is the above-mentioned prior invention. Is shown.
[First Embodiment]
In (A1) of FIG. 8 showing the first embodiment, 10 is an apparatus main body housing, and 11 is a flat heater. The flat heater device 11 is obtained by finishing a heater device in which a U-shaped sheathed heater is embedded in an aluminum die cast into a flat plate shape, and is characterized in that the flat plate portion is directly attached to the back side of an iron plate evaporating dish. It is.
9A and 9B are exploded perspective views of the flat heater device, in which FIG. 9A is a perspective view of the evaporating dish, and FIG. 9B is a perspective view of the heater device. FIG. It is each perspective view of.
In (A), reference numeral 20 denotes a metal evaporating dish, which constitutes a dish portion by a side surface 21 and a bottom portion 22 of the dish, and has a screw hole 23 formed therein.
In (B1), 11 is a heater device made of aluminum die-cast, 111 is a contact portion to the bottom portion 11 of the evaporating dish, 112 is a mounting portion, and 113 is a cast U-shaped sheathed heater. The screw holes 117 and the screw holes 23 of FIG. In (B2), the same reference numerals as (B1) denote the same items, and a description thereof will not be repeated. Here, it can be seen that the sheathed heater 113 is cast in a U-shape. Also, two raised portions 11a and 11b are formed on the back side of the aluminum die cast, and an insertion hole for inserting a thermistor to be described later is formed in the first raised portion 11a on the left side in the drawing. I have.
In addition, a water supply pipe 114 described later is fixed to the second raised portion 11b on the right side in the figure.
With such a configuration, the heat generated by the sheath heater 113 is directly conducted to the evaporating dish 20 from the aluminum die-cast contact portion 111. Therefore, the conventional pipe shown in FIG. The heat conduction is remarkably faster than that of the radiant heating device 15 using the heater 13 and the reflection plate 14, so that the heating and cooking by steam is faster.
Also, the size of the device is reduced.
[0031]
Table 1 is a comparison table of the steam generation mechanism of the present invention using the same wattage heater and that of the prior art as the prior invention.
[0032]
[Table 1]
Figure 2004278853
[0033]
When the time from when the current was supplied to the heater device until the start of evaporation was measured, it took about 60 seconds in the conventional example, but according to the present invention, it was reduced to about 30 seconds by about 30 seconds.
In addition, the amount of generated steam is 10 cc per minute in the conventional example, but is 12 to 13 cc per minute according to the present invention, and it is possible to evaporate as much as 20 to 30%. Thus, the cooking time can be reduced by shortening the start time and increasing the amount of evaporation.
[0034]
[Second embodiment]
In (A2) of FIG. 8 showing the second embodiment, 10 is an apparatus main body housing, and 12 is a deep dish container-shaped heater device. The deep dish container-shaped heater device 12 finishes a heater device in which a sheathed heater is embedded in an aluminum die-cast into a deep dish container shape, while a part of an evaporating dish made of an iron plate is hollowed out, and the hollowed-out portion is formed. It is characterized by fitting a deep dish container heater device.
FIG. 10 is an exploded perspective view of a deep dish container-shaped heater device. FIG. 10 (A) is a perspective view of a metal plate with an evaporating dish portion hollowed out. FIG. 10 (B) is a perspective view of the heater device. (B2) is a perspective view of the back side.
In (A), reference numeral 30 denotes an evaporating dish corresponding plate provided with a hollow part 31 formed by hollowing a part corresponding to the evaporating dish from a metal plate 32. 126 is a metal seal, and 33 is a screw hole.
In (B1), reference numeral 12 denotes a heater device made of aluminum die-cast, which comprises an evaporating dish portion 121 facing the hollow portion 31 and a mounting portion 122. 123 is a cast U-shaped sheathed heater, and 124 is a water supply pipe.
In (B2), the same reference numerals as (B1) denote the same items, and a description thereof will not be repeated. Here, it can be seen that the sheathed heater 123 is cast in a U-shape.
Further, two raised portions 12a and 12b are formed on the back side of the aluminum die cast, and an insertion hole 125 for inserting a thermistor described later is formed in the first raised portion 12a on the left side in the drawing. ing.
Further, a water supply pipe 124 to be described later is fixed to the second raised portion 12b on the right side in the drawing.
With such a configuration, the heat generated by the sheath heater 123 is directly conducted to the evaporating dish 121 in the aluminum die-cast, so that the conventional tube heater 13 shown in FIG. The heat conduction is remarkably faster than that of the radiant heating device 15 using the reflection plate 14, and the loss of the heat conduction is further reduced as compared with the first embodiment shown in FIG. This results in faster heating of the water and thus faster cooking by steam. Also, the size of the device is reduced.
[0035]
In the case where the hollow portion 31 of the metal plate 32 and the deep dish-shaped heater device 12 are combined, if there is a gap between them, there is a possibility that microwave radio wave leakage may occur therefrom. If the metal seal 126 is provided around the plate 121, the metal seals 126 are almost in contact with each other at most places, so that there is almost no possibility that a gap of λ / 4 or more is formed. Therefore, microwave leakage can be prevented.
Further, since the interval between the screw holes 33 is set to λ / 4 or less, it is possible to prevent microwave leakage from the radio wave for the same reason. It also prevents abnormal overheating and sparks due to partial contact.
[0036]
[Third Embodiment]
FIGS. 11A and 11B are views for explaining the locations and the number of evaporating dishes in the high-frequency heating apparatus according to the present invention. FIG. 11A is a front view showing a state in which an opening / closing door of the high-frequency heating apparatus is opened, and FIG. It is a schematic front view showing a position.
In FIG. 9A, 40 is a high-frequency heating device with a steam generating function, 41 is the upper ceiling of a heating chamber, 42 is a right wall, 43 is a left wall, 44 is a bottom surface, 45 is a metal plate with an evaporating dish, and 46R is right evaporation A dish, 46L is a left evaporating dish, 47R is a right water inlet, 47L is a left water inlet, and 49 is a circulation fan.
As described above, since the evaporating dish 46 according to the present invention has a large evaporating ability, it is not necessary to provide the evaporating dish 46 in the depth of a conventional microwave oven transversely (see 15 in FIG. 1). Thus, it may be provided at one location at the right or left corner of the microwave oven ((b) in (b)) or at two locations at both left and right corners of the microwave oven as shown in (b).
In this case, one piece is sufficient as long as the same evaporation capacity as that of the related art can be obtained.
However, it is convenient to use two steams when a lot of steam is needed instantaneously depending on the type of dish. In that case, use both steams, and if you do not need much steam, use only one steam. You will be able to control. As another usage, it is also possible to perform steam adjustment by stopping or intermittently operating the other while performing the continuous heating operation on one.
[0037]
Table 2 is a diagram showing an increase ratio of the weight after heating to the weight before heating, for example, using frozen fried shrimp and baking as cooking objects.
[0038]
[Table 2]
Figure 2004278853
[0039]
In Table 2, when frozen Shumai was cooked by applying steam (conventional example) by radiant heat and steam (conducted by present invention) by conductive heat, the weight change rate was increased by 0.9% in the conventional example. Thus, in the present invention, it increased by 1.6%. In other words, when the steam and the radio waves that were evaporated at high speed by the conduction heat are heated together, the steam spreads faster in the refrigerator and adheres to the food surface than by the radiant heat, so the food can be heated while giving moisture to the food. In addition, the moisture is further increased (increased by 1.6%) than the increase in steam caused by radiant heat (increased by 0.9%), so that a moist shimmer is completed.
[0040]
Moreover, in the case of the cooking of the roasting, the reduction is 2.6% in the conventional example, while the reduction is 2.3% in the present invention. In other words, when combined with the heat of steam vaporized at high speed by conduction heat and radio waves, steam spreads into the chamber faster and cooking finishes faster than conventional equipment using radiant heat. It can be stopped earlier, and the dryness is less (2.3% less) than the weight loss (2.6% less) due to the drying of the conventional apparatus, so that the feeling of dryness is less.
As described above, according to the present invention, the time required for heating is shorter than before, so that the time for heating with radio waves is also shorter, and therefore, the time during which the moisture of the object evaporates during that time is also shorter, and the moisture of the object is reduced. The decrease is less.
[0041]
[Fourth Embodiment]
FIG. 12 is a longitudinal sectional view showing the periphery of the heater device according to the fourth embodiment. In the fourth embodiment, the temperature of the heater device (aluminum die-cast) is detected by a thermistor buried in the center of the heater, and when the detected value exceeds a predetermined value, normal temperature control is performed so that current does not flow through the heater device. In addition to (control of the amount of evaporation), it is possible to perform control at the time of abnormality when water has run out in the evaporating dish. As a specific example, it is preferable to stop the power supply to the heater device and stop the steam heating when the off-level of the thermistor is performed twice or more predetermined times in succession. With such a configuration, it becomes possible to quickly perform overheating control at the time of abnormality. The overheat protection operation is as follows.
[0042]
FIG. 13 is a diagram illustrating an overheat protection operation by idle heating according to the present invention.
As shown in FIG. 13, when the thermistor 50 (FIG. 12) is supplied with water from the water storage tank and the water supply tray 45 is filled with water, the detected temperature level rises as the temperature of the heating means 113 rises. However, when water is exhausted in the water supply tray 45 indicated by the symbol a in the figure, since the heating means 113 is energized, the detected temperature level rises rapidly and exceeds the upper limit reference value indicated by b.
The control circuit (not shown) cuts off the power supply to the heating means 113 when the value exceeds the upper limit reference value. At this point, although there is an overshoot, the detected temperature level of the thermistor 50 decreases. Eventually, when the detected temperature level of the thermistor 50 reaches the lower limit reference value indicated by c, the control circuit again energizes the heating means 113 to heat the heater. However, since there is no water in the water supply tray 45, the detected temperature level of the thermistor 50 rises again and exceeds the upper limit reference value indicated by d. At this time, the control circuit determines that there is no water in the water supply tray 45 and the heating means 113 is in the state of baking, and as shown by e, shuts off the power supply to the heating means 113 and issues an alarm. Control to stop the steam heating process is performed.
[0043]
In the present embodiment, as described above, a single thermistor can control the generation of the amount of steam and detect an abnormality when the evaporating dish runs out of water.
Further, the above-described control makes it possible to extend the life of the heater and to use the heater within the heat-resistant temperature of the evaporating dish, thereby preventing deterioration of the fluororesin-coated surface of the evaporating dish.
[0044]
The thermistor is mounted at the center between the two long axes of the U-shaped sheathed heater 113, and a hole 111a is formed in the aluminum die-cast 111 toward the evaporating dish 45 in order to detect the accurate temperature of the evaporating dish 45. It is opened and the thermistor 50 is mounted therein.
Although the heater device shown in FIG. 9 is used in FIG. 12, the same applies to the heater device shown in FIG.
[0045]
When adopting the siphon pumpless system, it is preferable to use a heater device in which the water supply pipe shown in FIG. 9 or FIG. 10 is fixed to an aluminum die cast.
FIG. 14 is an explanatory diagram of an operation of a pumpless system using a siphon.
In FIG. 14, a steam supply mechanism 91 includes a water storage tank 92 in which the apparatus main body 90 is detachably mounted, two metal evaporating dishes 20 installed in a heating chamber 93, and these metal evaporating dishes. A heater device 94 for heating the metal 20 to evaporate water on the metal evaporating dish 20; a water supply passage 95 for guiding water in the water storage tank 92 to the evaporating dish 20 via a heating area of the heater device 94; A water stop valve 96a on the tank side and a water stop valve 96b on the water supply channel side for preventing leakage of water in the water storage tank 92 and the water supply channel 95 when the water storage tank 92 is removed. And a check valve 97 disposed downstream of the water stop valve 96b on the water supply path side to prevent back flow of water from the water supply path 29 to the water storage tank 92.
[0046]
The water supply passage 95 is provided below the bottom plate 98 of the heating chamber 93 so as to pass through a base pipe 95a connected to the connection port 22b of the water storage tank 92 and a heating area by the heater device 94 from the base pipe 95a. A horizontal pipe portion 95b to be laid, a vertical pipe portion 95c that rises vertically from the tip of the horizontal pipe portion 95b to the side of the heating chamber 93, and extends above the water supply tray 45 from the upper end of the vertical pipe portion 95c. An upper pipe section 95e for dropping water pumped from the vertical pipe section 95c to the water supply tray 45, an air intake 95d, and a water outlet 95f forming a tip of the upper pipe section 95e.
The horizontal pipe portion 95b is piped so as to be in contact with the aluminum die cast 94a of the heater device 94, and the heat from the heater device 94 is quickly conducted, and the water in the horizontal pipe portion 95b expands and is supplied to the evaporating dish 94. You.
[0047]
Here, the principle of steam generation will be described in detail.
When the water storage tank 92 is inserted into the tank accommodating portion 35 and the horizontal piping portions 95b and 95b are filled with water, and the heater device 94 generates heat, the water in the piping is heated at the contact portion with the aluminum die cast 94a. Supplied water expands.
The check valve 97 temporarily stops the pressure of the water in the expanding pipe, so that the pressure is directed toward the vertical pipe section 95c, and the expanded water passes through the upper pipe section 95e and is discharged from the water outlet 95f. It is dropped and supplied to the evaporating dish 20.
[0048]
The base pipe section 95a is provided with a pipe-side water stop valve 96b for preventing water leakage from the horizontal pipe section 95b when the water storage tank 92 is detached, and has a connection section with the horizontal pipe section 95b. Is provided with a check valve 47 for preventing a backflow from the horizontal pipe portion 95b side due to thermal expansion of water in the horizontal pipe portion 95b.
[0049]
As shown in FIG. 14, the upper end of the vertical pipe part 95c to which the upper pipe part 95e is connected is set to a position higher than the highest level Hmax of the stored water in the water storage tank 92. This is to prevent the water stored in the water storage tank 92 from inadvertently and continuously flowing out to the upper pipe portion 95e by the communication pipe action.
Further, the water supply passage 95 is connected to the water storage tank 92 via the base end pipe portion 95a at a position further lower than the minimum level Hmin of the stored water in the water storage tank 92. This is because the water stored in the water storage tank 92 can be taken into the water supply channel 95 without leaving it.
[0050]
Since the water supplied to the evaporating dish 20 is in a state of being heated by the heat generated by the heater device 94, the time required from the supply to the evaporating dish 20 to the generation of steam can be shortened, and rapid steam heating can be achieved. Becomes possible.
[0051]
If the heating is interrupted, the water in the vertical pipe portion 95c in the water supply channel 95 does not expand, and cannot reach the air intake 95d. Atmospheric pressure enters the pipe from the air intake 95d, and the water supply is stopped.
[0052]
Further, in the above configuration, when the remaining amount of the water storage tank 92 becomes 0 (zero) and the amount of residual water on the evaporating dish 20 decreases, the amount of heat used for evaporating water decreases. An increase in the temperature of 20 itself occurs. However, since the steam supply mechanism 91 of the present embodiment includes the thermistor 50 for detecting the temperature of the heater device 94 as described above, it is relatively easy to monitor the detection signal of the thermistor 50. It is possible to detect the remaining amount 0 of the water storage tank 92, and it is possible to prevent inconvenience such as emptying.
Further, various kinds of control such as stopping the operation of the heater device 94 or issuing an alarm for water supply can be performed by using the detection signal of the thermistor, for example, when the remaining amount of the water storage tank 92 is detected, The handleability of the heating device 100 can be improved.
[0053]
In the above, the case of one evaporating dish in (b) of FIG. 11B has been described, but the principle is the same for a pumpless siphon in the case of two evaporating dishes in (b). However, in this case, if the water supply passage 95 provided in the evaporating dish 20 is configured such that the distance from the contact portion of the heater to the water outlet at the tip of the pipe is set to be equal, the supply amount in each water supply passage 95 And uniform supply of the heating steam in the heating chamber 93 can be realized at low cost.
[0054]
As described above, when an electric current is applied to the sheathed heater, the aluminum die-cast rapidly heats, the water in the water supply pipe is also rapidly heated and expands, and the expanded water passes through the atmospheric pressure inlet 95d in the pipe. Eventually, the water reaches the water supply port provided below the reference water surface and the siphon operation starts, and water from the water discharge tank is supplied to the evaporating dish from the water supply port at the tip of the water supply pipe. The water supply then continues during the heating. If the heating is interrupted, the water in the water supply pipe does not expand and cannot reach the air intake 95d, and the atmospheric pressure enters the pipe from the air intake 95d, and the water supply is stopped.
As described above, when the heater device according to the present invention shown in FIG. 9 or FIG. 10 is used, rapid high-temperature heating can be performed, so that the water in the water supply pipe can rapidly and largely expand. It becomes possible.
[0055]
【The invention's effect】
As described above, according to the invention of the high-frequency heating device with the steam generation function according to the first aspect, the high-frequency generation unit, the evaporating dish provided on the bottom surface of the heating chamber that accommodates the object to be heated, and the evaporating dish are heated. A high-frequency heating device with a steam generating function, comprising: a heater device configured to generate steam in the heating chamber; and a heater device including a sheathed heater embedded in an aluminum die-cast. Since this is directly attached to the back side of the evaporating dish, the speed at which the dropped water evaporates when the water is dropped is remarkably increased while having the same wattage as the conventional device and the prior invention. Will be able to
[0056]
According to the invention of the high-frequency heating device with the steam generating function according to the second aspect, the high-frequency generation section, the opening corresponding to the evaporating dish provided on the bottom surface of the heating chamber for accommodating the object to be heated, and the opening corresponding to the evaporating dish are provided. A high-frequency heating device having a steam generating function, comprising a heater device for closing and generating steam in the heating chamber, wherein the upper surface of the aluminum die-cast is used as an evaporating dish, and the lower surface thereof is seeded. Since the heater device is formed by embedding a heater, and the heater device is attached so that the evaporating dish of the heater device faces the opening corresponding to the evaporating dish, heating of the water is further accelerated as compared with the invention according to claim 1. .
[0057]
According to the third aspect of the present invention, in the high-frequency heating apparatus with the steam generating function according to the second aspect, a metal seal is provided between the opening corresponding to the evaporating dish and the heater device. And leakage of microwaves that may leak from between the heater and the heater device can be completely prevented.
[0058]
According to a fourth aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to third aspects, a thermistor is disposed on the aluminum die cast, and the thermistor is provided based on temperature information from the thermistor. Since the control of the amount of evaporation from the evaporating dish and the control at the time of abnormality when the evaporating dish runs out of water are performed, the control of the amount of evaporation and the overheating control at the time of abnormality can be performed with a simple configuration. .
[0059]
According to a fifth aspect of the present invention, in the high-frequency heating apparatus with a steam generating function according to any one of the first to fourth aspects, the off-level of the thermistor is continuously performed twice or more predetermined times. Then, the power supply to the heater device is stopped and the steam heating is stopped, so that the overheating control at the time of abnormality can be quickly performed.
[0060]
According to a sixth aspect of the present invention, in the high-frequency heating apparatus with a steam generating function according to any one of the first to fifth aspects, the heater device embeds the sheathed heater in the aluminum die-cast in a U-shape. Since the thermistor is attached to the hole formed between the two U-shaped long axes, the thermistor can accurately detect the temperature near the evaporating dish.
[0061]
According to a seventh aspect of the present invention, in the high-frequency heating device with a steam generating function according to any one of the first to sixth aspects, the steam generating section is provided on a side of the heating chamber opposite to an outlet to be heated. Since it is provided on one side or both sides at the back, the steam generating section does not become an obstacle to cooking and there is no risk of burns. Further, by installing a plurality of sections, it becomes easy to control the amount of steam.
[0062]
According to the invention of claim 8, in the high-frequency heating device with a steam generating function according to any one of claims 1 to 7, the water supply pipe is fixed to the aluminum die cast, so that the water in the water supply pipe is heated. As a result, pumpless water can be supplied to the evaporating dish using a siphon.
[0063]
The invention of a high-frequency heating device with a steam generating function according to claim 9 uses the water supply pipe according to claim 8 as a part of a water supply pipe for supplying a predetermined amount of water from a water storage tank to the evaporating dish. An atmospheric pressure intake is provided in the middle of a water supply pipe from the water supply pipe toward the evaporating dish, and water is expanded by rapidly heating the water in the water supply pipe, and the expanded water passes through the air intake. Since the siphon function is started, a water pump is not required, which contributes to saving parts, space and energy.
[Brief description of the drawings]
FIG. 1 is a front view showing a state in which a door of a high-frequency heating device with a steam generating function according to a first embodiment of the present invention is opened.
FIG. 2 is a perspective view showing an evaporating dish of a steam generating section used in the high-frequency heating device with a steam generating function of FIG.
FIG. 3 is a perspective view showing an evaporating dish heater and a reflection plate of the steam generation unit.
FIG. 4 is a cross-sectional view of a steam generating section of the apparatus.
FIG. 5 is a block diagram of a control system for controlling the high-frequency heating device with a steam generation function.
FIG. 6 is a flowchart illustrating a basic operation of the high-frequency heating device with a steam generation function.
FIG. 7 is an operation explanatory diagram of the high-frequency heating device with a steam generation function.
FIG. 8 is a side sectional view showing a schematic configuration of a heating device according to the present invention, wherein A1 is the first embodiment of the present invention, A2 is the second embodiment, and B is the above-mentioned prior invention. Each is shown.
FIGS. 9A and 9B are exploded perspective views of the flat heater device according to the first embodiment, in which FIG. 9A is a perspective view of the evaporating dish, and FIG. 9B is a perspective view of the heater apparatus. FIG. (B2) is a perspective view of the back side.
FIGS. 10A and 10B are exploded perspective views of a deep dish container-shaped heater device according to a second embodiment, in which FIG. 10A is a metal plate obtained by hollowing out an evaporating dish portion, and FIG. 10B is a perspective view of the heater device. (B1) is a perspective view of the side to be attached to the metal plate, and (B2) is a perspective view of the back side.
FIGS. 11A and 11B are diagrams illustrating installation locations and the number of evaporating dishes in the high-frequency heating device according to the third embodiment, where FIG. 11A is a front view showing a state where an opening / closing door of the high-frequency heating device is opened; () Is a schematic front view showing the position of the evaporating dish.
FIG. 12 is a longitudinal sectional view illustrating a periphery of a heater device according to a fourth embodiment.
FIG. 13 is a diagram illustrating an overheating protection operation by idle heating according to the present invention.
FIG. 14 is a schematic configuration diagram of a steam supply mechanism when one water supply tray is provided.
[Explanation of symbols]
10 device body housing,
11 Flat heater device
11a, 11b ridge
111 Aluminum die-cast contact part,
111a Thermistor receiving hole
112 mounting part,
113 U-shaped sheathed heater
114 Water supply pipe
117 screw hole
12 Deep dish container heater device
12a, 12b ridge
121 Evaporating dish
123 U-shaped sheathed heater,
124 water supply pipe
126 metal seal
19 screws
20 metal evaporation dishes
21 Side of dish
22 bottom
23 Screw hole
30 Evaporating dish compatible plate
31 hollow part
32 metal plate
33 screw hole
45 evaporating dish
50 Thermistor
90 Main unit
91 Steam supply mechanism
92 water storage tank
93 heating room
94 heater unit
95 Waterway
96 Water stop valve
96a Water stop valve on tank side
96b Water supply side water stop valve
97 Check valve
95a Base end piping section
95b Horizontal piping
95c Vertical piping section
95d air intake
95e Upper piping section
95f water outlet
98 bottom plate

Claims (9)

高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿および該蒸発皿を加熱するヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、
前記ヒータ装置をアルミダイキャストにシーズヒータを埋め込んで成るヒータ装置とし、これを前記蒸発皿の裏側に直付けしたことを特徴とする蒸気発生機能付き高周波加熱装置。
A high-frequency generator, and a steam generator configured to include an evaporating dish provided on the bottom surface of the heating chamber that accommodates the object to be heated and a heater device that heats the evaporating dish, and generate steam in the heating chamber. High frequency heating equipment with steam generation function
A high-frequency heating device with a steam generating function, wherein the heater device is a heater device in which a sheathed heater is embedded in an aluminum die-cast, and the heater device is directly attached to the back side of the evaporating dish.
高周波発生部と、被加熱物を収容する加熱室の底面に設けられた蒸発皿対応開口部および該蒸発皿対応開口部を塞ぐヒータ装置とで構成されて前記加熱室内で蒸気を発生する蒸気発生部と、を備えた蒸気発生機能付き高周波加熱装置において、
前記ヒータ装置をアルミダイキャストの上面を蒸発皿としその下面にシーズヒータを埋設して成るヒータ装置とし、前記蒸発皿対応開口部に前記ヒータ装置の前記蒸発皿が臨むようにして前記ヒータ装置を取り付けたことを特徴とする蒸気発生機能付き高周波加熱装置。
A steam generator that includes a high-frequency generator, an opening corresponding to an evaporating dish provided on a bottom surface of a heating chamber that accommodates an object to be heated, and a heater device that closes the opening corresponding to the evaporating dish, and generates steam in the heating chamber. And a high-frequency heating device with a steam generating function comprising:
The heater device was a heater device in which an upper surface of an aluminum die-cast was used as an evaporating dish, and a sheath heater was buried in the lower surface of the evaporating dish. A high-frequency heating device with a steam generating function, characterized in that:
前記蒸発皿対応開口部と前記ヒータ装置との間に金属シールが施されたことを特徴とする請求項2記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 2, wherein a metal seal is provided between the opening corresponding to the evaporating dish and the heater device. 前記アルミダイキャストにサーミスタを配設し、該サーミスタからの温度情報によって前記蒸発皿からの蒸発量の制御および前記蒸発皿に水が無くなったときの異常時の制御を行うことを特徴とする請求項1〜3のいずれか1項記載の蒸気発生機能付き高周波加熱装置。A thermistor is disposed on the aluminum die-cast, and control of the amount of evaporation from the evaporating dish and control of an abnormal time when the evaporating dish runs out of water are performed based on temperature information from the thermistor. Item 4. The high-frequency heating device with a steam generating function according to any one of Items 1 to 3. 前記サーミスタのオフレベルを連続2回又はそれ以上の所定回行われた場合に前記ヒータ装置への給電を中止し、スチーム加熱を停止させることを特徴とする請求項1〜4のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The power supply to the heater device is stopped when the off-level of the thermistor is performed two or more predetermined times consecutively, and steam heating is stopped. A high-frequency heating device with a steam generation function according to the description. 前記ヒータ装置は前記アルミダイキャストに前記シーズヒータをU字状に埋め込んで成り、該U字状の2本の長軸間に開けられた孔にサーミスタを取り付けたことを特徴とする請求項1〜5のいずれか1項記載の蒸気発生機能付き高周波加熱装置。2. The heater device according to claim 1, wherein the sheathed heater is embedded in the aluminum die-cast in a U-shape, and a thermistor is attached to a hole formed between two long axes of the U-shape. The high-frequency heating device with a steam generating function according to any one of claims 1 to 5. 前記蒸気発生部を前記加熱室の被加熱物取出口とは反対側の奥の片側又は両側に設けたことを特徴とする請求項1〜6のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating with a steam generation function according to any one of claims 1 to 6, wherein the steam generation unit is provided on one or both sides of a rear side of the heating chamber opposite to the outlet for the object to be heated. apparatus. 前記アルミダイキャストに給水パイプを固定したことを特徴とする請求項1〜7のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating apparatus with a steam generating function according to any one of claims 1 to 7, wherein a water supply pipe is fixed to the aluminum die cast. 水貯留タンクから前記蒸発皿に所定量の水を供給する給水管路の一部に前記請求項8記載の給水パイプを用い、該給水パイプから蒸発皿に向かう給水管路の途中に大気圧採り入れ口を設けておき、前記給水パイプ内の水を急速加熱させることによって水を膨張させ、この膨張水が空気採り入れ口を通過してサイフォン機能を開始させることを特徴とする蒸気発生機能付き高周波加熱装置。A water supply pipe for supplying a predetermined amount of water from a water storage tank to the evaporating dish, wherein the water supply pipe according to claim 8 is used, and atmospheric pressure is introduced in the middle of the water feeding pipe from the water supply pipe to the evaporating dish. A high-frequency heating unit with a steam generating function, characterized in that water is expanded by rapidly heating the water in the water supply pipe, and the expanded water passes through an air intake to start a siphon function. apparatus.
JP2003068222A 2003-03-13 2003-03-13 High-frequency heating device with steam generation function Expired - Fee Related JP3761176B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003068222A JP3761176B2 (en) 2003-03-13 2003-03-13 High-frequency heating device with steam generation function
CN200710006115A CN100578081C (en) 2003-03-13 2004-03-11 Steam generation function-equipped high-frequency heating device
CN2007100061147A CN101012922B (en) 2003-03-13 2004-03-11 Steam generation function-equipped high-frequency heating device
PCT/JP2004/003187 WO2004081455A1 (en) 2003-03-13 2004-03-11 Steam generating function-equipped high-frequency heating device
US10/548,479 US7304278B2 (en) 2003-03-13 2004-03-11 Steam generation function-equipped high-frequency heating device
EP04719586A EP1607684A1 (en) 2003-03-13 2004-03-11 Steam generating function-equipped high-frequency heating device
CNB2004800065890A CN100381758C (en) 2003-03-13 2004-03-11 Steam generating function-equipped high-frequency heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068222A JP3761176B2 (en) 2003-03-13 2003-03-13 High-frequency heating device with steam generation function

Publications (2)

Publication Number Publication Date
JP2004278853A true JP2004278853A (en) 2004-10-07
JP3761176B2 JP3761176B2 (en) 2006-03-29

Family

ID=33285623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068222A Expired - Fee Related JP3761176B2 (en) 2003-03-13 2003-03-13 High-frequency heating device with steam generation function

Country Status (2)

Country Link
JP (1) JP3761176B2 (en)
CN (3) CN100381758C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317016A (en) * 2005-05-10 2006-11-24 Hitachi Home & Life Solutions Inc Heating cooker
CN100425910C (en) * 2005-09-05 2008-10-15 上海松下微波炉有限公司 Control method of steam microwave oven and control apparatus thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607684A1 (en) 2003-03-13 2005-12-21 Matsushita Electric Industrial Co., Ltd. Steam generating function-equipped high-frequency heating device
EP2462808B1 (en) * 2010-12-13 2019-11-13 BSH Hausgeräte GmbH Steam oven
CN106901615B (en) * 2017-02-23 2023-07-14 珠海格力电器股份有限公司 Control method, device and system for cleaning oven
DE102018217645A1 (en) * 2018-10-15 2020-04-16 E.G.O. Elektro-Gerätebau GmbH Evaporator device and electrical device with an evaporator device
CN110338640A (en) * 2019-07-16 2019-10-18 宁波奥克斯电气股份有限公司 A kind of electricity control method of steam box, control device and electric steam box

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410460A (en) * 1977-06-24 1979-01-26 Mitsubishi Electric Corp Cooker
ITBO910224A1 (en) * 1991-06-21 1992-12-21 Fratadocchi Alberto Breccia DOMESTIC AND INDUSTRIAL AIR, WATER AND STEAM HEATING SYSTEMS BASED ON THE THERMAL EFFECT OF MICROWAVES ON MATERIALS
CN1161428A (en) * 1996-02-28 1997-10-08 三菱电机株式会社 Microwave oven
JP3462809B2 (en) * 1997-11-21 2003-11-05 日本ヒーター機器株式会社 Steam generator steam generator
JP2000055423A (en) * 1998-08-17 2000-02-25 Sharp Corp Humidifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317016A (en) * 2005-05-10 2006-11-24 Hitachi Home & Life Solutions Inc Heating cooker
JP4585910B2 (en) * 2005-05-10 2010-11-24 日立アプライアンス株式会社 Cooker
CN100425910C (en) * 2005-09-05 2008-10-15 上海松下微波炉有限公司 Control method of steam microwave oven and control apparatus thereof

Also Published As

Publication number Publication date
JP3761176B2 (en) 2006-03-29
CN100578081C (en) 2010-01-06
CN101012923A (en) 2007-08-08
CN1759276A (en) 2006-04-12
CN100381758C (en) 2008-04-16
CN101012922B (en) 2010-05-19
CN101012922A (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP3827303B2 (en) High-frequency heating device with steam generation function
JP3775352B2 (en) High frequency heating device
WO2004081455A1 (en) Steam generating function-equipped high-frequency heating device
US20070221070A1 (en) Cooker and Cooking Method
SG175216A1 (en) Cooking appliance
JP2004011995A (en) Water supply control method of high frequency heating equipment and high frequency heating equipment
JP2005143353A (en) Thawing method
JP3761176B2 (en) High-frequency heating device with steam generation function
JP2007303816A (en) Cooker
JP4196088B2 (en) High-frequency heating device with steam generation function
US6802708B2 (en) High frequency heating apparatus
JP2004176943A (en) High frequency heating apparatus
JP2005055143A (en) High frequency heating device with steam generating function
JP4083775B2 (en) High-frequency heating device with steam generation function
JP2004309060A (en) Cooker and its control method
JP3923025B2 (en) High-frequency heating device with steam generation function
JP2004044993A (en) High-frequency heating device with steam generating function
JP4576296B2 (en) Cooker
JP2006071157A (en) Heating cooker
JP2004044994A (en) High-frequency heating device with steam generating function
JP3753135B2 (en) High-frequency heating device with steam generation function
JP3664157B2 (en) High frequency heating device
KR20070066495A (en) Steam generator for steam oven
JP2004044995A (en) High-frequency heating device with steam generating function
JP2006275505A (en) High frequency heating device with steam generating function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees