JP2004044993A - High-frequency heating device with steam generating function - Google Patents

High-frequency heating device with steam generating function Download PDF

Info

Publication number
JP2004044993A
JP2004044993A JP2002229075A JP2002229075A JP2004044993A JP 2004044993 A JP2004044993 A JP 2004044993A JP 2002229075 A JP2002229075 A JP 2002229075A JP 2002229075 A JP2002229075 A JP 2002229075A JP 2004044993 A JP2004044993 A JP 2004044993A
Authority
JP
Japan
Prior art keywords
steam
heating
evaporating dish
heating chamber
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229075A
Other languages
Japanese (ja)
Other versions
JP3473906B1 (en
Inventor
Yuji Hayakawa
早川 雄二
Koji Kanzaki
神崎 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002229075A priority Critical patent/JP2004044993A/en
Application granted granted Critical
Publication of JP3473906B1 publication Critical patent/JP3473906B1/ja
Publication of JP2004044993A publication Critical patent/JP2004044993A/en
Granted legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6473Aspects related to microwave heating combined with other heating techniques combined with convection heating
    • H05B6/6479Aspects related to microwave heating combined with other heating techniques combined with convection heating using steam

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency heating device capable of easily cleaning a steam generating part to keep its sanitation, performing proper heating treatment by accurately measuring a temperature of a heated matter, and improving the heating efficiency. <P>SOLUTION: This high-frequency heating device with steam generating function, supplying at least one of high frequency and steam to a heating chamber 11 accommodating the heated matter to perform the heating treatment on the heated matter, comprises a high-frequency generating part 13, a steam generating part 15 generating the steam in the heating chamber 11, and a circulating fan 17 stirring the air in the heating chamber 11. An indoor air heater 19 is mounted for heating the air circulating in the heating chamber 11, and the steam generating part 15 generates the steam by heating an evaporating tray 35 having a water reserving recessed part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高周波加熱と蒸気加熱とを組み合わせて被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置に関する。
【0002】
【従来の技術】
従来の高周波加熱装置は、加熱用の高周波発生装置を備えた電子レンジや、この電子レンジに熱風を発生させるコンベクションヒータを付加したコンピネーションレンジ等がある。また、蒸気を加熱室に導入して加熱するスチーマーや、スチーマーにコンベクションヒータを付加したスチームコンベクションオーブン等も加熱調理器として利用されている。
【0003】
上記の加熱調理器により食品等を加熱調理する際、食品の加熱仕上がり状態が最も良好な状態になるように加熱調理器を制御する。即ち、高周波加熱と熱風加熱とを組み合わせた調理はコンビネーションレンジ、蒸気加熱と熱風加熱とを組み合わせた調理はスチームコンベクションオーブンによりそれぞれ制御することができる。しかし、高周波加熱と蒸気加熱とを組み合わせた調理は、それぞれの加熱処理を別個の加熱調理器間で加熱食品を移し替えて行う等の手間が生じることになる。その不便を解消するために、高周波加熱と、蒸気加熱と、電熱加熱とを一台の加熱調理器で実現したものがある。この加熱調理器は、例えば、特開昭54−115448号公報に開示されている。
【0004】
【発明が解決しようとする課題】
ところが、上記公報の構成によれば、加熱蒸気発生のための気化室が加熱室の下方に埋設されており、常に貯水タンクから一定水位で水が供給されるようになっている。従って、日常における加熱室周辺の清掃作業が行いにくく、特に気化室においては、蒸気発生の過程で水分中のカルシウムやマグネシウム等が濃縮され、気化室底部やパイプ内に沈殿固着し、蒸気発生量が少なくなり、その結果、カビ等の繁殖しやすい不衛生な環境となる問題があった。
【0005】
また、蒸気を加熱室に導入する方法として、加熱室の外側に配置されたボイラー等の加熱手段により蒸気を発生させ、ここで発生した蒸気を加熱室に供給する方式も考えられるが、蒸気導入のためのパイプに雑菌の繁殖、凍結による破損、錆等による異物混入等の問題を生じ、また、加熱手段の分解・清掃が困難であることが多く、食品を扱うために特に衛生上配慮の必要がある加熱調理器においては、外部から蒸気を導入する方式は採用し難いものであった。
【0006】
本発明は、上記事情を考慮してなされたもので、蒸気発生部が清掃容易で常に衛生的に保つことができ、また、加熱効率を高めることのできる、蒸気発生機能付き高周波加熱装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的達成のため、本発明の請求項1記載の蒸気発生機能付き高周波加熱装置は、被加熱物を収容する加熱室に、高周波と蒸気との少なくともいずれかを供給して前記被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置であって、高周波発生部と、前記加熱室内に蒸気を供給する蒸気発生部とを備えたことを特徴とする。
【0008】
この蒸気発生機能付き高周波加熱装置では、加熱室の内部へ蒸気が供給されるため、加熱室内にいち早く蒸気を供給できる。また、加熱方式としては、高周波加熱と蒸気加熱の両方を同時に行ったり、いずれかを個別に行ったり、両方を所定の順番で行ったりすることが自在にできるため、食品の種類や冷凍品か冷蔵品かの区別等に応じて、適切な調理方法を任意に選択することができる。特に、高周波加熱と蒸気加熱を併用した場合には、被加熱物の温度上昇速度を速めることができるので、短時間で効率の良い調理が可能となる。
【0009】
請求項2記載の蒸気発生機能付き高周波加熱装置は、前記蒸気発生部が、加熱室内に配設されて加熱により水溜凹所を有する蒸発皿から蒸気を発生させることを特徴とする。
【0010】
この蒸気発生機能付き高周波加熱装置では、加熱室内部に設けた蒸発皿から蒸気を発生するようにしているので、加熱室内に直接蒸気が供給されると共に、蒸気発生部の清掃を簡単に行うことができる。これにより、加熱室周辺を常に衛生的な環境に保つことができる。また、高周波加熱と蒸気加熱とを組み合わせた加熱を簡単に実現することができる
【0011】
請求項3記載の蒸気発生機能付き高周波加熱装置は、前記蒸発皿が、前記加熱室の被加熱物取出口とは反対側の奥側底面に配設されていることを特徴とする。
【0012】
この蒸気発生機能付き高周波加熱装置では、蒸発皿が加熱室の被加熱物取出口とは反対側の奥側底面に配設されているので、蒸発皿が被加熱物の取り出しの邪魔にならず、また、蒸発皿が高温になっていても、被加熱物を出し入れする際に蒸発皿に手を触れるおそれがないので、安全性が高まる。
【0013】
請求項4記載の蒸気発生機能付き高周波加熱装置では、前記蒸発皿が、前記加熱室のいずれかの側壁面に沿った底面に配設されていることを特徴とする。
【0014】
この蒸気発生機能付き高周波加熱装置では、加熱室の側壁面に沿った底面に蒸発皿を配設することで、蒸発皿からの蒸気を加熱室内に効率よく供給することができる。
【0015】
請求項5記載の蒸気発生機能付き高周波加熱装置は、前記蒸発皿が、該蒸発皿の上面を前記加熱室の底面から所定高さ上方になる位置に配設されていることを特徴とする。
【0016】
この蒸気発生機能付き高周波加熱装置では、加熱室の底面に被加熱物からしみ出した汁等の液体が、底面を伝って蒸発皿内に流れ込むことを防止して、蒸発皿を衛生的に保つことができる。
【0017】
請求項6記載の蒸気発生機能付き高周波加熱装置は、前記蒸発皿が、被加熱物が載置される前記加熱室底面に沿って配設されていることを特徴とする。
【0018】
この蒸気発生機能付き高周波加熱装置では、被加熱物が載置される加熱室底面に沿った蒸発皿から蒸気が発生する。
【0019】
請求項7記載の蒸気発生機能付き高周波加熱装置は、前記蒸気発生部が、前記蒸発皿を加熱する蒸発皿加熱ヒータを備えていることを特徴とする。
【0020】
この蒸気発生機能付き高周波加熱装置では、蒸発皿加熱ヒータで蒸発皿を加熱することにより蒸気を発生するようにしているので、簡単な構造で効率良く蒸気を発生することができる。
【0021】
請求項8記載の蒸気発生機能付き高周波加熱装置は、前記蒸気発生部が、前記蒸発皿加熱ヒータからの輻射熱を前記蒸発皿へ反射する反射板を備えていることを特徴とする。
【0022】
この蒸気発生機能付き高周波加熱装置では、蒸発皿加熱ヒータからの輻射熱を反射板により蒸発皿に向けて反射するようにしているので、ヒータの発生する熱を高効率で蒸気発生のために利用することができる。
【0023】
請求項9記載の蒸気発生機能付き高周波加熱装置は、前記蒸発皿が、長手方向両端部に該長手方向に沿って水溜凹所が徐々に浅くなるテーパ部を有することを特徴とする。
【0024】
この蒸気発生機能付き高周波加熱装置では、水溜凹所へ注入した水が常に蒸発皿の中央部に溜まるようになり、これにより、蒸発皿加熱ヒータの全長を短くでき、コンパクト化が図られる。
【0025】
請求項10記載の蒸気発生機能付き高周波加熱装置は、前記蒸気発生部へ水を供給する給水部を備えたことを特徴とする。
【0026】
この蒸気発生機能付き高周波加熱装置では、給水部によって蒸発皿へ水を補給できるようにしたので、蒸発皿の水溜容量に拘わらず、大量の蒸気を長時間にわたって連続発生させることができ、蒸気加熱による長時間の調理が可能となる。
【0027】
【発明の実施の形態】
以下、本発明の蒸気発生機能付き高周波加熱装置の好適な実施の形態について図面を参照して詳細に説明する。
<第1実施形態>
図1は第1実施形態の蒸気発生機能付き高周波加熱装置の開閉扉を開けた状態を示す正面図、図2はこの装置に用いられる蒸気発生部の蒸発皿を示す斜視図、図3は蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図、図4は蒸気発生部の断面図である。
この蒸気発生機能付き高周波加熱装置100は、被加熱物を収容する加熱室11に、高周波(マイクロ波)と蒸気との少なくともいずれかを供給して被加熱物を加熱処理する加熱調理器であって、高周波を発生する高周波発生部としてのマグネトロン13と、加熱室11内で蒸気を発生する蒸気発生部15と、加熱室11内の空気を撹拌・循環させる循環ファン17と、加熱室11内を循環する空気を加熱する室内気加熱ヒータとしてのコンベクションヒータ19と、加熱室11の壁面に設けた検出用孔を通じて加熱室11内の温度を検出する赤外線センサ20とを備えている。
【0028】
加熱室11は、前面開放の箱形の本体ケース10内部に形成されており、本体ケース10の前面に、加熱室11の被加熱物取出口を開閉する透光窓21a付きの開閉扉21が設けられている。開閉扉21は、下端が本体ケース10の下縁にヒンジ結合されることで、上下方向に開閉可能となっている。加熱室11と本体ケース10との壁面間には所定の断熱空間が確保されており、必要に応じてその空間には断熱材が装填されている。特に加熱室11の背後の空間は、循環ファン17及びその駆動モータ23(図7参照)を収容した循環ファン室25となっており、加熱室11の後面の壁が、加熱室11と循環ファン室25とを画成する仕切板27となっている。仕切板27には、加熱室11側から循環ファン室25側への吸気を行う吸気用通風孔29と、循環ファン室25側から加熱室11側への送風を行う送風用通風孔31とが形成エリアを区別して設けられている。各通風孔29,31は、多数のパンチ孔として形成されている。
【0029】
循環ファン17は、矩形の仕切板27の中央部に回転中心を位置させて配置されており、循環ファン室25内には、この循環ファン17を取り囲むようにして矩形環状のコンベクションヒータ19が設けられている。そして、仕切板27に形成された吸気用通風孔29は循環ファン17の前面に配置され、送風用通風孔31は矩形環状のコンベクションヒータ19に沿って配置されている。循環ファン17を回すと、風は循環ファン17の前面側から駆動モータ23のある後面側に流れるように設定されているので、加熱室11内の空気が、吸気用通風孔29を通して循環ファン17の中心部に吸い込まれ、循環ファン室25内のコンベクションヒータ19を通過して、送風用通風孔31から加熱室11内に送り出される。従って、この流れにより、加熱室11内の空気が、撹拌されつつ循環ファン室25を経由して循環されるようになっている。
【0030】
マグネトロン13は、例えば加熱室11の下側の空間に配置されており、マグネトロンより発生した高周波を受ける位置にはスタラー羽根33が設けられている。そして、マグネトロン13からの高周波を、回転するスタラー羽根33に照射することにより、該スタラー羽根33によって高周波を加熱室11内に撹拌しながら供給するようになっている。なお、マグネトロン13やスタラー羽根33は、加熱室11の底部に限らず、加熱室11の上面や側面側に設けることもできる。
【0031】
蒸気発生部15は、図2に示すように加熱により蒸気を発生する水溜凹所35aを有した蒸発皿35と、蒸発皿35の下側に配設され、図3及び図4に示すように蒸発皿35を加熱する蒸発皿加熱ヒータ37と、該ヒータの輻射熱を蒸発皿35に向けて反射する断面略U字形の反射板39とから構成されている。蒸発皿35は、例えばステンレス製の細長板状のもので、加熱室11の被加熱物取出口とは反対側の奥側底面に長手方向を仕切板27に沿わせた向きで配設されている。なお、蒸発皿加熱ヒータ37としては、ガラス管ヒータ、シーズヒータ、プレートヒータ等が利用できる。
【0032】
図5は蒸気発生機能付き高周波加熱装置100を制御するための制御系のブロック図である。この制御系は、例えばマイクロプロセッサを備えてなる制御部501を中心に構成されている。制御部501は、主に、電源部503、記憶部505、入力操作部507、表示パネル509、加熱部511、冷却用ファン61等との間で信号の授受を行っている。
【0033】
入力操作部507には、加熱の開始を指示するスタートスイッチ519、高周波加熱や蒸気加熱等の加熱方法を切り替える切替スイッチ521、予め用意されているプログラムをスタートさせる自動調理スイッチ523等の種々の操作スイッチが接続されている。
加熱部511には、高周波発生部13、蒸気発生部15、循環ファン17、赤外線センサ20等が接続されている。また、高周波発生部13は、電波撹拌部(スタラー羽根の駆動部)33と協働して動作し、蒸気発生部15には、蒸発皿加熱ヒータ37、室内気加熱ヒータ19(コンベクションヒータ)等が接続されている。なお、このブロック図には、上で説明した機械的構成要素以外の要素(例えば、送水ポンプ55や扉送風用ダンパ84、排気用ダンパ87等)も含まれているが、これらについては後の実施形態で説明する。
【0034】
次に、上述した蒸気発生機能付き高周波加熱装置100の基本的な動作について、図6のフローチャートを参照しながら説明する。
操作の手順としては、まず、加熱しようとする食品を皿等に載せて加熱室11内に入れ、開閉扉21を閉める。そして、加熱方法、加熱温度又は時間を入力操作部507により設定して(ステップ10、以降はS10と略記する)、スタートスイッチをONにする(S11)。すると、制御部501の動作によって自動的に加熱処理が行われる(S12)。
【0035】
即ち、制御部501は、設定された加熱温度・時間を読み取り、それに基づいて最適な調理方法を選択・実行し、設定された加熱温度・時間に達したか否かを判断して(S13)、設定値に達したときに、各加熱源を停止して加熱処理を終了する(S14)。なお、S12では、蒸気発生、室内気加熱ヒータ、循環ファン回転、高周波加熱を、それぞれ個別或いは同時に行う。
【0036】
上記した動作の際に、例えば「蒸気発生+循環ファンON」のモードが選択・実行された場合の作用を説明する。このモードが選択されると、図7に本高周波加熱装置100の動作説明図を示すように、蒸発皿加熱ヒータ37がONされることで、蒸発皿35の水が加熱され蒸気Sが発生する。蒸発皿35から上昇する蒸気Sは、仕切板27の略中央部に設けた吸気用通風孔29から循環ファン17の中心部に吸引され、循環ファン室25を経由して、仕切板27の周部に設けた送風用通風孔31から、加熱室11内へ向けて吹き出される。吹き出された蒸気は、加熱室11内において撹拌されて、再度、仕切板27の略中央部の吸気用通風孔29から循環ファン室25側に吸引される。これにより加熱室11内と循環ファン室25に循環経路が形成される。なお、仕切板27の循環ファン17の配置位置下方には送風用通風孔31を設けずに、発生した蒸気を吸気用通風孔29に導かれるようにしている。そして、図中白抜き矢印で示すように、蒸気が加熱室11を循環することによって、被加熱物Mに蒸気が吹き付けられる。
【0037】
この際、室内気加熱ヒータ19をONにすることによって、加熱室11内の蒸気を加熱できるので、加熱室11内を循環する蒸気の温度を高温に設定することができる。従って、いわゆる過熱蒸気が得られて、被加熱物Mの表面に焦げ目を付けた加熱調理も可能となる。また、高周波加熱を行う場合は、マグネトロン13をONにし、スタラー羽根33を回転することで、高周波を加熱室11内に撹拌しながら供給して、ムラのない高周波加熱調理を行うことができる。
【0038】
このように、本実施形態の蒸気発生機能付き高周波加熱装置によれば、加熱室11の外部ではなく内部で蒸気を発生する構成にしているので、加熱室11内を清掃する場合と同様に、蒸気を発生する部分、つまり蒸発皿35の清掃を簡単に行うことができる。例えば、蒸気発生の過程では、水分中のカルシウムやマグネシウム、塩素化合物等が濃縮されて蒸発皿35の底部に沈殿固着することがあるが、蒸発皿35の表面に付着したものを布等で拭き取るだけできれいに払拭することができる。また、特に汚れが激しい場合は、図8に示すように、蒸発皿35を加熱室11外に取り出して洗浄することもでき、蒸発皿35の清掃を簡単にできる。また、場合によっては、新しい蒸発皿35と交換することも簡単に行える。従って、蒸発皿35を含めて、清掃しやすくなり、加熱室11の内部を常に衛生的な環境に保つことが容易となる。
【0039】
また、この高周波加熱装置では、蒸発皿35を、加熱室11の被加熱物取出口とは反対側の奥側底面に配設しているので、被加熱物の取り出しの邪魔にならず、蒸発皿35がたとえ高温になっていても、被加熱物を出し入れする際に蒸発皿35に手を触れるおそれもなく安全性に優れる。
さらに、図9に蒸発皿と加熱室底面の位置関係を示すように、蒸発皿35を、蒸発皿35の上面35bが加熱室11の底面に対して高さhだけ上方になる位置に設置することで、加熱室11の底面に被加熱物からしみ出した汁等の液体が、底面を伝って蒸発皿35内に流れ込むことを防止している。これにより、蒸発皿35を衛生的に保つことができ、また、蒸発皿35と底面との間の段付き部の面22が被加熱物取出口に向いているため、この面22も容易に清掃できる。
【0040】
さらに、この高周波加熱装置では、蒸発皿加熱ヒータ37で蒸発皿35を加熱することにより蒸気を発生させているので、簡単な構造で効率良く蒸気を供給することができ、加熱によりある程度高い温度の蒸気が発生するので、単に加湿するだけの調理、あるいは高周波加熱と併用して乾燥を防止しつつ加熱する調理も可能である。
また、蒸発皿加熱ヒータ37の輻射熱は、反射板39で蒸発皿35に向けて反射させているので、蒸発皿加熱ヒータ37の発生する熱を無駄なく効率良く蒸気発生のために利用することができる。
【0041】
そして、この高周波加熱装置では、加熱室11内の空気を循環ファン17で循環・撹拌するようにしているので、蒸気加熱を行う際に、蒸気を加熱室11内の隅々にまでむらなく行き渡らせることができる。従って、加熱室11内に蒸気が充満するものの、滞留することはなく、蒸気が加熱室11内全体に行き渡ることになり、その結果として、赤外線センサ20による被加熱物の温度計測時に、赤外線センサが加熱室11内の蒸気粒子の温度を計測することなく、確実に被加熱物の温度が計測され、温度の測定精度を高めることができる。これにより、検出温度を参照してなされる加熱処理が、誤動作することなく適正に行われるようになる。
【0042】
また、加熱方法としては、高周波加熱と蒸気加熱の双方を同時に行ったり、いずれかを個別に行ったり、双方を所定の順番で行ったりすることが自由にできるため、食品の種類や冷凍品か冷蔵品かの区別等に応じて、適切な加熱方法を任意に選択することができる。特に、高周波加熱と蒸気加熱を併用した場合には、被加熱物の温度上昇速度を速めることができるので、効率の良い調理が可能となる。
【0043】
また、加熱室11内を循環する空気を、循環ファン室25に装備した室内気加熱ヒータ19で加熱できるようにしているので、加熱室11で発生させた蒸気の温度を自在に調整することができる。例えば、蒸気の温度を100℃以上の高温に設定することもできるため、過熱蒸気によって被加熱物を効率良く昇温させることができると共に、被加熱物表面を乾燥させて、場合によっては表面に焦げ目を付けることも可能となる。また、被加熱物が冷凍品の場合には、蒸気の熱容量が大きいために熱伝達が効率よく行われ、短時間で解凍することができる。
【0044】
さらに、この蒸気発生機能付き高周波加熱装置100では、循環ファン17を、加熱室11外に仕切板27を介して独立に設けた循環ファン室25に収容しているので、被加熱物の調理中に飛散する汁類が循環ファン17に付着することをなくすことができる。また同時に、通風を仕切板27に設けた通風孔29,31を通して行うので、通風孔29,31を設ける位置や通風孔29,31の開口面積等によって、加熱室11内に起こる蒸気の流れを自由に変更することができる。
【0045】
なお、上述した蒸発皿35は、水溜凹所の形状を次のようにしてもよい。図10に蒸発皿の他の形状の断面と蒸発皿加熱ヒータとを示す概略的な構成図、図11に図10のA−A断面図、図12に図10のA−A断面の他の例を示す断面図、図13に蒸発皿の更に他の形状を表す概略的な構成図を示した。
図10に示す蒸発皿42は、長手方向両端部に該長手方向に沿って水溜凹所が徐々に浅くなるテーパ部42aを有し、水溜凹所へ注入した水がテーパ部42aに沿って流れ、常に蒸発皿の中央部に溜まるようにしている。この構成により、蒸発皿加熱ヒータ37の全長を短くでき、コンパクト化が図られる。また、水溜凹所底面の横断面は、図11に示すように平面状であってもよいが、図12に示すように曲面形状であってもよい。曲面形状である場合には、水溜凹所の水が常に蒸発皿加熱ヒータ37に近い最下位置に集まり、加熱効率が向上する。また、図13に示す蒸発皿43は、その長手方向に沿って水溜凹所の底面を曲面形状に形成しており、これにより、蒸発皿加熱ヒータ37による熱が集中する中央部付近に水が溜まるようになる。従って、熱効率を高めた加熱が行える。
【0046】
また、蒸発皿35の加熱室11内における配置位置は、被加熱物取出口とは反対側の奥側底面に限らず、適宜変更することもできる。図14に蒸発皿の配置例を示すように、例えば、図14(a)に示す加熱室のいずれかの側壁面81a、81bに沿った底面(図示例では側壁面81a側を示す)であってもよい。さらに、図14(b)に示す小型の蒸発皿44を、加熱室11底面の隅部(角部)に1つ或いは複数配置してもよい。この場合の小型の蒸発皿44は、例えば椀型の蒸発皿で、その蒸発皿の下部に蒸発皿加熱ヒータを備えたものである。いずれにせよ、加熱室内に蒸気を供給できれば、蒸発皿は任意の位置に配置することができる。なお、発生する蒸気の流れは、通常は上昇流れであるため、蒸発皿は加熱室の下側に設けることが、蒸気の撹拌の観点から好ましい。例えば、加熱室の下側半分の領域内に設けたり、加熱室底面に沿って設けることがよい。また、清掃が容易であれば、加熱室底面の更に下方の空間に設けてもよい。さらには、蒸発皿を規定の位置に固定せず、使用者が任意の位置に配置できるようにしてもよい。この場合には、加熱内容に応じて最適な位置に蒸気発生源を配置することができる。
【0047】
<第2実施形態>
次に、本実施形態に係る第2実施形態の蒸気発生機能付き高周波加熱装置について、図15及び図16を用いて説明する。なお、以下の説明では前述した第1実施形態と同じ部材に対しては同一の符号を付与することでその説明は省略するものとする。本実施形態の蒸気発生機能付き高周波加熱装置では、図15(a)に示すように、蒸発皿35の上面を、一部に開口41aの設けられた蓋体41で覆っている。これにより、図15(b)に示すように、蒸気の出る位置を、開口41aのある部分に限定することができる。また、開口41aの開口面積に応じて蒸気の供給量を調整することができる。
【0048】
この開口41aは、図16に示すように、仕切板27中央の吸気用通風孔29の下方に配設してある。従って、発生した蒸気は、開口41aから上昇すると、すぐに吸気用通風孔29に吸い込まれることになり、蒸気が無駄に逃げることなく加熱室11内を循環する循環流となる。また、蓋体41を脱着自在に構成することで、開口の大きさを違えた蓋体と交換することも容易となり、加熱条件に応じた適切な蓋体を使用することができる。
【0049】
また、この蒸気発生機能付き高周波加熱装置では、図16に示すように、吸気用通風孔29に吸引された蒸気の多くを、主に加熱室11の底面近傍から加熱室11内に吹き出すことができるように、仕切板27に設けた送風用通風孔31aを、仕切板27の下部に多く形成している。これは、蒸気自体が上昇するため、下側から多く吹き出した方が全体の流れの均一化が図れるからである。このようにすることで、加熱室11内における蒸気の流れは、最初底面付近を低く流れた後に、上方に向かう流れとなる。なお、送風用通風孔31bとして、仕切板27の略中間高さ部に設けているが、これは、加熱室11に図示しない被加熱物載置用の2段目のトレイがこの略中間高さ位置に装填されるために、このトレイの載置物に送風するために設けている。
この構成により、前述した実施形態よりも加熱が一層効果的となる循環流れが作り出され、加熱室11内の温度分布が小さく抑えられる。従って、加熱室11内に置かれた被加熱物を均一且つ高速に加熱することができる。
【0050】
また、上記蓋体41は、図17に斜視図を示した他の蓋体にすることもできる。この蓋体45は、円形状の開口45aが長手方向に沿って複数設けられた板状に形成され、その裏面の四隅に、蒸発皿35の上面との間で所定高さの隙間を形成するための脚部45bを厚み方向に突出させて形成している。この蓋体45は、電波損失の低い低誘電率材料であるコージライト(2MgO・2Al・5SiO)からなり、熱衝撃に強く、容易には割れない機械強度を有している。
【0051】
この蓋体45を蒸発皿35に載せることで、図18に示すように、蓋体45の脚部45bによって蒸発皿35との間に所定間隔tの隙間46が生じ、この隙間46が蒸発皿35内の水が加熱されたときの、蓋体45下部における圧力増加を抑制している。これにより、蒸発皿35内の水の温度が上がり、突沸が生じた場合でも、その圧力が隙間46から効率よく逃されて、開口45aから水が飛散することがなくなる。従って、発生する蒸気は安定して開口45aから上方へ流れるようになる。なお、突沸が生じた場合でも、蒸発皿35の両脇の鍔部47によって流路が屈曲されて、隙間46から水が飛散することはなく、加熱室11内への水の飛着は殆どない。
【0052】
なお、上記の説明では、プロペラ式の循環ファンを備えた場合を示したが、図19に示すように、循環ファンとしてシロッコファン18を用いてもよい。この構成によれば、発生風の殆どを下側の送風用通風孔31aから強く吹き出させることができる。従って、蒸気発生部15で発生した蒸気Sをそのまま直接に、加熱室11内で充満させつつ循環させることができる。
【0053】
<第3実施形態>
次に、本発明に係る第3実施形態の蒸気発生機能付き高周波加熱装置について、図20〜図23を用いて説明する。
図20は本実施形態の蒸気発生機能付き高周波加熱装置の要部を示す側面図、図21は管路先端に取り付けたノズルを示す説明図、図22は取り外し可能な水貯留タンクを示す説明図、図23は本体ケースの概念的な一部断面図である。
【0054】
本実施形態の蒸気発生機能付き高周波加熱装置では、図20に示すように、蒸気発生部15の蒸発皿35に対して水を補給する給水部51を新たに付加したことを特徴としている。給水部51は、水貯留タンク53と、水貯留タンク53から蒸発皿35に対して所定量の水を供給する送水ポンプ55と、水貯留タンク53から蒸発皿35までを接続する給水管路57とを有している。
【0055】
また、給水管路57の蒸発皿35側の端部57aは、図21に示すように、加熱室11の側壁面81aから突出しており、この突出した端部57aに、柔軟な耐熱性樹脂材料からなるノズル52を取り付けている。従って、水貯留タンク53の水は、送水ポンプ55により給水管路57,ノズル52を通じて蒸発皿35に供給される。なお、給水管路57の端部57aは、側壁面(例えば81a)、加熱室奥側の仕切板27のいずれの壁面から吐出させてもよい。
【0056】
本実施形態の構成によれば、蒸発皿35に対し水を連続供給することができるので、長時間の連続蒸気加熱処理が可能となる。また、ノズル52を脱着可能に設けたことにより、蒸発皿と同様に水分中のカルシウムやマグネシウム等が固着したり被加熱物から飛散した液汁等が付着して汚れた場合でも、ノズル52を取り外して洗浄することができる。また、新品のノズルと交換することもでき、メンテナンスが容易となる。このように、ノズル52を給水管路57の端部57aに設けたことで、清掃が簡単になって、常に衛生的な環境で蒸発皿へ水を供給できるようになる。また、ノズル52は柔軟材料で形成されているため、加熱室11内で食器等に接触しても破損することがなく、ノズル52管内の清掃も容易にできる。また、ノズル52を一体の射出成形品として作製することで、大量生産により安価に供給することができる。
【0057】
なお、水貯留タンク53は、図22に本装置の側面側の一部斜視図を示すように、取り扱い性を高めるためカートリッジ式としており、装置に組み込んだときに装置自体が大型化しないように、本体ケース10の比較的高温になりにくい側壁部にコンパクトに埋設してある。この他にも、断熱処理を施して装置の上面側に配設してもよく、下面側に配設してもよい。
【0058】
カートリッジ式の水貯留タンク53は、装置外部から取り出せて簡単に交換できることが好ましく、これにより取扱性を向上することができ、タンクの清掃も容易となる。例えば図示のように、装置側面から蓋59を開閉して出し入れ可能にしてもよく、装置前面から出し入れ可能にしてもよい。また、カートリッジ式の水貯留タンク53は、樹脂やガラス等の透明材料で形成し、タンク収納部分の本体ケース側の壁も透明材料で作ることにより、水貯留タンク53内の水残量を外側から目視確認可能に構成することが好ましい。さらに、残量センサを取り付けて、水貯留タンク53内の水残量を表示パネル509等に表示したり、図示しないスピーカからブザー等を鳴らすことで報知することで、蒸発皿35の空焚き等を未然に防止できる。
【0059】
ここで、装置の側壁部等に樹脂製の水貯留タンク53を配設した場合、水貯留タンク53が加熱室11からの熱の影響を受ける可能性がある。この場合には、図23に本体ケース10の概念的な一部断面図を示すように、水貯留タンク53を、冷却用ファン61(一例として、装置底部に配置され高周波加熱時に高周波発生部13を冷却するためのファンを利用する)からの冷却用風を加熱室11内に送り込む通風路63の途中に配設する。そうした場合、水貯留タンク53が熱影響を受けることを最小限に抑えることができるので、タンク材料の選択の幅を広げられ、敢えて断熱材で水貯留タンク53を保護する必要性も軽減される。
【0060】
<第4実施形態>
次に、本発明に係る第4実施形態の蒸気発生機能付き高周波加熱装置について、図24を用いて説明する。
本実施形態の蒸気発生機能付き高周波加熱装置では、図24に本体ケース10奥側の概念的な縦断面図を示すように、加熱室11及び循環ファン室25とは別に、それら両室11,25と仕切られた自冷ファン室71を設け、この自冷ファン室71に、加熱室11の壁面に設けた検出用孔73を通して加熱室11内の温度を検出する赤外線センサ20と、循環ファン17の駆動軸と同軸に設けられて駆動モータ23を冷却する自冷ファン75とを収容している。そして、自冷ファン75の回転による風圧によって、検出用孔73の近傍の自冷ファン室71側の圧力Pを、加熱室11側の圧力Pよりも高く維持するようにしている。
【0061】
一般に赤外線センサ20によって加熱室11内の温度を測定する場合、検出用孔73に保護用のガラス等の透明部材を取り付けておくと、ガラスに蒸気が付着して正確な測定ができないので、検出用孔73は介装物のない単なる貫通孔としている。しかし、貫通孔の場合、加熱室11側の空気が自由に出入りできるので、赤外線センサ20に蒸気等が付着する可能性があり、これにより温度測定精度が低下する。
【0062】
この点、本実施形態の蒸気発生機能付き高周波加熱装置では、自冷ファン75の回転による風圧によって、検出用孔73の近傍の自冷ファン室71側の圧力Pを加熱室11側の圧力Pよりも高く維持するようにしているので、加熱室11側の空気が、赤外線センサ20を収容した自冷ファン室71側に侵入することを防ぐことができる。このため、赤外線センサ20に汚れが付着して検出精度が低下することを防止でき、常に高い精度で加熱室11内の温度を測定することができる。従って、正確な温度管理の下で加熱処理を行うことが可能になり、被加熱物への加熱の加減が狙い通りのものとなる。
【0063】
ここで、赤外線センサ20による温度測定方法について説明する。図25は赤外線センサによる温度測定の様子を示す説明図である。赤外線センサ20は、一度に複数点(n点)の温度を同時に検出しながら、赤外線センサ20自体を揺動させることで、図中矢印方向にスキャンし、加熱室11内を複数の測定点(スキャン方向にm点)に対する温度測定を行う。従って、赤外線センサ20の1スキャンで、図25(b)に示すn×m点の測定点における温度検出を行うことができる。被加熱物Mに対する温度は、連続的に検出される各測定点における温度の経過時間に対する上昇率に基づいて被加熱物Mの載置位置を求め、この載置位置における検出温度を被加熱物Mの温度として扱っている。
【0064】
上記赤外線センサ20の温度測定範囲は、蒸発皿35の配置位置を除く加熱室11底面としている。従って、蒸発皿35は、赤外線センサ20による温度測定波から実質的に外れた位置に配設されている。なお、赤外線センサ20のスキャンを加熱室11底面全体にわたって行い、蒸発皿35の位置からの検出データを無効にすることで温度測定を行う方法であってもよい。
【0065】
<第5実施形態>
次に、本発明に係る第5実施形態の蒸気発生機能付き高周波加熱装置について、図26を用いて説明する。
本実施形態の蒸気発生機能付き高周波加熱装置では、図26に本体ケース10の概念的な横断面図を示すように、加熱室11の開閉扉21近くの側壁面81aに、開閉扉21の透光窓21aの内面に対して外気を吹き付ける外気吹出口82を設けている。外気吹出口82は、本体ケース10と加熱室11の側壁面間に確保した側部通風路83に連通されており、その側部通風路83には、ダンパ84を介して後部通風路85が繋がっている。そして、装置底部に設けた冷却用ファン61からの風を、ダンパ84の切り替えにより、側部通風路83を介して外気吹出口82から加熱室11内に吹き出せるようになっている。なお、ダンパ84を他方に切り替えれば、冷却風は排気口88から外部に排気される。
【0066】
このように透光窓21aの内面に向けて外気を吹き付けることにより、蒸気加熱時や高周波加熱時に透光窓21aが蒸気で曇らないようにすることができ、加熱室11内の被加熱物の加熱状態を外側から目視確認することができる。なお、外気の吹き付けは必要な時のみ行えばよく、例えば、加熱終了の所定時間前から外気の吹き付けを開始することで、加熱終了時には透光窓21aの曇りが取れ、しかも、扉開放時に蒸気が手前側に立ちこめることを抑制できる。また、外気を強制的に導入して透光窓21aに吹き付ける構成としているので、開閉扉21を開ける前の時点での蒸気の追い出し効果(冷却効果)が特に優れる。
【0067】
<第6実施形態>
次に、本発明に係る第6実施形態の蒸気発生機能付き高周波加熱装置について、図27、図28を用いて説明する。
本実施形態の蒸気発生機能付き高周波加熱装置では、図27に本体ケースの概略構成を表す正面図、図28に通風経路を説明する平面図を示すように、外気吹出口82を加熱室11の一方の側壁面81aの上部の手前側に配設すると共に、加熱室11内の空気を排気する排気口86を、加熱室11の他方の側壁面81bの下部の奥側に配設している。この場合、排気口86はダンパ87を介して外部に直接繋がっており、加熱室11内の空気や蒸気を即座に装置外部へ排出できるようになっている。
【0068】
このように排気口86を加熱室11の底面近傍に配置することにより、排気を行う際の加熱室11内の空気流れが上面側から底面側へと向かうものとなり、加熱室11内の空気を淀ませることなく効果的に排出できる。また、排気する先が装置外の外気であるから、被加熱物から発生する蒸発成分が装置内壁に付着することを抑制できる効果もある。また、外気吹出口82を手前側に設け、排気口86を加熱室11の奥側に設けることにより、排気される加熱室11内の空気は、加熱室11内の直方体空間を対角線状に気流が横切るようになり、一層効率良く素早い換気を行うことができる。
【0069】
<第7実施形態>
次に、本発明に係る第7実施形態の蒸気発生機能付き高周波加熱装置について、図29を用いて説明する。
本実施形態の蒸気発生機能付き高周波加熱装置では、図29に装置の概略構成図を示すように、蒸発皿加熱ヒータを設けずに、蒸発皿35内の水を高周波加熱により蒸発させるようにしている。この場合、通常のスタラー羽根33による撹拌で、蒸発皿35内の水を高周波加熱してもよいが、望ましくは、スタラー羽根33による高周波の出射先を、蒸発皿35に向けることができるようにスタラー羽根33を設計し、蒸発皿35を集中的に加熱できるようにすることがよい。このことは、スタラー羽根33は通常回転して加熱室11全体を均一に加熱するようにしているが、これを特定の位置で停止させることで実現できる。例えば、所定時間集中して蒸発皿35内の水を加熱した後に、通常の加熱室11内の加熱処理に戻るという制御を実施すれば、蒸気発生と高周波加熱とを蒸発皿加熱ヒータを設けることなく同時に行うことができる。
【0070】
このように、蒸発皿加熱ヒータを省略して、高周波により蒸発皿35内の水を加熱・蒸発させることにより、構成を簡素化してコスト低減を図ることができる。
【0071】
なお、以上の各実施形態においては、高周波を撹拌するためにスタラー羽根33を設けた例について説明したが、図30に示すように、ターンテーブル91を用いて被加熱物を均等に加熱する構成であっても本発明を同様に適用することができる。即ち、蒸発皿35の配置位置を除く加熱室11底面に、図示した場合では、蒸発皿35の手前側にターンテーブル91を配置することで、機能的には遜色なく蒸気発生が行える。
【0072】
次に、蒸気発生部15の蒸気発生方式のバリエーションについて、図31を参照しながら説明する。図において、11は加熱室、401はカートリッジ式の水タンク、402はポンプ、403は排水機構である。(a)は、上述した蒸発皿35と蒸発皿加熱ヒータ37を用いた最もシンプルなタイプである。蒸発皿加熱ヒータ37としてガラス管式の遠赤外線ヒータを用いた場合は、蒸気発生量が10g/分程度で、約40秒で蒸気発生が可能である。また、ハロゲンヒータを用いた場合には、上記と同程度の蒸気発生量であって、約25秒で蒸気発生が可能である。このタイプの構造は単純で安価であり、蒸気発生までの時間が短い利点がある。
【0073】
(b)は、インバータ電源405とIH(電磁誘導加熱)コイル406を用いて蒸発皿35内の水を加熱するタイプである。このタイプでは、蒸気発生量が15g/分程度で、約15秒で蒸気発生が可能であり、蒸気発生までの時間が早い利点がある。
【0074】
(c)は、滴下式IHスチーマ406を用いるタイプで、インバータ電源405とIH(電磁誘導加熱)コイルとを用いて加熱した部材に、水滴を滴下して蒸発させるものである。このタイプは、大型となるが、蒸気発生量が20g/分程度で、約5秒で蒸気発生が可能となる。
【0075】
(d)は、ボイラー407を使用して蒸気を発生させるタイプで、蒸気発生量12〜13g/分程度で約40秒で蒸気発生が可能である。これは排水機構403等が複雑となるが、安価に構成できる。
【0076】
(e)は、超音波式の蒸気発生器408を用いるタイプで、発生した蒸気をファンFで吸い出して、室内気加熱ヒータ19で加熱してから加熱室11に供給するようにしている。
【0077】
【実施例】
ここで、上記した本発明に係る上記発生機能付き高周波加熱装置により、各種の加熱処理を行った例を説明する。
図32は、被加熱物として肉まん1個を加熱した場合の重量変化の様子を示している。肉まんを蒸気で加熱した(蒸した)場合、最終的に良好な状態に加熱できたか否かは水分量の増加で判断できる。
【0078】
(a)は室内気加熱ヒータとしてのコンベクションヒータを570Wで加熱し、循環ファンを動作させないで蒸気加熱した場合を示す。(b)はコンベクションヒータを680Wで加熱し、循環ファンを動作させないで蒸気加熱した場合を示す。いずれの場合も、加熱時間に対する水分量の増加分が比較的少なく、単に加熱室11に蒸気を充満させてコンベクションヒータを加熱するだけでは、良好な蒸し上がり効果が得られなかったことが分かる。
【0079】
これに対し、(c)、(d)のように循環ファンを動作させた場合は、比較的高い水分量が得られ、良好な蒸し上がり効果が得られた。また、(c)のように循環ファンの回転数を落とした場合でも、時間が経過すると良好な蒸し上がり効果が得られることが分かった。つまり、循環ファンの動作により、蒸し上げ品の水分量を大きくすることができる。従って、蒸気加熱する場合には蒸気の循環が不可欠であると言える。
【0080】
図33は、循環ファンを動作させた場合とさせない場合の扉と加熱室内の結露量の違いを示す。結露は時間の経過につれて増加するが、循環ファンを動作させることにより、結露量を大きく減らせることが分かる。上記加熱開始から10分経過時において、循環ファン回転なしの場合で、扉7.6g、加熱室14.4gであったものが、循環ファン回転ありの場合で、扉3.1g、加熱室7.3gまで低下し、概ね半分程度にまで結露量を減らすことができる。
【0081】
図34は、蒸気加熱終了時点からの庫内及び扉における結露量の変化を、コンベンションヒータ加熱ありの場合、加熱なしの場合で調べた結果を示す。コンベンションヒータを動作させることにより、特に加熱室の結露量が加熱終了時点での7.3gから、3.0g(1分)、0.3g(2分)と大幅に低下する。また、扉に関しても、3.1gから、2.9g(1分),1.3g(2分)と低下の傾向が見られる。
【0082】
図35は、加熱室に蒸気を充満させたときに循環ファンを動作させた場合とさせない場合における赤外線センサの測定性能を調べた結果を示す。循環ファンを動作させない場合には、途中から赤外線センサの測定値に揺らぎが発生して測定精度が低下しているが、循環ファンを動作させた場合には、常に安定した測定が行えている。つまり、循環ファンを動作させることによって、赤外線センサの検出レベルが安定して、良好な温度測定が行えるようになる。
【0083】
【発明の効果】
本発明に係る蒸気発生機能付き高周波加熱装置によれば、加熱室に蒸気をいち早く供給することができ、また、蒸気発生部が清掃容易で常に衛生的に保つことができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の蒸気発生機能付き高周波加熱装置の扉を開けた状態を示す正面図である。
【図2】図1の蒸気発生機能付き高周波加熱装置に用いられる蒸気発生部の蒸発皿を示す斜視図である。
【図3】蒸気発生部の蒸発皿加熱ヒータと反射板を示す斜視図である。
【図4】同装置の蒸気発生部の断面図である。
【図5】蒸気発生機能付き高周波加熱装置を制御するための制御系のブロック図である。
【図6】蒸気発生機能付き高周波加熱装置の基本的な動作を説明するフローチャートである。
【図7】蒸気発生機能付き高周波加熱装置の動作説明図である。
【図8】蒸発皿を加熱室外に取り出す様子を示す説明図である。
【図9】蒸発皿と加熱室底面の位置関係を示す説明図である。
【図10】蒸発皿の他の形状の断面と蒸発皿加熱ヒータとを示す概略的な構成図である。
【図11】図10のA−A断面図である。
【図12】図10のA−A断面の他の例を示す断面図である。
【図13】蒸発皿の更に他の形状を表す概略的な構成図である。
【図14】蒸発皿の配置例を示す説明図である。
【図15】本発明に係る第2実施形態の蒸気発生機能付き高周波加熱装置で使用する蒸発皿及び蓋体の斜視図で、(a)は蓋体を被せる前、(b)は蓋体を被せた状態を示す図である。
【図16】蒸気発生機能付き高周波加熱装置による蒸気の循環の様子を示す説明図である。
【図17】他の蓋体の構成を示す斜視図である。
【図18】図17の蓋体を用いた場合の作用を示す説明図である。
【図19】シロッコファンを用いた変形例を示す側面図である。
【図20】本発明に係る第3実施形態の蒸気発生機能付き高周波加熱装置の要部を示す側面図である。
【図21】管路先端に取り付けたノズルを示す説明図である。
【図22】取り外し可能な水貯留タンクを示す説明図である。
【図23】本体ケースの概念的な一部断面図である。
【図24】本発明に係る第4実施形態の蒸気発生機能付き高周波加熱装置の要部を示す縦断面図である。
【図25】赤外線センサによる温度測定の様子を示す説明図である。
【図26】本発明に係る第5実施形態の蒸気発生機能付き高周波加熱装置の概略構成を示す平面図である。
【図27】本発明に係る第6実施形態の蒸気発生機能付き高周波加熱装置の概略構成を示す正面図である。
【図28】図27の装置の通風経路を説明する平面図である。
【図29】本発明に係る第7実施形態の蒸気発生機能付き高周波加熱装置の概略構成図である。
【図30】ターンテーブルを備えた構成例を示す斜視図である。
【図31】蒸気発生部の各種バリエーション(a)〜(e)を示す説明図である。
【図32】被加熱物として肉まん1個を加熱した場合の重量変化の様子を示す図である。
【図33】循環ファンを動作させた場合とさせない場合の扉と加熱室内の結露量の違いを示す図である。
【図34】蒸気加熱終了時点からの庫内及び扉における結露量の変化を、コンベンションヒータ加熱ありの場合、加熱なしの場合で調べた結果を示す図である。
【図35】加熱室に蒸気を充満させたときに循環ファンを動作させた場合とさせない場合における赤外線センサの測定性能を調べた結果を示す図である。
【符号の説明】
11 加熱室
13 マグネトロン(高周波発生部)
15 蒸気発生部
17,18 循環ファン
19 コンベクションヒータ(室内気加熱ヒータ)
20 赤外線センサ
21 開閉扉
21a 透光窓
23 駆動モータ
25 循環ファン室
27 仕切板
29 吸気用通風孔
31,31A,31B 送風用通風孔
33 スタラー羽根(電波撹拌部)
35 蒸発皿
37 蒸発皿加熱ヒータ
39 反射板
41 蓋体
41a 開口
51 給水部
53 水貯留タンク
55 送水ポンプ
71 自冷ファン室
73 検出用孔
75 自冷ファン
82 吹出口
86 排気口
100 蒸気発生機能付き高周波加熱装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-frequency heating device with a steam generating function for performing heat treatment on an object to be heated by combining high-frequency heating and steam heating.
[0002]
[Prior art]
Conventional high-frequency heating devices include a microwave oven provided with a high-frequency generator for heating, and a combination range in which a convection heater for generating hot air is added to the microwave oven. Further, a steamer that introduces steam into a heating chamber to heat it, a steam convection oven in which a convection heater is added to the steamer, and the like are also used as the heating cooker.
[0003]
When cooking food or the like with the above-mentioned heating cooker, the heating cooker is controlled so that the finished state of heating of the food becomes the best state. That is, cooking combining high frequency heating and hot air heating can be controlled by a combination range, and cooking combining steam heating and hot air heating can be controlled by a steam convection oven. However, cooking using a combination of high-frequency heating and steam heating requires time and effort such as transferring the heated food between different heating cookers for each heating process. In order to solve the inconvenience, there is one in which high-frequency heating, steam heating, and electric heating are realized by one heating cooker. This cooking device is disclosed, for example, in Japanese Patent Application Laid-Open No. 54-115448.
[0004]
[Problems to be solved by the invention]
However, according to the configuration of the above publication, a vaporization chamber for generating heated steam is buried below the heating chamber, and water is always supplied from the water storage tank at a constant water level. Therefore, it is difficult to clean the surroundings of the heating chamber on a daily basis. Particularly in the vaporization chamber, calcium, magnesium, and the like in the water are concentrated in the process of generating steam, and settle and adhere to the bottom of the vaporization chamber and in the pipe, and the amount of generated steam is reduced. As a result, there has been a problem that an unsanitary environment in which molds and the like are liable to breed is obtained.
[0005]
As a method of introducing steam into the heating chamber, a method of generating steam by a heating means such as a boiler arranged outside the heating chamber and supplying the generated steam to the heating chamber may be considered. Problems such as the propagation of bacteria, damage due to freezing, and contamination by foreign substances due to rust, etc., and it is often difficult to disassemble and clean the heating means. It is difficult to adopt a method of introducing steam from the outside in a heating cooker that needs to be used.
[0006]
The present invention has been made in view of the above circumstances, and provides a high-frequency heating apparatus with a steam generating function, in which a steam generating section is easy to clean and can always be kept hygienic, and can increase heating efficiency. The purpose is to do.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a high-frequency heating apparatus with a steam generation function according to claim 1 of the present invention supplies at least one of high frequency and steam to a heating chamber that accommodates the object to be heated, thereby supplying the object to be heated. A high-frequency heating device with a steam generation function for performing a heat treatment, comprising: a high-frequency generation unit; and a steam generation unit that supplies steam into the heating chamber.
[0008]
In this high-frequency heating device with a steam generating function, the steam is supplied into the heating chamber, so that the steam can be quickly supplied into the heating chamber. In addition, as the heating method, both high-frequency heating and steam heating can be performed simultaneously, one of them can be performed individually, and both can be performed in a predetermined order. An appropriate cooking method can be arbitrarily selected according to the distinction between refrigerated products and the like. In particular, when high-frequency heating and steam heating are used together, the rate of temperature rise of the object to be heated can be increased, so that efficient cooking can be performed in a short time.
[0009]
According to a second aspect of the present invention, the high-frequency heating device with the steam generating function is characterized in that the steam generating section is arranged in a heating chamber and generates steam from an evaporating dish having a water recess by heating.
[0010]
In this high-frequency heating device with a steam generating function, since steam is generated from the evaporating dish provided in the heating chamber, the steam is directly supplied into the heating chamber, and the steam generating section can be easily cleaned. Can be. Thereby, the surroundings of the heating chamber can always be kept in a sanitary environment. In addition, heating that combines high-frequency heating and steam heating can be easily realized.
[0011]
According to a third aspect of the present invention, in the high-frequency heating device with a steam generating function, the evaporating dish is disposed on a bottom surface of the heating chamber on a side opposite to a heated object outlet.
[0012]
In this high-frequency heating device with a steam generating function, since the evaporating dish is disposed on the back bottom surface of the heating chamber opposite to the outlet for the heated object, the evaporating dish does not hinder the removal of the object to be heated. Also, even if the temperature of the evaporating dish is high, there is no risk of touching the evaporating dish when the object to be heated is taken in and out, so that the safety is enhanced.
[0013]
According to a fourth aspect of the present invention, in the high-frequency heating device with a steam generating function, the evaporating dish is disposed on a bottom surface along one of side wall surfaces of the heating chamber.
[0014]
In this high-frequency heating device with a steam generating function, by disposing the evaporating dish on the bottom surface along the side wall of the heating chamber, the steam from the evaporating dish can be efficiently supplied to the heating chamber.
[0015]
According to a fifth aspect of the present invention, in the high-frequency heating device with a steam generating function, the evaporating dish is disposed at a position in which an upper surface of the evaporating dish is higher than a bottom surface of the heating chamber by a predetermined height.
[0016]
In this high-frequency heating device with a steam generating function, liquid such as juice oozing from the object to be heated is prevented from flowing along the bottom surface into the evaporating plate on the bottom surface of the heating chamber, and the evaporating plate is kept hygienic. be able to.
[0017]
According to a sixth aspect of the present invention, in the high-frequency heating device with a steam generating function, the evaporating dish is disposed along a bottom surface of the heating chamber on which the object to be heated is placed.
[0018]
In this high-frequency heating device with a steam generating function, steam is generated from an evaporating dish along a bottom surface of a heating chamber in which an object to be heated is placed.
[0019]
According to a seventh aspect of the present invention, in the high-frequency heating device with a steam generating function, the steam generating unit includes an evaporating dish heater for heating the evaporating dish.
[0020]
In this high-frequency heating device with a steam generating function, since steam is generated by heating the evaporating dish with the evaporating dish heater, the steam can be efficiently generated with a simple structure.
[0021]
The high frequency heating device with a steam generating function according to claim 8 is characterized in that the steam generating section includes a reflector for reflecting radiant heat from the evaporation dish heater to the evaporation dish.
[0022]
In this high-frequency heating device with a steam generating function, the radiant heat from the evaporating dish heater is reflected by the reflecting plate toward the evaporating dish, so that the heat generated by the heater is used for generating steam with high efficiency. be able to.
[0023]
According to a ninth aspect of the present invention, in the high-frequency heating device with a steam generating function, the evaporating dish has tapered portions at both ends in the longitudinal direction such that the water recesses gradually become shallower along the longitudinal direction.
[0024]
In this high-frequency heating device with a steam generating function, the water injected into the water sump recess always accumulates in the center of the evaporating dish, whereby the total length of the evaporating dish heater can be shortened, and the compactness can be achieved.
[0025]
According to a tenth aspect of the present invention, the high-frequency heating device with a steam generating function includes a water supply unit that supplies water to the steam generating unit.
[0026]
In this high-frequency heating device with a steam generating function, water can be supplied to the evaporating dish by the water supply section, so that a large amount of steam can be continuously generated for a long time regardless of the water storage capacity of the evaporating dish. For a long time.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a high-frequency heating device with a steam generating function according to the present invention will be described in detail with reference to the drawings.
<First embodiment>
FIG. 1 is a front view showing a state in which an opening / closing door of a high-frequency heating device with a steam generating function according to the first embodiment is opened, FIG. 2 is a perspective view showing an evaporating dish of a steam generating unit used in this device, and FIG. FIG. 4 is a perspective view showing an evaporating dish heater and a reflecting plate of the generating unit, and FIG. 4 is a sectional view of the steam generating unit.
The high-frequency heating apparatus 100 with a steam generating function is a heating cooker that supplies at least one of high frequency (microwave) and steam to a heating chamber 11 that accommodates an object to be heated and heats the object to be heated. A magnetron 13 as a high-frequency generator for generating high frequency, a steam generator 15 for generating steam in the heating chamber 11, a circulation fan 17 for stirring and circulating air in the heating chamber 11, A convection heater 19 as an indoor air heater for heating the air circulating through the air, and an infrared sensor 20 for detecting the temperature in the heating chamber 11 through a detection hole provided in the wall surface of the heating chamber 11.
[0028]
The heating chamber 11 is formed inside a box-shaped main body case 10 having an open front, and an opening / closing door 21 having a light-transmitting window 21 a for opening and closing a heated object outlet of the heating chamber 11 is provided on the front surface of the main body case 10. Is provided. The lower end of the opening / closing door 21 is hingedly connected to the lower edge of the main body case 10 so that the opening / closing door 21 can be opened and closed in the vertical direction. A predetermined heat insulating space is provided between the wall surfaces of the heating chamber 11 and the main body case 10, and a heat insulating material is loaded in the space as needed. In particular, the space behind the heating chamber 11 is a circulation fan chamber 25 accommodating the circulation fan 17 and its drive motor 23 (see FIG. 7). A partition plate 27 that defines the chamber 25 is provided. In the partition plate 27, there are an intake vent hole 29 for performing intake from the heating chamber 11 side to the circulation fan chamber 25 side, and a ventilation vent hole 31 for performing ventilation from the circulation fan chamber 25 side to the heating chamber 11 side. The formation areas are provided separately. Each ventilation hole 29, 31 is formed as a number of punch holes.
[0029]
The circulation fan 17 is arranged with its center of rotation at the center of the rectangular partition plate 27, and a rectangular annular convection heater 19 is provided in the circulation fan chamber 25 so as to surround the circulation fan 17. Have been. The ventilation holes 29 formed in the partition plate 27 are arranged on the front surface of the circulation fan 17, and the ventilation holes 31 are arranged along the rectangular annular convection heater 19. When the circulation fan 17 is turned, the wind is set to flow from the front side of the circulation fan 17 to the rear side of the drive motor 23, so that the air in the heating chamber 11 flows through the ventilation holes 29 for intake. And is passed through the convection heater 19 in the circulation fan chamber 25 and sent out from the ventilation hole 31 for ventilation into the heating chamber 11. Therefore, by this flow, the air in the heating chamber 11 is circulated through the circulation fan chamber 25 while being stirred.
[0030]
The magnetron 13 is arranged, for example, in a space below the heating chamber 11, and a stirrer blade 33 is provided at a position where high frequency generated by the magnetron is received. By irradiating the rotating stirrer blades 33 with the high frequency from the magnetron 13, the high frequency is supplied to the heating chamber 11 while being stirred by the stirrer blades 33. The magnetron 13 and the stirrer blades 33 are not limited to the bottom of the heating chamber 11 but may be provided on the upper surface or the side surface of the heating chamber 11.
[0031]
As shown in FIG. 2, the steam generating section 15 has an evaporating dish 35 having a water reservoir recess 35a for generating steam by heating, and is disposed below the evaporating dish 35, as shown in FIGS. 3 and 4. The evaporating dish 35 includes an evaporating dish heater 37 for heating the evaporating dish 35, and a reflecting plate 39 having a substantially U-shaped cross section for reflecting radiant heat of the heater toward the evaporating dish 35. The evaporating dish 35 is, for example, an elongated plate made of stainless steel, and is disposed on the bottom surface on the back side of the heating chamber 11 on the opposite side to the outlet for the object to be heated, with the longitudinal direction along the partition plate 27. I have. As the evaporating dish heater 37, a glass tube heater, a sheath heater, a plate heater, or the like can be used.
[0032]
FIG. 5 is a block diagram of a control system for controlling the high-frequency heating device 100 with a steam generation function. This control system mainly includes a control unit 501 having a microprocessor, for example. The control unit 501 mainly exchanges signals with the power supply unit 503, the storage unit 505, the input operation unit 507, the display panel 509, the heating unit 511, the cooling fan 61, and the like.
[0033]
Various operations such as a start switch 519 for instructing the start of heating, a changeover switch 521 for switching between heating methods such as high-frequency heating and steam heating, and an automatic cooking switch 523 for starting a prepared program are provided on the input operation unit 507. Switch is connected.
The high frequency generator 13, the steam generator 15, the circulation fan 17, the infrared sensor 20, and the like are connected to the heater 511. The high-frequency generator 13 operates in cooperation with a radio wave agitator (a stirrer blade drive) 33, and the steam generator 15 includes an evaporating dish heater 37, a room air heater 19 (convection heater), and the like. Is connected. Note that this block diagram also includes elements other than the mechanical components described above (for example, the water pump 55, the door blower damper 84, the exhaust damper 87, and the like), which will be described later. The embodiment will be described.
[0034]
Next, the basic operation of the high-frequency heating device 100 with a steam generation function described above will be described with reference to the flowchart of FIG.
As an operation procedure, first, the food to be heated is placed on a dish or the like, placed in the heating chamber 11, and the opening / closing door 21 is closed. Then, a heating method, a heating temperature or a time is set by the input operation unit 507 (Step 10, hereinafter abbreviated as S10), and a start switch is turned ON (S11). Then, the heating process is automatically performed by the operation of the control unit 501 (S12).
[0035]
That is, the control unit 501 reads the set heating temperature and time, selects and executes an optimal cooking method based on the read heating temperature and time, and determines whether or not the set heating temperature and time have been reached (S13). When the set value is reached, each heating source is stopped to end the heating process (S14). In S12, the steam generation, the indoor air heater, the circulation fan rotation, and the high frequency heating are individually or simultaneously performed.
[0036]
At the time of the above-described operation, for example, an operation when a mode of “steam generation + circulation fan ON” is selected and executed will be described. When this mode is selected, as shown in FIG. 7 showing the operation of the high-frequency heating device 100, when the evaporating dish heater 37 is turned on, the water in the evaporating dish 35 is heated and steam S is generated. . The steam S rising from the evaporating dish 35 is sucked into the central portion of the circulation fan 17 from an intake vent hole 29 provided at a substantially central portion of the partition plate 27, passes through the circulation fan chamber 25, and rotates around the partition plate 27. Air is blown into the heating chamber 11 from the ventilation holes 31 provided in the section. The blown-out steam is stirred in the heating chamber 11, and is again sucked into the circulation fan chamber 25 through the intake vent hole 29 substantially at the center of the partition plate 27. Thereby, a circulation path is formed in the heating chamber 11 and the circulation fan chamber 25. It is to be noted that the generated steam is guided to the intake vent 29 without providing the ventilation vent 31 below the position of the circulation fan 17 of the partition plate 27. Then, as shown by a white arrow in the figure, the steam circulates through the heating chamber 11, so that the steam is blown to the object to be heated M.
[0037]
At this time, the steam in the heating chamber 11 can be heated by turning on the indoor air heater 19, so that the temperature of the steam circulating in the heating chamber 11 can be set to a high temperature. Therefore, so-called superheated steam is obtained, and heating cooking in which the surface of the object to be heated M is browned becomes possible. When high-frequency heating is performed, the magnetron 13 is turned on and the stirrer blades 33 are rotated to supply high-frequency waves into the heating chamber 11 while stirring, so that high-frequency heating cooking without unevenness can be performed.
[0038]
As described above, according to the high-frequency heating device with a steam generating function of the present embodiment, since the steam is generated inside the heating chamber 11 instead of outside, similar to the case where the inside of the heating chamber 11 is cleaned, The portion that generates steam, that is, the evaporating dish 35 can be easily cleaned. For example, in the process of generating steam, calcium, magnesium, chlorine compounds and the like in the water may be concentrated and settle down and adhere to the bottom of the evaporating dish 35, but those adhering to the surface of the evaporating dish 35 are wiped off with a cloth or the like. Just wipe it clean. In addition, when the dirt is particularly severe, as shown in FIG. 8, the evaporating dish 35 can be taken out of the heating chamber 11 and washed, so that the evaporating dish 35 can be easily cleaned. In some cases, it can be easily replaced with a new evaporating dish 35. Therefore, cleaning including the evaporating dish 35 becomes easy, and it becomes easy to always keep the inside of the heating chamber 11 in a sanitary environment.
[0039]
Further, in this high-frequency heating device, the evaporating dish 35 is disposed on the bottom surface on the far side of the heating chamber 11 opposite to the outlet for the object to be heated. Even if the plate 35 is at a high temperature, there is no danger of touching the evaporating plate 35 when the object to be heated is taken in and out, and the safety is excellent.
Further, as shown in FIG. 9, the positional relationship between the evaporating dish and the bottom of the heating chamber is shown, the evaporating dish 35 is installed at a position where the upper surface 35 b of the evaporating dish 35 is higher than the bottom of the heating chamber 11 by the height h. This prevents the liquid such as juice that has exuded from the object to be heated from flowing into the evaporating dish 35 along the bottom surface of the heating chamber 11. Thereby, the evaporating dish 35 can be kept hygienic, and since the surface 22 of the stepped portion between the evaporating dish 35 and the bottom surface is directed to the outlet for the object to be heated, the surface 22 is also easily formed. Can be cleaned.
[0040]
Further, in this high-frequency heating device, since steam is generated by heating the evaporating dish 35 with the evaporating dish heater 37, the steam can be efficiently supplied with a simple structure, and the heating to a somewhat high temperature is achieved by heating. Since steam is generated, cooking that simply humidifies, or cooking in which drying is prevented while heating is used in combination with high-frequency heating is also possible.
Further, since the radiant heat of the evaporating dish heater 37 is reflected by the reflecting plate 39 toward the evaporating dish 35, the heat generated by the evaporating dish heater 37 can be efficiently and efficiently used for steam generation. it can.
[0041]
In this high-frequency heating device, the air in the heating chamber 11 is circulated and agitated by the circulation fan 17, so that when the steam is heated, the steam is evenly distributed to every corner in the heating chamber 11. Can be made. Therefore, although the heating chamber 11 is filled with steam, the steam does not stay, and the steam spreads throughout the heating chamber 11. As a result, when the infrared sensor 20 measures the temperature of the object to be heated, the infrared sensor Can reliably measure the temperature of the object to be heated without measuring the temperature of the vapor particles in the heating chamber 11, and can increase the temperature measurement accuracy. Thus, the heating process performed with reference to the detected temperature is properly performed without malfunction.
[0042]
In addition, as the heating method, both high-frequency heating and steam heating can be performed simultaneously, one of them can be performed individually, and both can be performed in a predetermined order. An appropriate heating method can be arbitrarily selected according to the distinction between refrigerated products and the like. In particular, when both high-frequency heating and steam heating are used, the rate of temperature rise of the object to be heated can be increased, so that efficient cooking can be achieved.
[0043]
Further, since the air circulating in the heating chamber 11 can be heated by the room air heater 19 provided in the circulation fan chamber 25, the temperature of the steam generated in the heating chamber 11 can be freely adjusted. it can. For example, since the temperature of the steam can be set to a high temperature of 100 ° C. or higher, the object to be heated can be efficiently heated by the superheated steam, and the surface of the object to be heated is dried, and in some cases, the surface is heated. It is also possible to add browning. Further, when the object to be heated is a frozen product, heat transfer is performed efficiently because the heat capacity of steam is large, and thawing can be performed in a short time.
[0044]
Further, in the high-frequency heating apparatus 100 with the steam generating function, the circulation fan 17 is housed in the circulation fan chamber 25 independently provided outside the heating chamber 11 via the partition plate 27, so that the heating target is cooked. Can be prevented from adhering to the circulation fan 17. At the same time, since the ventilation is performed through the ventilation holes 29 and 31 provided in the partition plate 27, the flow of the steam generated in the heating chamber 11 depends on the positions where the ventilation holes 29 and 31 are provided and the opening areas of the ventilation holes 29 and 31. Can be changed freely.
[0045]
In the evaporating dish 35 described above, the shape of the water recess may be as follows. 10 is a schematic configuration diagram showing a cross section of another shape of the evaporating dish and an evaporating dish heater, FIG. 11 is a cross-sectional view taken along the line AA of FIG. 10, and FIG. FIG. 13 is a cross-sectional view illustrating an example, and FIG. 13 is a schematic configuration diagram illustrating still another shape of the evaporating dish.
The evaporating dish 42 shown in FIG. 10 has tapered portions 42a at both ends in the longitudinal direction where the water recesses gradually become shallower along the longitudinal direction, and water injected into the water recesses flows along the tapered portions 42a. So that it always accumulates in the center of the evaporating dish. With this configuration, the overall length of the evaporating dish heater 37 can be shortened, and the size can be reduced. Further, the cross section of the bottom of the water recess may be flat as shown in FIG. 11 or may be curved as shown in FIG. In the case of the curved shape, the water in the water recess always collects at the lowest position near the evaporating dish heater 37, and the heating efficiency is improved. In addition, in the evaporating dish 43 shown in FIG. 13, the bottom surface of the water sump recess is formed in a curved shape along the longitudinal direction, so that water is concentrated in the vicinity of the center where the heat from the evaporating dish heater 37 is concentrated. It will accumulate. Therefore, heating with increased thermal efficiency can be performed.
[0046]
In addition, the arrangement position of the evaporating dish 35 in the heating chamber 11 is not limited to the bottom surface on the back side opposite to the object to be heated, and can be changed as appropriate. As shown in FIG. 14, an example of the arrangement of the evaporating dishes is, for example, a bottom surface along the side wall surface 81a, 81b of the heating chamber shown in FIG. You may. Further, one or a plurality of small evaporating dishes 44 shown in FIG. 14B may be arranged at a corner (corner) of the bottom surface of the heating chamber 11. The small evaporating dish 44 in this case is, for example, a bowl-shaped evaporating dish, and is provided with an evaporating dish heater below the evaporating dish. In any case, as long as steam can be supplied into the heating chamber, the evaporating dish can be arranged at an arbitrary position. In addition, since the flow of the generated steam is generally an upward flow, it is preferable to provide the evaporating dish below the heating chamber from the viewpoint of stirring the steam. For example, it may be provided in the lower half area of the heating chamber or along the bottom surface of the heating chamber. In addition, if cleaning is easy, it may be provided in a space further below the bottom surface of the heating chamber. Further, the evaporating dish may not be fixed at a predetermined position, and may be arranged at an arbitrary position by a user. In this case, the steam generation source can be arranged at an optimum position according to the heating content.
[0047]
<Second embodiment>
Next, a high-frequency heating device with a steam generation function according to a second embodiment of the present embodiment will be described with reference to FIGS. In the following description, the same members as those in the above-described first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In the high-frequency heating device with a steam generating function according to the present embodiment, as shown in FIG. 15A, the upper surface of the evaporating dish 35 is covered with a lid 41 having a partly provided with an opening 41a. Thus, as shown in FIG. 15B, the position where steam is emitted can be limited to a portion having the opening 41a. Further, the supply amount of steam can be adjusted according to the opening area of the opening 41a.
[0048]
As shown in FIG. 16, the opening 41a is provided below the intake vent hole 29 in the center of the partition plate 27. Accordingly, when the generated steam rises from the opening 41a, it is immediately sucked into the intake vent hole 29, and becomes a circulating flow in which the steam circulates in the heating chamber 11 without wasting. In addition, since the lid 41 is configured to be detachable, it is easy to replace the lid with a lid having a different opening size, and it is possible to use an appropriate lid according to the heating conditions.
[0049]
Further, in this high-frequency heating device with a steam generating function, as shown in FIG. 16, most of the steam sucked into the intake vent hole 29 is blown into the heating chamber 11 mainly from near the bottom surface of the heating chamber 11. In order to make it possible, a large number of ventilation holes 31 a for ventilation provided in the partition plate 27 are formed below the partition plate 27. This is because since the steam itself rises, it is possible to achieve a more uniform overall flow by blowing out more from the lower side. By doing so, the flow of the steam in the heating chamber 11 first flows low near the bottom surface, and then flows upward. The ventilation holes 31b are provided at a substantially intermediate height of the partition plate 27. The second-stage tray (not shown) for placing an object to be heated (not shown) in the heating chamber 11 has a substantially intermediate height. It is provided to blow air to the object placed on this tray in order to be loaded in the tray position.
With this configuration, a circulating flow in which heating is more effective than in the above-described embodiment is created, and the temperature distribution in the heating chamber 11 is suppressed to a small value. Therefore, the object to be heated placed in the heating chamber 11 can be heated uniformly and at high speed.
[0050]
The lid 41 may be another lid whose perspective view is shown in FIG. The lid 45 is formed in a plate shape in which a plurality of circular openings 45 a are provided along the longitudinal direction, and a gap of a predetermined height is formed between the upper surface of the evaporating dish 35 and the four corners on the back surface. Leg portion 45b is formed so as to protrude in the thickness direction. The lid 45 is made of cordierite (2MgO.2Al) which is a low dielectric constant material having low radio wave loss. 2 O 3 ・ 5SiO 2 ), Which is resistant to thermal shock and has mechanical strength that does not easily break.
[0051]
By placing the lid 45 on the evaporating dish 35, as shown in FIG. 18, a gap 46 with a predetermined interval t is formed between the evaporating dish 35 and the leg 45b of the lid 45. When the water in 35 is heated, the pressure increase in the lower part of the lid 45 is suppressed. As a result, even when the temperature of the water in the evaporating dish 35 rises and bumping occurs, the pressure is efficiently released from the gap 46 and water does not scatter from the opening 45a. Therefore, the generated steam stably flows upward from the opening 45a. Even when bumping occurs, the flow path is bent by the flanges 47 on both sides of the evaporating dish 35, so that water does not scatter from the gap 46, and almost no water splashes into the heating chamber 11. Absent.
[0052]
In the above description, the case where a propeller-type circulation fan is provided is shown. However, as shown in FIG. 19, a sirocco fan 18 may be used as the circulation fan. According to this configuration, most of the generated wind can be strongly blown out from the lower ventilation hole 31a. Therefore, the steam S generated in the steam generation unit 15 can be directly circulated while being filled in the heating chamber 11 as it is.
[0053]
<Third embodiment>
Next, a high-frequency heating device with a steam generating function according to a third embodiment of the present invention will be described with reference to FIGS.
FIG. 20 is a side view showing a main part of the high-frequency heating device with a steam generating function of the present embodiment, FIG. 21 is an explanatory diagram showing a nozzle attached to the end of a pipeline, and FIG. 22 is an explanatory diagram showing a removable water storage tank. FIG. 23 is a conceptual partial sectional view of the main body case.
[0054]
The high-frequency heating device with a steam generating function according to the present embodiment is characterized in that a water supply unit 51 for supplying water to the evaporating dish 35 of the steam generating unit 15 is newly added, as shown in FIG. The water supply unit 51 includes a water storage tank 53, a water supply pump 55 that supplies a predetermined amount of water from the water storage tank 53 to the evaporating dish 35, and a water supply pipe 57 that connects the water storage tank 53 to the evaporating dish 35. And
[0055]
Further, as shown in FIG. 21, the end 57a of the water supply pipe 57 on the side of the evaporating dish 35 projects from the side wall surface 81a of the heating chamber 11, and the projecting end 57a is provided with a flexible heat-resistant resin material. Is attached. Therefore, the water in the water storage tank 53 is supplied to the evaporating dish 35 by the water supply pump 55 through the water supply line 57 and the nozzle 52. The end 57a of the water supply pipe 57 may be discharged from any side wall surface (for example, 81a) or the wall surface of the partition plate 27 on the back side of the heating chamber.
[0056]
According to the configuration of the present embodiment, since water can be continuously supplied to the evaporating dish 35, a long-time continuous steam heating process can be performed. In addition, since the nozzle 52 is detachably provided, the nozzle 52 can be removed even when calcium or magnesium in water adheres or sap or the like scattered from the object to be heated adheres similarly to the evaporating dish. Can be washed. In addition, the nozzle can be replaced with a new nozzle, which facilitates maintenance. By providing the nozzle 52 at the end 57a of the water supply pipe 57, cleaning is simplified, and water can be supplied to the evaporating dish in a sanitary environment. Further, since the nozzle 52 is formed of a flexible material, the nozzle 52 is not damaged even if it comes into contact with tableware or the like in the heating chamber 11, and the inside of the nozzle 52 can be easily cleaned. Further, by manufacturing the nozzle 52 as an integral injection-molded product, it can be supplied at low cost by mass production.
[0057]
The water storage tank 53 is a cartridge type as shown in FIG. 22 showing a partial perspective view of the side surface of the present apparatus, in order to improve the handling property, so that the apparatus itself does not become large when incorporated in the apparatus. It is compactly embedded in the side wall of the main body case 10 where the temperature is relatively low. In addition, the device may be disposed on the upper surface side of the device after heat insulation treatment, or may be disposed on the lower surface side.
[0058]
It is preferable that the cartridge type water storage tank 53 can be easily taken out from the outside of the apparatus and can be easily replaced, whereby the handling property can be improved and the tank can be easily cleaned. For example, as shown in the figure, the lid 59 may be opened and closed from the side of the apparatus so that it can be put in and out, or it may be made possible to put it in and out from the front of the apparatus. Further, the cartridge type water storage tank 53 is formed of a transparent material such as resin or glass, and the wall of the tank housing portion on the body case side is also made of a transparent material, so that the remaining amount of water in the water storage tank 53 can be reduced. It is preferable to be configured so that it can be visually confirmed from the above. Further, by attaching a remaining amount sensor, the remaining amount of water in the water storage tank 53 is displayed on the display panel 509 or the like, or is notified by sounding a buzzer or the like from a speaker (not shown), so that the evaporating plate 35 can be used for empty heating. Can be prevented beforehand.
[0059]
Here, when the water storage tank 53 made of resin is disposed on a side wall portion or the like of the apparatus, the water storage tank 53 may be affected by heat from the heating chamber 11. In this case, as shown in a conceptual partial sectional view of the main body case 10 in FIG. 23, the water storage tank 53 is provided with a cooling fan 61 (as an example, disposed at the bottom of the apparatus and provided with the high-frequency generator 13 at the time of high-frequency heating). (A fan for cooling the cooling chamber is used) is provided in the middle of the ventilation passage 63 for sending cooling air from the heating chamber 11 into the heating chamber 11. In such a case, since the water storage tank 53 can be minimized from being affected by heat, the range of selection of the tank material can be widened, and the need to dare to protect the water storage tank 53 with heat insulating material is also reduced. .
[0060]
<Fourth embodiment>
Next, a high-frequency heating device with a steam generating function according to a fourth embodiment of the present invention will be described with reference to FIG.
In the high-frequency heating device with a steam generating function according to the present embodiment, as shown in FIG. 24, a conceptual vertical cross-sectional view of the back side of the main body case 10, apart from the heating chamber 11 and the circulation fan chamber 25, these two chambers 11, 25, an infrared sensor 20 for detecting a temperature in the heating chamber 11 through a detection hole 73 provided in a wall surface of the heating chamber 11, and a circulating fan. A self-cooling fan 75 that is provided coaxially with the drive shaft 17 and cools the drive motor 23 is housed therein. The pressure P on the side of the self-cooling fan chamber 71 near the detection hole 73 is generated by the wind pressure generated by the rotation of the self-cooling fan 75. 1 Is the pressure P on the heating chamber 11 side. 2 To keep it higher.
[0061]
Generally, when the temperature inside the heating chamber 11 is measured by the infrared sensor 20, if a transparent member such as glass for protection is attached to the detection hole 73, steam adheres to the glass and accurate measurement cannot be performed. The hole 73 is a mere through-hole without any interposition. However, in the case of a through-hole, since the air in the heating chamber 11 can freely enter and exit, there is a possibility that steam or the like may adhere to the infrared sensor 20, thereby lowering the temperature measurement accuracy.
[0062]
In this regard, in the high-frequency heating device with a steam generating function of the present embodiment, the pressure P on the side of the self-cooling fan chamber 71 near the detection hole 73 is determined by the wind pressure generated by the rotation of the self-cooling fan 75. 1 Is the pressure P on the heating chamber 11 side. 2 Since the air temperature is kept higher than that, it is possible to prevent the air in the heating chamber 11 from entering the self-cooling fan chamber 71 containing the infrared sensor 20. For this reason, it is possible to prevent the detection accuracy from being reduced due to the attachment of dirt to the infrared sensor 20, and it is possible to always measure the temperature in the heating chamber 11 with high accuracy. Therefore, the heat treatment can be performed under accurate temperature control, and the heating of the object to be heated can be controlled as desired.
[0063]
Here, a method of measuring the temperature by the infrared sensor 20 will be described. FIG. 25 is an explanatory diagram showing how the temperature is measured by the infrared sensor. The infrared sensor 20 scans in the direction of the arrow in the figure by swinging the infrared sensor 20 at the same time while simultaneously detecting the temperature at a plurality of points (n points) at a time, and scans the inside of the heating chamber 11 at a plurality of measurement points (n points). The temperature is measured for point m in the scanning direction. Therefore, temperature detection at n × m measurement points shown in FIG. 25B can be performed by one scan of the infrared sensor 20. The temperature of the object to be heated M is determined based on the rate of rise of the temperature at each measurement point that is continuously detected with respect to the elapsed time, and the position of the object to be heated M is determined. Treated as M temperature.
[0064]
The temperature measurement range of the infrared sensor 20 is the bottom surface of the heating chamber 11 excluding the position where the evaporating dish 35 is arranged. Therefore, the evaporating dish 35 is disposed at a position substantially deviated from the temperature measurement wave by the infrared sensor 20. Note that a method of performing temperature measurement by scanning the infrared sensor 20 over the entire bottom surface of the heating chamber 11 and invalidating detection data from the position of the evaporating dish 35 may be used.
[0065]
<Fifth embodiment>
Next, a high-frequency heating device with a steam generating function according to a fifth embodiment of the present invention will be described with reference to FIG.
In the high-frequency heating apparatus with a steam generation function of the present embodiment, as shown in a conceptual cross-sectional view of the main body case 10 in FIG. An outside air outlet 82 for blowing outside air to the inner surface of the light window 21a is provided. The outside air outlet 82 is communicated with a side ventilation passage 83 secured between the main body case 10 and the side wall surface of the heating chamber 11, and a rear ventilation passage 85 is provided in the side ventilation passage 83 via a damper 84. It is connected. The air from the cooling fan 61 provided at the bottom of the apparatus can be blown into the heating chamber 11 from the outside air outlet 82 through the side ventilation passage 83 by switching the damper 84. If the damper 84 is switched to the other, the cooling air is exhausted from the exhaust port 88 to the outside.
[0066]
By blowing outside air toward the inner surface of the light transmitting window 21a in this manner, the light transmitting window 21a can be prevented from fogging with steam during steam heating or high frequency heating. The heating state can be visually confirmed from the outside. The blowing of the outside air may be performed only when necessary. For example, by starting the blowing of the outside air a predetermined time before the end of the heating, the fogging of the translucent window 21a can be removed at the end of the heating, and the steam can be removed at the time of opening the door. Can be prevented from standing in front. In addition, since the outside air is forcibly introduced and blown to the translucent window 21a, the steam expelling effect (cooling effect) before opening the opening / closing door 21 is particularly excellent.
[0067]
<Sixth embodiment>
Next, a high-frequency heating device with a steam generating function according to a sixth embodiment of the present invention will be described with reference to FIGS.
In the high-frequency heating device with a steam generation function of the present embodiment, as shown in FIG. 27, a front view showing a schematic configuration of a main body case, and FIG. An exhaust port 86 for evacuating the air in the heating chamber 11 is disposed on the front side above the one side wall surface 81a, and is disposed on the back side below the other side wall surface 81b of the heating chamber 11. . In this case, the exhaust port 86 is directly connected to the outside via the damper 87 so that the air or steam in the heating chamber 11 can be immediately discharged to the outside of the apparatus.
[0068]
By arranging the exhaust port 86 in the vicinity of the bottom surface of the heating chamber 11 as described above, the air flow in the heating chamber 11 at the time of exhausting flows from the upper surface side to the bottom surface side. It can be discharged effectively without stagnation. Further, since the exhaust destination is outside air outside the apparatus, there is an effect that evaporation components generated from the object to be heated can be suppressed from adhering to the inner wall of the apparatus. By providing the outside air outlet 82 on the near side and the exhaust port 86 on the back side of the heating chamber 11, the exhausted air in the heating chamber 11 flows diagonally through the rectangular parallelepiped space in the heating chamber 11. Traverses, and more efficient and quick ventilation can be performed.
[0069]
<Seventh embodiment>
Next, a high-frequency heating device with a steam generating function according to a seventh embodiment of the present invention will be described with reference to FIG.
In the high-frequency heating device with a steam generating function of the present embodiment, as shown in a schematic configuration diagram of the device in FIG. 29, the water in the evaporating plate 35 is evaporated by high-frequency heating without providing an evaporating plate heater. I have. In this case, the water in the evaporating dish 35 may be heated with high frequency by stirring with the usual stirrer blades 33, but desirably, the destination of the high frequency by the stirrer blades 33 can be directed to the evaporating dish 35. It is preferable to design the stirrer blades 33 so that the evaporating dish 35 can be heated intensively. Although the stirrer blade 33 normally rotates to heat the entire heating chamber 11 uniformly, this can be realized by stopping the stirrer blade 33 at a specific position. For example, if control is performed such that the water in the evaporating dish 35 is heated for a predetermined period of time and then the process returns to the normal heating processing in the heating chamber 11, a steam heater and high-frequency heating may be provided with an evaporating dish heater. Can be performed at the same time.
[0070]
As described above, by omitting the evaporating dish heater and heating and evaporating the water in the evaporating dish 35 with high frequency, the configuration can be simplified and the cost can be reduced.
[0071]
In each of the above embodiments, the example in which the stirrer blades 33 are provided to stir high frequency is described. However, as shown in FIG. However, the present invention can be similarly applied. That is, in the case shown in the drawing, the turntable 91 is arranged on the bottom side of the heating chamber 11 excluding the position where the evaporating dish 35 is arranged, so that the steam can be generated as functionally as it is.
[0072]
Next, a variation of the steam generation method of the steam generation unit 15 will be described with reference to FIG. In the figure, 11 is a heating chamber, 401 is a cartridge type water tank, 402 is a pump, and 403 is a drainage mechanism. (A) is the simplest type using the evaporating dish 35 and the evaporating dish heater 37 described above. When a glass tube type far-infrared heater is used as the evaporating dish heater 37, the amount of generated steam is about 10 g / min, and steam can be generated in about 40 seconds. When a halogen heater is used, the amount of generated steam is about the same as the above, and steam can be generated in about 25 seconds. This type of structure has the advantages of being simple and inexpensive and having a short time to steam generation.
[0073]
(B) is a type in which water in the evaporating dish 35 is heated using an inverter power supply 405 and an IH (electromagnetic induction heating) coil 406. In this type, the amount of steam generation is about 15 g / min, and steam can be generated in about 15 seconds, and there is an advantage that the time until steam generation is short.
[0074]
(C) shows a type using a dropping type IH steamer 406, in which water droplets are dropped and evaporated on a member heated using an inverter power supply 405 and an IH (electromagnetic induction heating) coil. Although this type is large, the amount of steam generated is about 20 g / min, and steam can be generated in about 5 seconds.
[0075]
(D) is a type in which steam is generated using the boiler 407, and can generate steam in about 40 seconds at a steam generation amount of about 12 to 13 g / min. Although this complicates the drainage mechanism 403 and the like, it can be configured at low cost.
[0076]
(E) is a type using an ultrasonic steam generator 408, in which generated steam is sucked out by a fan F, heated by a room air heater 19, and then supplied to the heating chamber 11.
[0077]
【Example】
Here, examples in which various types of heat treatment are performed by the above-described high-frequency heating device with a generating function according to the present invention will be described.
FIG. 32 shows how the weight changes when one piece of meat is heated as an object to be heated. When the meat bun is heated (steamed) with steam, it can be determined from the increase in the amount of water whether or not the meat was finally heated to a good state.
[0078]
(A) shows a case where a convection heater as a room air heating heater is heated at 570 W and steam heating is performed without operating a circulation fan. (B) shows a case where the convection heater is heated at 680 W and steam is heated without operating the circulation fan. In any case, the increase in the amount of water with respect to the heating time is relatively small, and it can be seen that a satisfactory steaming effect could not be obtained simply by heating the convection heater by filling the heating chamber 11 with steam.
[0079]
On the other hand, when the circulation fan was operated as in (c) and (d), a relatively high water content was obtained, and a good steaming effect was obtained. It was also found that a good steaming effect was obtained over time even when the rotation speed of the circulation fan was reduced as shown in FIG. That is, the moisture content of the steamed product can be increased by the operation of the circulation fan. Therefore, it can be said that circulation of steam is indispensable when heating with steam.
[0080]
FIG. 33 shows the difference in the amount of dew condensation between the door and the heating chamber when the circulation fan is operated and not operated. Although the condensation increases with time, it can be seen that the amount of condensation can be greatly reduced by operating the circulation fan. Ten minutes after the start of the heating, when the circulation fan was not rotated, the door was 7.6 g and the heating chamber was 14.4 g. When the circulation fan was rotated, the door was 3.1 g and the heating chamber 7 was not. 0.3 g, and the amount of dew can be reduced to about half.
[0081]
FIG. 34 shows the results of examining the change in the amount of dew condensation in the inside of the refrigerator and at the door from the end of the steam heating in the case of heating with the convention heater and without heating. By operating the convention heater, the amount of dew condensation in the heating chamber is significantly reduced from 7.3 g at the end of heating to 3.0 g (1 minute) and 0.3 g (2 minutes). Also, with respect to the door, a tendency to decrease from 3.1 g to 2.9 g (1 minute) and 1.3 g (2 minutes) is observed.
[0082]
FIG. 35 shows the results of examining the measurement performance of the infrared sensor when the circulation fan is operated when the heating chamber is filled with steam and when the circulation fan is not operated. When the circulating fan is not operated, the measurement value of the infrared sensor fluctuates halfway and the measurement accuracy is reduced. However, when the circulating fan is operated, stable measurement is always performed. That is, by operating the circulation fan, the detection level of the infrared sensor is stabilized, and good temperature measurement can be performed.
[0083]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the high frequency heating apparatus with a steam generation function which concerns on this invention, a steam can be supplied to a heating chamber promptly, and a steam generation part is easy to clean and can always keep sanitary.
[Brief description of the drawings]
FIG. 1 is a front view showing a state in which a door of a high-frequency heating device with a steam generating function according to a first embodiment of the present invention is opened.
FIG. 2 is a perspective view showing an evaporating dish of a steam generating section used in the high-frequency heating device with a steam generating function of FIG.
FIG. 3 is a perspective view showing an evaporating dish heater and a reflection plate of the steam generation unit.
FIG. 4 is a cross-sectional view of a steam generating section of the apparatus.
FIG. 5 is a block diagram of a control system for controlling the high-frequency heating device with a steam generation function.
FIG. 6 is a flowchart illustrating a basic operation of the high-frequency heating device with a steam generation function.
FIG. 7 is an operation explanatory diagram of the high-frequency heating device with a steam generation function.
FIG. 8 is an explanatory diagram showing a state in which an evaporating dish is taken out of a heating chamber.
FIG. 9 is an explanatory diagram showing a positional relationship between an evaporating dish and a bottom surface of a heating chamber.
FIG. 10 is a schematic configuration diagram showing a cross section of another shape of the evaporating dish and an evaporating dish heater.
FIG. 11 is a sectional view taken along line AA of FIG. 10;
FIG. 12 is a sectional view showing another example of the AA section in FIG. 10;
FIG. 13 is a schematic configuration diagram illustrating still another shape of the evaporating dish.
FIG. 14 is an explanatory diagram showing an example of the arrangement of evaporating dishes.
FIG. 15 is a perspective view of an evaporating dish and a lid used in the high-frequency heating device with a steam generating function according to the second embodiment of the present invention, wherein (a) shows a state before the lid is put on, and (b) shows a lid. It is a figure showing the state where it was covered.
FIG. 16 is an explanatory diagram showing a state of circulation of steam by a high-frequency heating device with a steam generation function.
FIG. 17 is a perspective view showing a configuration of another lid.
FIG. 18 is an explanatory diagram showing an operation when the lid of FIG. 17 is used.
FIG. 19 is a side view showing a modification using a sirocco fan.
FIG. 20 is a side view showing a main part of a high-frequency heating device with a steam generating function according to a third embodiment of the present invention.
FIG. 21 is an explanatory view showing a nozzle attached to a pipe end.
FIG. 22 is an explanatory view showing a removable water storage tank.
FIG. 23 is a conceptual partial sectional view of a main body case.
FIG. 24 is a longitudinal sectional view illustrating a main part of a high-frequency heating device with a steam generating function according to a fourth embodiment of the present invention.
FIG. 25 is an explanatory diagram showing a state of temperature measurement by an infrared sensor.
FIG. 26 is a plan view showing a schematic configuration of a high-frequency heating device with a steam generation function according to a fifth embodiment of the present invention.
FIG. 27 is a front view showing a schematic configuration of a high-frequency heating device with a steam generation function according to a sixth embodiment of the present invention.
FIG. 28 is a plan view illustrating a ventilation path of the apparatus of FIG. 27.
FIG. 29 is a schematic configuration diagram of a high-frequency heating device with a steam generation function according to a seventh embodiment of the present invention.
FIG. 30 is a perspective view showing a configuration example including a turntable.
FIG. 31 is an explanatory view showing various variations (a) to (e) of a steam generation unit.
FIG. 32 is a view showing a state of weight change when one piece of meat is heated as an object to be heated.
FIG. 33 is a diagram showing a difference in the amount of dew condensation between the door and the heating chamber when the circulation fan is operated and not operated.
FIG. 34 is a diagram showing the results of examining the change in the amount of dew condensation in the inside of the refrigerator and at the door from the end of steam heating in the case of heating with the convention heater and without heating.
FIG. 35 is a diagram showing the results of examining the measurement performance of the infrared sensor when the circulation fan is operated when the heating chamber is filled with steam and when the circulation fan is not operated.
[Explanation of symbols]
11 heating room
13 magnetron (high frequency generator)
15 Steam generator
17, 18 Circulation fan
19 Convection heater (room air heater)
20 Infrared sensor
21 Opening / closing door
21a translucent window
23 Drive motor
25 Circulation fan room
27 Divider
29 Ventilation holes for intake
31, 31A, 31B Ventilation holes for ventilation
33 Stirrer blade (radio wave stirring unit)
35 Evaporating dish
37 Evaporating dish heater
39 Reflector
41 Lid
41a opening
51 Water supply section
53 Water storage tank
55 water pump
71 Self-cooling fan room
73 Detection hole
75 Self-cooling fan
82 outlet
86 exhaust port
100 High frequency heating device with steam generation function

Claims (10)

被加熱物を収容する加熱室に、高周波と蒸気との少なくともいずれかを供給して前記被加熱物を加熱処理する蒸気発生機能付き高周波加熱装置であって、
高周波発生部と、
前記加熱室内に蒸気を供給する蒸気発生部とを備えたことを特徴とする蒸気発生機能付き高周波加熱装置。
A high-frequency heating apparatus with a steam generation function of heating at least one of high-frequency and steam to heat the object by supplying at least one of high-frequency and steam to a heating chamber that accommodates the object to be heated,
A high frequency generator,
A high-frequency heating device with a steam generation function, comprising: a steam generation unit that supplies steam into the heating chamber.
前記蒸気発生部が、加熱室内に配設されて加熱により水溜凹所を有する蒸発皿から蒸気を発生させることを特徴とする請求項1記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating apparatus with a steam generating function according to claim 1, wherein the steam generating section is disposed in a heating chamber and generates steam from an evaporating dish having a water reservoir recess by heating. 前記蒸発皿が、前記加熱室の被加熱物取出口とは反対側の奥側底面に配設されていることを特徴とする請求項2記載の蒸気発生機能付き高周波加熱装置。3. The high-frequency heating apparatus with a steam generating function according to claim 2, wherein the evaporating dish is disposed on a rear bottom surface of the heating chamber on a side opposite to a heated object outlet. 前記蒸発皿が、前記加熱室のいずれかの側壁面に沿った底面に配設されていることを特徴とする請求項2記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 2, wherein the evaporating dish is disposed on a bottom surface along one of side wall surfaces of the heating chamber. 前記蒸発皿が、該蒸発皿の上面を前記加熱室の底面から所定高さ上方になる位置に配設されていることを特徴とする請求項2〜請求項4のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The steam according to any one of claims 2 to 4, wherein the evaporating dish is disposed at a position where an upper surface of the evaporating dish is located at a predetermined height above a bottom surface of the heating chamber. High frequency heating device with generating function. 前記蒸発皿が、被加熱物が載置される前記加熱室底面に沿って配設されていることを特徴とする請求項2〜請求項5のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high frequency heating with a steam generation function according to any one of claims 2 to 5, wherein the evaporating dish is disposed along a bottom surface of the heating chamber on which the object to be heated is placed. apparatus. 前記蒸気発生部が、前記蒸発皿を加熱する蒸発皿加熱ヒータを備えていることを特徴とする請求項2〜請求項6のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high frequency heating device with a steam generating function according to any one of claims 2 to 6, wherein the steam generating section includes an evaporating dish heater for heating the evaporating dish. 前記蒸気発生部が、前記蒸発皿加熱ヒータからの輻射熱を前記蒸発皿へ反射する反射板を備えていることを特徴とする請求項7記載の蒸気発生機能付き高周波加熱装置。The high-frequency heating device with a steam generating function according to claim 7, wherein the steam generating section includes a reflector that reflects radiant heat from the evaporating dish heater to the evaporating dish. 前記蒸発皿が、長手方向両端部に該長手方向に沿って水溜凹所が徐々に浅くなるテーパ部を有することを特徴とする請求項7又は請求項8記載の蒸気発生機能付き高周波加熱装置。The high frequency heating device with a steam generation function according to claim 7 or 8, wherein the evaporating dish has tapered portions at both ends in the longitudinal direction, the water recesses gradually becoming shallower along the longitudinal direction. 前記蒸気発生部へ水を供給する給水部を備えたことを特徴とする請求項1〜請求項9のいずれか1項記載の蒸気発生機能付き高周波加熱装置。The high frequency heating device with a steam generation function according to any one of claims 1 to 9, further comprising a water supply unit that supplies water to the steam generation unit.
JP2002229075A 2002-03-12 2002-08-06 High-frequency heating device with steam generating function Granted JP2004044993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229075A JP2004044993A (en) 2002-03-12 2002-08-06 High-frequency heating device with steam generating function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002067034 2002-03-12
JP2002229075A JP2004044993A (en) 2002-03-12 2002-08-06 High-frequency heating device with steam generating function

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002216875A Division JP3827303B2 (en) 2002-03-12 2002-07-25 High-frequency heating device with steam generation function

Publications (2)

Publication Number Publication Date
JP3473906B1 JP3473906B1 (en) 2003-12-08
JP2004044993A true JP2004044993A (en) 2004-02-12

Family

ID=30117343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229075A Granted JP2004044993A (en) 2002-03-12 2002-08-06 High-frequency heating device with steam generating function

Country Status (1)

Country Link
JP (1) JP2004044993A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103569A1 (en) * 2004-04-22 2005-11-03 Matsushita Electric Industrial Co., Ltd. Cocker and cooking method
JP2007032960A (en) * 2005-07-28 2007-02-08 Hakko Electric Mach Works Co Ltd Steam generation method, and device therefor
WO2007083565A1 (en) 2006-01-17 2007-07-26 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
JP2008008535A (en) * 2006-06-28 2008-01-17 Sharp Corp Steam generator and heating cooker
JP2008275269A (en) * 2007-05-01 2008-11-13 Matsushita Electric Ind Co Ltd Heating system with steam generating function
US9140445B2 (en) 2007-12-25 2015-09-22 Tokyo Denki University Superheated steam generation container, superheated steam generator, and superheated steam generation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018102984A1 (en) * 2016-12-06 2018-06-14 Whirlpool Corporation Moisture convection for microwave oven

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103569A1 (en) * 2004-04-22 2005-11-03 Matsushita Electric Industrial Co., Ltd. Cocker and cooking method
JP2007032960A (en) * 2005-07-28 2007-02-08 Hakko Electric Mach Works Co Ltd Steam generation method, and device therefor
WO2007083565A1 (en) 2006-01-17 2007-07-26 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
JP2007192420A (en) * 2006-01-17 2007-08-02 Matsushita Electric Ind Co Ltd High-frequency heating device
JP4735276B2 (en) * 2006-01-17 2011-07-27 パナソニック株式会社 High frequency heating device
JP2008008535A (en) * 2006-06-28 2008-01-17 Sharp Corp Steam generator and heating cooker
JP2008275269A (en) * 2007-05-01 2008-11-13 Matsushita Electric Ind Co Ltd Heating system with steam generating function
US9140445B2 (en) 2007-12-25 2015-09-22 Tokyo Denki University Superheated steam generation container, superheated steam generator, and superheated steam generation method

Also Published As

Publication number Publication date
JP3473906B1 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP3827303B2 (en) High-frequency heating device with steam generation function
EP1458220B1 (en) High frequency heating apparatus having a steam generating function
EP1372358B1 (en) High frequency heating apparatus with steam generation function
WO2005106333A1 (en) Microwave heating method and device therefor
JP4472412B2 (en) Cooker
US7304278B2 (en) Steam generation function-equipped high-frequency heating device
WO2005075892A1 (en) Cooking utensil and cooking method
WO2016199395A1 (en) Heating cooker
JP3817186B2 (en) Control method of high-frequency heating device with steam generation function
JP4278502B2 (en) Induction heating cooker
JP2004044993A (en) High-frequency heating device with steam generating function
JP2014052108A (en) Heating cooker
JP2004044994A (en) High-frequency heating device with steam generating function
JP2004044995A (en) High-frequency heating device with steam generating function
JP3821054B2 (en) High frequency heating device
WO2016079935A1 (en) Heat-cooking apparatus
JP4419698B2 (en) Heating device
JP2006275505A (en) High frequency heating device with steam generating function
JP3664157B2 (en) High frequency heating device
JP2004278853A (en) Microwave heating device with steam generation function
JP4059166B2 (en) High-frequency heating device with steam generation function
JP2006105592A (en) High-frequency heater with steam generation function, and control method therefor
JP2011058677A (en) Cooker
JP2007010163A (en) Heating cooker
JP2019168163A (en) Heating cooker

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees