JP2004278216A - Shredding conveyor apparatus and method of operating the same - Google Patents

Shredding conveyor apparatus and method of operating the same Download PDF

Info

Publication number
JP2004278216A
JP2004278216A JP2003073618A JP2003073618A JP2004278216A JP 2004278216 A JP2004278216 A JP 2004278216A JP 2003073618 A JP2003073618 A JP 2003073618A JP 2003073618 A JP2003073618 A JP 2003073618A JP 2004278216 A JP2004278216 A JP 2004278216A
Authority
JP
Japan
Prior art keywords
crushing
conveyor
sand
earth
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003073618A
Other languages
Japanese (ja)
Other versions
JP4245945B2 (en
Inventor
Taisuke Ota
泰典 太田
Yoshihiro Hoshino
吉弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2003073618A priority Critical patent/JP4245945B2/en
Publication of JP2004278216A publication Critical patent/JP2004278216A/en
Application granted granted Critical
Publication of JP4245945B2 publication Critical patent/JP4245945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shredding conveyor apparatus which secures high working efficiency and contributes to stable soil improving work, and to provide a method of operating the same. <P>SOLUTION: The shredding conveyor apparatus is formed of a hopper 115 for receiving soil, a transportation conveyor 102 for transporting the soil received by the hopper 115, an additive supply device 120 for supplying an additive for decreasing soil plasticity to the transported soil on the transportation conveyor 102, shredding devices 150, 150 for shredding the transported soil on the transportation conveyor 102 together with the additive supplied from the additive supply device 120, and a control device for controlling operations of the transportation conveyor 102 and the additive supply device 120 according to operating conditions of the shredding devices 150, 150. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、搬送中の改質対象土砂を添加材とともに解砕する解砕コンベア装置に係り、詳細には、高い処理効率を確保し、安定した土質改良作業に寄与することができる解砕コンベア装置及びその運転方法に関するものである。
【0002】
【従来の技術】
近年、例えば、各種工事現場等において発生する建設発生土砂等を土質改良材と共に混合処理し、再利用可能な改良土製品とする自走式土質改良機の活躍の場が増えてきている。今日では、この自走式土質改良機が改質対象とする土砂の性状も、廃棄物再利用促進の気運上昇に伴って多種多様化してきており、例えば、比較的大きな土塊を多く含む土砂や高粘性の粘性土等を改質対象とするケースも増えてきている。
【0003】
一般に、この種の自走式土質改良機には、土砂に含まれるレキ(石)等を予め除去するため、土砂を受け入れるホッパ上方に篩が設けてある場合が多い。この場合、比較的大きな土塊を含む土砂を自走式土質改良機に直接投入すると、篩により、本来改質されるべき土塊が除去されてしまう傾向がある。また、粘性土等を改質対象とした場合には、篩の格子面に土砂が付着して篩に目詰まりが生じ易い傾向がある。そこで、確実に土砂を改質するために、自走式土質改良機の前段に、搬送コンベアに対し上下動又は揺動可能に支持した回転羽根を備えた解砕機を配置し、搬送コンベア上の搬送土砂を土質改良前に解砕するものがある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−45326号公報(5−6頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、上記解砕機には、次のような課題が存在する。
すなわち、前述したように改質対象土砂の性状は多種多様であり、例えばレキ(石)が多く含まれる土砂や特に高粘性の土砂を扱う場合、土砂の付着やレキの噛み込み等によって回転羽根の回転負荷が過大になり、回転数が低下し、延いては運転不能となる可能性がある。この場合、有人運転下にあり、しかも作業者が常に運転状態を確認できる状況にあれば良いが、無人運転下にある場合、又は有人運転であっても解砕機の運転状態が確認できない場合には、解砕機の運転状態が変動又は停止しても迅速に対処できず、処理効率を低下させてしまう場合がある。
【0006】
本発明は、上記の事柄に鑑みてなされたものであり、その目的は、高い処理効率を確保し、安定した土質改良作業に寄与することができる解砕コンベア装置及びその運転方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、第1の発明は、土砂を受け入れるホッパと、このホッパに受け入れた土砂を搬送する搬送コンベアと、この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、この解砕装置の運転状態に応じ、少なくとも前記搬送コンベア及び添加材供給装置を動作制御する制御手段とを備えたことを特徴とする。
【0008】
まず、本発明においては、解砕装置によって、搬送コンベア上の搬送土砂を、添加材供給装置から供給された添加材とともに解砕する。こうして改質対象土砂は効率的に細粒化され、たとえ粘性が高く土塊を多く含んだものであっても、添加材と均一に混合されて塑性が低下し、土砂粒子同士が付着し難い状態となるため、土塊を再形成し難い。したがって、土質改良の前処理としては勿論のこと、改良土を更に細粒化する土質改良の後処理、更には添加材として土質改良材を用いることにより、単独で土質改良を行うことも可能である。
【0009】
このとき、解砕装置の運転状態は、例えばその駆動装置の回転数や負荷等の検出値を、制御手段によって、予め設定したしきい値と比較すれば検知できる。その結果、解砕装置が過負荷により減速していると判定した場合には、例えば、過負荷状態を脱するための1つの措置として、搬送コンベアによる土砂搬送速度を減速し、それに応じて土砂に対する所定の添加率を維持するべく添加材供給速度を減じる。これにより、供給土砂量が減少し解砕装置の負担が軽減され、その結果、解砕装置が過負荷状態を脱すれば、土砂搬送速度及び添加材供給速度を初期値に戻す。一方、これでもなお過負荷状態から抜け出せない場合、制御手段は、例えば、続く措置として、土砂搬送及び添加材供給を一時的に停止させ、解砕装置を正転方向及び逆転方向に繰り返し駆動させる。これにより、付着した土砂や噛み込んだレキ等が除去され、過負荷状態を解消し解砕装置を安定した運転状態に復帰させることができる。
【0010】
このように、本発明によれば、無人運転下で解砕装置が過負荷状態に陥ったとしても、制御手段によって、この過負荷状態を脱するよう、搬送コンベアや添加材供給速度、あるいは必要に応じて解砕装置を動作制御することで、事態に自動的に迅速対処することができるので、高い処理効率を確保し、安定した土質改良作業に寄与することができる。
【0011】
また、第2の発明は、土砂を受け入れるホッパと、このホッパに受け入れた土砂を搬送する搬送コンベアと、この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、この解砕装置の運転状態が変動した場合、前記解砕装置の駆動速度が予め設定した初期値に復帰するよう、前記搬送コンベア、添加材供給装置、及び解砕装置を動作制御する制御手段とを備えたことを特徴とする。
【0012】
また、第3の発明は、土砂を受け入れるホッパと、このホッパに受け入れた土砂を搬送する搬送コンベアと、この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、この解砕装置の運転状態が予め設定した初期状態から変動した場合に、前記搬送コンベアによる土砂搬送速度及び添加材供給装置による添加材供給速度を減速する第1の手順、この第1の手順を行っても前記解砕装置の運転状態が初期状態に復帰しない場合に、土砂搬送及び添加材供給を停止した状態で前記解砕装置を正転方向及び逆転方向に繰り返し駆動させる第2の手順を実行可能な制御装置とを備えたことを特徴とする。
【0013】
また、第4の発明は、上記第1乃至第3のいずれかの発明において、前記制御手段は、前記解砕装置を駆動する駆動装置の回転数又は負荷を基に、前記解砕装置の運転状態を判定することを特徴とする。
【0014】
また、第5の発明は、上記第1乃至第3のいずれかの発明において、前記解砕装置の駆動装置は油圧モータであり、前記制御装置は、この油圧モータの入口圧を基に、前記解砕装置の運転状態を判定することを特徴とする。
【0015】
また、第6の発明は、上記第1乃至第5のいずれかの発明において、少なくとも前記搬送コンベア、添加材供給装置、及び解砕装置に動力を供給する動力装置を更に備えたことを特徴とする。
【0016】
また、第7の発明は、少なくとも1つの解砕装置によって、搬送中の土砂を添加材とともに解砕する解砕コンベア装置の運転方法において、前記解砕装置の運転状態に応じ、少なくとも土砂搬送速度及び添加材供給速度を調整することを特徴とする。
【0017】
また、第8の発明は、少なくとも1つの解砕装置によって、搬送中の土砂を添加材とともに解砕する解砕コンベア装置の運転方法において、前記解砕装置の運転状態が予め設定した初期状態から変動した場合に、土砂搬送速度及び添加材供給速度を減速する第1の手順と、この第1の手順を行っても前記解砕装置の運転状態が初期状態に復帰しない場合に、土砂搬送及び添加材供給を停止した状態で前記解砕装置を正転方向及び逆転方向に繰り返し駆動させる第2の手順とを有することを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明の解砕コンベア装置の実施の形態を図面を用いて説明する。
図1は、本発明の解砕コンベア装置の一実施の形態を配置した土質改良システムの一構成例の全体配置を表す側面図である。この図1において、100は改質対象土砂を添加材とともに解砕し細粒化する解砕コンベア装置、200は受け入れた土砂を土質改良材とともに混合する自走式土質改良機である。図1では、例えば図示しない油圧ショベル(あるいはベルトコンベア)等により、改質対象土砂を解砕コンベア装置100に供給して前処理(予解砕)し、自走式土質改良機200により再利用可能な改良土として改質する土質改良システムを表しているが、解砕コンベア装置100は、自走式土質改良機200と配置を入れ替え、自走式土質改良機200からの改良土を後処理(細粒化)したり、あるいは単独で改質対象土砂を改質する場合もある。なお、後処理に用いる場合は、添加材を供給せず、単なる改良土の細粒化に用いる場合もある。
【0019】
図2は上記解砕コンベア装置100の全体構造を表す側面図、図3は図2のIII−III断面図、図4は図2の紙面直交方向奥側から見た側面図である。これら図2乃至図4において、101は本体フレームで、この本体フレーム101は、コンベアフレーム103(後述)と連結する支持ビーム101aと、支持ビーム101aの長手方向一方側(図2中左側)に設けた複数の支持ポスト101bと、支持ビーム101aの長手方向(図1中左右方向)ほぼ中央上に設けた架台101cとで構成され、支持部材110により長手方向に傾斜させて支持してある。
【0020】
102は改質対象土砂を搬送する搬送コンベアで、この搬送コンベア102のコンベアフレーム103は、上記支持ビーム101aにより、搬送方向下流側(図2中右側)に向かって上り傾斜に支持されている。104,105は、コンベアフレーム103の両端に回転自在に支持された従動輪及び駆動輪、106はこれら従動輪104及び駆動輪105に掛け回した搬送ベルトである。107は搬送コンベア102の駆動装置で、この駆動装置107は、駆動輪105に直結しており、後述する制御装置(図示せず)によって回転速度を制御される。108は搬送ベルト106の搬送面を支持する支持ローラで、この支持ローラ108は、コンベアフレーム103に対し長手方向に所定の間隔で複数設けてある。なお、109は公知の構成のベルト張力調整装置で、このベルト張力調整装置109は、従動輪104のコンベアフレーム103に対する長手方向(図2中左右方向)の取り付け位置を調節するようになっている。
【0021】
115は改質対象土砂を受け入れるホッパで、このホッパ115は、コンベアフレーム103の土砂搬送方向上流側(図1中左側)端部上方に位置するよう、支持部材116を介し上記支持ポスト101bで支持してある。このホッパ115は、上下が開口しており、下部開口に対し上部開口が広くなっている。下部開口の幅は、搬送ベルト106の幅とほぼ同かそれよりも僅かに狭い程度である。また、ホッパ115の下流側側壁には、搬送ベルト106に対向して土砂切出口(図示せず)が切り欠いてあり、搬送コンベア102によってホッパ115外に切出される単位時間当りの改質対象土砂量(土砂搬送量)は、この土砂切出口の開口面積と搬送ベルト106の搬送速度とで定まる。
【0022】
120は搬送ベルト106上の搬送土砂に添加材を供給する添加材供給装置で、この添加材供給装置120は、ホッパ115よりも下流側(図2中右側)に位置するよう、上記架台101cで支持してある。なお、土砂に対する添加材に特別な限定はないが、例えば石灰等、土砂の塑性を下げる性質を有するものが好ましい。
【0023】
図5は添加材供給装置120の詳細構造を一部断面で表す側面図、図6は添加材供給装置120の詳細構造を表す上面図である。但し、図5は、図4と同方向から見た状態を表してある。これら図5及び図6に示すように、添加材供給装置120は、水平断面が略方形の添加材の貯留部121と、この貯留部121内の添加材を下方に導出する供給部122と、貯留部121内の添加材を供給部122に導く略四角錐形状のシュート123とで構成されている。この添加材供給装置120は、シュート123の上部に設けたフランジ状の枠板123Aを介し、上記架台101cに支持されている。
【0024】
貯留部121は、枠板123A上に連設した胴部を成す蛇腹部121Aと、この蛇腹部121Aの上部カバー121Bとで構成してある。蛇腹部121Aは、伸縮自在なフレキシブルな材料(例えばポリエチレン系ゴム材料等)で構成されており、内部に貯留した添加材の重量が作用するため、複数の補強リング124で補強してある。これら補強リング124の取付けピッチは、蛇腹部121Aに加わる添加材の側圧が下方ほど高くなることから、図5に示すように下側ほど狭くしてある。
【0025】
131は上部カバー121Bの外周部に複数設けたブラケット、132は各ブラケット131に垂設したポストである。各ポスト132は、上記枠板123Aに設けたガイド筒134に挿通され、枠板123Aの下方にまで突出可能となっており、ポスト132が上下にスライドすることにより、前述の蛇腹部121Aが伸縮し貯留部121の高さが変化する。135はポスト132をガイド筒134に固定するストッパピンで、このストッパピン135は、ガイド筒134のピン穴(図示せず)を介し、ポスト132の上下いずれかのピン穴133(上側のもののみ図5に図示)に挿入される。これにより、例えば稼動時等には、蛇腹部121Aを伸長させ貯留部121の内部容積が確保され、解砕コンベア装置100をトレーラ等で輸送するとき等には、蛇腹部121Aを縮めて輸送制限をクリアする高さまで全高が低減する。
【0026】
125は上部カバー121Bのほぼ中央に設けた添加材の充填口、126はこの充填口125の開閉蓋で、この開閉蓋126は、上部カバー121Bに蝶番127を介して取付けてあり、全開時には図示しないストッパにより上方に傾斜した状態で保持され、添加材充填時、クレーン等で吊り下げたフレキシブルコンテナ(図示せず)を充填口125に向かってガイドする役割も果たす。128は貯留部121内に設けたカッタで、このカッタ128は、上部カバー121Bに垂設した支持部材128Aから充填口125に向かって突設されており、添加材充填時、充填口125に挿入されたフレキシブルコンテナの下部を切り裂き、添加材を貯留部121内に流出させる。なお、126Aは開閉蓋126の把手、126Bは開閉蓋126を閉じた状態でロックするためのコンテナハンドル、129は作業者が枠板123A上の作業フロア130に上るための梯子である。
【0027】
図7は、上記供給部122及びシュート123の詳細構造を表す側断面図である。この図7において、シュート123は、下方の下部開口123Bに向かって縮径となる略四角錐状に形成されており、その内側の各コーナ部における添加材の滞留防止策として、各コーナー部には、いわゆるR材が張ってある(溶接ビードを盛ってRを付けても良い)。
【0028】
136は上記供給部122の略円筒形状のケーシングで、このケーシング136は、添加材の移送方向上流側(図7中左側)及び下流側(図7中右側)に、それぞれ添加材の導入口136a及び導出口136bを有している。このケーシング136は、搬送コンベア102とほぼ平行に傾斜しており、これが水平である場合に比べ、添加材供給装置120の高さが低くしてある。137a,137bはケーシング136のエンドブラケットで、これらエンドブラケット137a,137bには、それぞれ軸受138a,138bが設けてあり、これら軸受138a,138bによって、外周に螺旋状のスクリュ(オーガ)140を有する中空(中実でも構わない)の回転軸139が回転自在に支持されている。
【0029】
141は供給部122の駆動装置で、この駆動装置141は、支持部材142に固定され、出力軸は回転軸139に直結しており、駆動装置141の駆動力は直接回転軸139に伝達され、回転するスクリュ140によって、添加材が導出口136bに順次移送され、搬送コンベア102上の搬送土砂に一定量づつ供給される。駆動装置141の回転速度は、後述する制御装置(図示せず)により制御され、これにより添加材の供給速度が調整される。
なお、スクリュ140のピッチは、上記導入口136a側から導出口136b側に向かって徐々に大きくなっており、下流側ほどスクリュ140の受け入れ容量を大きくすることで、導入口136aからの添加材の流入を均一化し、いわゆるラットホール現象の発生を抑制するようになっている。
【0030】
図2乃至図4に戻り、150は搬送コンベア102上の搬送土砂を添加材とともに解砕する解砕装置である。以下に、図8乃至図11を用いてこの解砕装置150の詳細構造を説明する。
【0031】
まず、図8は解砕装置150の詳細構造を表す側面図、図9は図8中のVIII−VIII断面による断面図である。これら図8及び図9において、151は解砕装置150の支持架台で、この支持架台151は、コンベアフレーム103上に設けたベースフレーム151aと、このベースフレーム151aに立設した複数のポスト151bと、これらポスト151b上に設けたブラケット151cとで構成されている。152は支持部材151に揺動可能に支持された揺動部材で、この揺動部材152の上端は、ブラケット151cに対し支軸153を介して連結してある。168は揺動部材152の下向きの動作範囲を制限するストッパピンで、このストッパピン168は、ブラケット151cの内側に突出し、下限位置にある揺動部材152に当接する。
【0032】
155は土砂を添加材と共に解砕する回転体(図9参照)で、この回転体155は、揺動部材152の先端に回転可能に保持された回転軸156と、この回転軸156に放射状(後の図10参照)に設けた複数の解砕羽根157とで構成されており、その回転軌跡は、搬送ベルト106に近接する。回転軸156は、搬送ベルト106上方において、コンベアフレーム103とほぼ直交する形で略水平に設けてある。また、この回転軸156は、軸受158,158を介して揺動部材152に支持された両端の支持部156a,156aと、両端がこれら支持部156a,156aに連結する中間部156bとで構成されている。これら中間部156bと支持部材156a,156aは、互いのフランジ156c,156cをボルト締結しており、中間部156bは容易に着脱される。
【0033】
図10は、図9中IX−IX断面による断面図である。この図10に示すように、稼働時において回転体155は、土砂搬送方向と対向して回転し、これにより、搬送物(つまり土砂及び添加材)が適度に跳ね戻され、搬送物と解砕羽根157との接触頻度が十分に確保される。解砕羽根157は、その回転方向と逆向きに傾斜している。また、各解砕羽根157の先端は、回転軸156の軸方向に向かって、隣り合うもの同士で互い違いの向きに湾曲しており、これにより、搬送物と解砕羽根157との接触面積が確保される。
【0034】
なお、159は回転軸156の中間部156bに軸方向にほぼ等間隔で取り付けられた取付板で、各解砕羽根157は、実際にはこの取付板159に対し、ボルト160により着脱可能に取付けられ、容易に交換可能である。そして、前述のように、この中間部156bは、回転軸156の支持部156a,156aに対して着脱可能であるため、解砕羽根157を交換する際には、中間軸156ごと取外し可能な構成となっている。
【0035】
161は解砕装置150の駆動装置で、この駆動装置161は、ブラケット151c上に設けられており、その駆動速度は後述する制御装置(図示せず)によって制御される。162,163は駆動装置161の出力軸161a及び回転軸支持部156aにそれぞれ取付けたスプロケット、164はこれらスプロケット162,163に掛け回したチェーンで、駆動装置161の駆動力がチェーン164を介し伝達され、図10に示したように回転体155が回転駆動する。
【0036】
165は回転体155を覆うカバーで、このカバー165によって、回転体155により跳ね上げられる土砂や添加材の飛散が防止される。このカバー165は、回転軸156(支持部156a)により回転可能に支持され、揺動部材152に相対して回転する。このとき、カバー165には、図8において時計回りに回転する力が作用するよう、支点(つまり回転軸の支持部156b)が重心よりも上流側(図8中左側)に位置している(又は下流側が重くしてある)。これに対し、カバー165の側面(図9中紙面直交方向側面)には、回転軸の支持部156aと同心円状に形成した溝166aを有するプレート166が取り付けてあり、このプレート166の溝166aに、揺動部材152の内側に設けたピン167を嵌合させることにより、カバー165の回転範囲を制限してある。
【0037】
ここで、図11(a)乃至図11(c)は、揺動部材152及びカバー165の揺動動作の説明図である。まず、図11(a)に示すように、無負荷時には、揺動部材152は、自重によってストッパピン168(図8参照)に受け止められた状態となる。このとき、カバー165は、搬送ベルト106の搬送面の近接に位置し、搬送面との間にほとんど隙間のない状態になる。
【0038】
次に、稼働中、搬送土砂がカバー165内に導かれると、搬送土砂の解砕反力によって解砕羽根157に搬送方向の力が作用する。すると、土砂の解砕反力に応じ、図11(b)のように、揺動部材152が搬送方向に揺動し、カバー165が揺動部材168の揺動動作に相対して回転する。この場合、カバー165は、ピン167が溝166aに当接するまでの間は、揺動部材152の揺動状態に関わらず、下流側下端部が搬送面に当接する。
【0039】
そして、更に解砕反力が大きくなったり、或いは大きな石等が噛み込む等して、揺動部材152が図11(c)のように大きく揺動した場合、カバー165は、上記のピン167によって回転を制限され、ほぼ平行する形で搬送面から離間する。このように、解砕反力に応じて揺動部材152が揺動し、回転体155を逃がすことによって、レキ等の噛み込みをある程度防止して作業の円滑化を図るとともに、カバー165が、搬送ベルト106との間隙が著しく広がらないよう、揺動部材152の揺動に相対して回転することにより、飛散防止の効果を損なわないよう構成されている。
【0040】
上記構成の解砕コンベア装置100には、以上の図1乃至図11では特に図示していないが、解砕装置150の運転状態を基に、搬送コンベア102の駆動装置107、添加材供給部122の駆動装置141、解砕装置150の駆動装置161を制御する制御装置が設けてある(その制御手順については、図13を用いて後述する)。この制御装置の配置は、特に限定するものではないが、例えば本体フレーム101に設けても良いし、別置きとして上記駆動装置107,141,161に配線したものでも良い。なお、図2及び図3において、111はメンテナンス等の作業用に支持ビーム101aに設けたフロアで、このフロア111は、搬送コンベア102、ホッパ115、解砕装置150等といった各機器の周辺に適宜設けてある。
【0041】
続いて、図12を用いて図1に示した自走式土質改良機200の全体構成を説明する。図12において、201は自力走行を可能とする走行体で、この走行体201は、トラックフレーム202と、このトラックフレーム202の両端に設けた従動輪203及び駆動輪204と、この駆動輪204に直結した駆動装置205と、従動輪203及び駆動輪204に掛け回した履帯206とで構成されている。207はトラックフレーム202の上部に設けた本体フレームである。
【0042】
208は投入される土砂を粒度に応じて選別する篩装置で、この篩装置208は、所定の目の大きさの格子209を内部に装着している。また、この篩装置208は、本体フレーム207長手方向一方側(図12中左側)上部にばね210を介して振動可能に支持され、振動しつつ格子209の目の大きさよりも大きなものを除去し、小さなものを下方へ導くようになっている。211はこの篩装置208の駆動装置である。
【0043】
212は篩装置208で選別された土砂を受け入れるホッパで、このホッパ212は、上方拡開の枠状に形成されており、篩装置208の下方に位置するように本体フレーム207長手方向一方側(図12中左側)に支持されている。213はこのホッパ212内の土砂を搬送する搬送コンベアで、この搬送コンベア213は、ホッパ212の下方から搬送方向(図12中右方向)に向かって上り傾斜となるように、本体フレーム207に支持されている。
【0044】
214は貯留した土質改良材を土砂に添加する土質改良材供給装置で、この土質改良材供給装置214は、略円筒箱型の土質改良材の貯留部としての貯留部215と、この貯留部215の下部に設けられ、搬送コンベア213上の土砂に土質改良材を添加する供給部としての供給部216とで構成されて、本体フレーム207の長手方向(図12中左右方向)中央付近に立設した複数(例えば3本)の支柱217によって支持してある。
【0045】
218は土砂を土質改良材と共に混合し改良土を生成する混合装置で、この混合装置218は、本体フレーム207の長手方向(図12中左右方向)中央付近に略水平に設けられており、繁雑防止のため特に図示しないが、その一方側(図12中左側)上部に搬送コンベア213から放出された土砂及び土質改良材の入口を、他方側(図12中右側)下部に改良土の出口を備えている。繁雑防止のため特に図示していないが、この混合装置218は、入口から導入した土砂及び土質改良材を混合処理し、出口に向かって移送するパドル型のミキサ(図示せず)を少なくとも1つ備えている。219はこのパドルミキサを駆動する駆動装置である。
【0046】
220はこの混合装置218からの改良土を機外に排出する排出コンベアで、この排出コンベア220は、混合装置218の出口下方から延設され、搬送方向(図12中右方向)に向かって上り傾斜となるよう、図示しない支持部材によって本体フレーム207等から吊り下げ支持されている。
【0047】
221は駆動源を備えた動力装置で、この動力装置221は、本体フレーム207の長手方向他方側(図12中右側)端部に支持部材222を介して支持されており、エンジンと、このエンジンにより駆動される少なくとも1つの油圧ポンプと、この油圧ポンプから各駆動装置に供給される圧油を制御する複数のコントロールバルブとを内蔵している。
【0048】
以上の本発明の解砕コンベア装置の一実施の形態を用いた土質改良システムにおいて、例えば図示しない所定のストック場所に集積された改質対象土砂を、別途設けた油圧ショベルやベルトコンベア等(図示せず)により、解砕コンベア装置100のホッパ115に投入すると、ホッパ115に投入された改質対象土砂は、搬送コンベア102により順次搬送され、その搬送の途中で添加材供給装置120から添加材を供給される。更に、解砕装置150,150により、搬送コンベア102上を搬送される搬送土砂は、添加材とともに細かく解砕(細粒化)される。このように細粒化された改質対象土砂は、たとえ粘性が高く土塊を多く含んだものであっても、添加材と均一に混合されて塑性が低下し、土砂粒子同士が付着し難い状態となるため、土塊を再形成し難くなる。そして、図1のシステムにおいては、この解砕混合した土砂及び添加材の混合土は、搬送コンベア102の搬送方向下流側(図1中右側)端部から自走式土質改良機200に導入される。
【0049】
自走式土質改良機200に供給された土砂及び添加材の混合土は、その粒度に応じ、篩装置208によって篩装置208の格子209を通過したものが選別されて下方のホッパ212へと導入される。ホッパ212に導入された混合土は、搬送コンベア213によりホッパ212外に搬送され、搬送中に土質改良材供給装置214から所定割合で添加された土質改良材と共に混合装置218に導入される。混合装置218に導入された混合土は、ここで土質改良材と均一に攪拌混合され、改良土となって排出コンベア220上に導出されると、順次排出コンベア220によって搬出される。
【0050】
次に、図13を用いて、解砕コンベア装置100における制御装置の制御手順を説明する。解砕コンベア装置100の自動運転をスタートすると、制御装置はまず、ステップ101にて、解砕コンベア装置100に積んだ前述の各駆動装置107,141,161の回転速度を初期値に設定し、搬送コンベア102、添加材供給装置120、解砕装置150を駆動させ、ステップ102に移る。初期値は、作業者により図示しない入力手段(操作盤等)を介して入力される。
【0051】
ステップ102では、電流計(図示せず)等によって検出された解砕装置150の駆動装置161の電流値Iaを入力する。この電流Iaの検出周期は、ROM等に予め設定値(変更可能)として格納されており、内蔵したタイマによって計測される。
【0052】
ここで、改質対象土砂の性状は様々であり、レキ(石)が多く含まれるものや特に粘性の高い土砂を扱う場合、解砕羽根157はカバー165に対し、土砂が付着したり、レキが衝突あるいは噛み込む等して解砕反力が増大し、解砕装置150が過負荷状態に陥り、回転体155が減速し、著しくは停止しかねない。続くステップ103では、駆動装置161の検出電流値Iaをしきい値I(駆動装置161の定格電流値)と比較し、それより大きいかどうかをみて、解砕装置150の運転状態がこうした過負荷状態に陥っていないかどうかを判定する。駆動装置161は、前述したようにインバータ制御されているため、駆動モータ161の電流値Iaが定格電流値I以下の範囲で回転速度が一定に保たれるが、回転速度が低下する場合には電流値Iaは定格電流値Iを超える。すなわち、Ia>Iの状態は、駆動装置161の過負荷状態を意味し、この駆動装置161の電流値Iaをモニタすることにより駆動装置161の運転状態(負荷状態)が検知される。Ia≦Iでステップ103の判定が満たされなければ、その状態の運転のままステップ101に手順を戻し、Ia>Iでステップ103の判定が満たされたら、ステップ104に移る。
【0053】
ステップ104では、駆動装置161が少なくとも減速し、解砕性能が低下していることから、第1の措置(特許請求の範囲に記載の「第1の手順」に相当)として、駆動装置161の負荷軽減のために、搬送コンベア102の駆動装置107を初期値よりも減速させ、解砕装置150への土砂供給量を減らす。同時に、この土砂供給量の低下に伴い、設定の添加率に応じて添加材の供給部122の駆動装置141を減速し、添加材の添加率を一定に保つ。
【0054】
ステップ105では、再び駆動装置161の検出電流値Iaがしきい値Iより大きいかどうかをみて、ステップ104の負荷軽減の措置により駆動装置161の回転速度が初期値に復帰していれば(つまりIa≦Iであれば)、ステップ106に移って駆動装置107,141の回転速度の設定を戻し、土砂搬送速度と添加材供給速度を初期値に復帰させてステップ102に戻る。一方、駆動装置161の回転速度が初期値に復帰せず、このステップ105で依然としてIa>Iであった場合、ステップ107に進んで駆動装置107,141に停止指令を出力し、土砂の搬送及び添加材の供給を一時停止させる。
【0055】
ステップ108に移り、駆動装置161の過負荷解消の第2の措置(特許請求の範囲に記載の「第2の手順」に相当)として、駆動装置161に正転・逆転を交互に指令し、回転体155の正転・逆転を繰り返し実施すことにより、解砕羽根157やカバー165に付着した土砂や噛み込んだレキ等を除去する。この駆動装置161の正転・逆転の実施回数や時間は、解砕コンベア装置100の大きさや処理能力を考慮して設定し、設定回数(あるいは設定時間)回転体155を正転・逆転させたら、ステップ109に移って駆動装置161に停止指令を出力し、解砕装置150も停止させる。
【0056】
続くステップ110では、解砕装置150を一時停止させた状態で駆動装置107に起動を指令する。すると、除去された土砂やレキ等が、解砕装置150のカバー165を押し、図11(c)のように揺動させて生じる間隙からカバー165外に排除される。このとき、停止中、駆動装置161は励磁を解かれ、出力軸がニュートラルとなっているため、このステップ110において、回転体155は搬送土砂に倣って転動し、土砂やレキがより排出され易い状態となる。なお、このステップにおいては、未解砕処理の土砂が解砕装置150を通過するため、その間の搬送土砂量が極力少ない方が良い。したがって、ここでの駆動装置107の起動時間(本例では、以降のステップに移行するまでの時間)は、解砕装置150の容量によって、レキ排出に要する搬送距離を考慮に入れてなるべく短く設定する。
【0057】
続くステップ111では駆動装置161を起動(初期値で起動)させてステップ112に移り、ステップ112にて、再度駆動装置161の検出電流値Iaがしきい値Iより大きいかどうかを判定する。先の第2の措置により過負荷が解消され、駆動装置161の回転速度が初期値に復帰していれば(つまりIa≦Iであれば)、ステップ106に移って駆動装置107,141の回転速度の設定を戻し、土砂搬送速度と添加材供給速度を初期値に復帰させてステップ102に戻る。一方、第2の措置を行ってなお駆動装置161の回転速度が初期値に復帰せず、このステップ112で依然としてIa>Iであった場合、エラー処理として、解砕コンベア装置100のシステムを全停止し、例えば操作盤等に設けたインジケータにエラー表示し、異常を作業者(オペレータ)に知らせ、以上の手順を終了する。これにより、作業者は、フロア111上に上がり解砕装置150を速やかにメンテナンスでき、レキが除去されて運転が再開されると、制御装置は、再びステップ101から以上の手順を繰り返す。
【0058】
以上のように、本実施の形態によれば、制御装置によって、解砕装置150の運転状態に応じ、搬送コンベア102や添加材供給装置120、また必要に応じて解砕装置150を動作制御することで、無人運転下で解砕装置150が過負荷状態に陥ったとしても、この過負荷状態を自動的に解消することができる。また、解砕羽根157やカバー165等に対する土砂の居付きやレキ等の噛み込みが著しく、結果的に過負荷状態を解消できなかった場合でも、その異常をインジケータ表示して作業者に報知することにより、作業者に迅速な対処を促すことができる。したがって、解砕コンベア装置100の稼働率を向上させ、高い処理効率を確保し、その結果、安定した土質改良作業に寄与することができる。
【0059】
なお、図2乃至図4においては、定置式の解砕コンベア装置100を図示したが、これに限られず、その構成は本発明の技術的思想を逸脱しない範囲内であれば、如何様にも変形可能であり、例えば、図14に示すように、解砕コンベア装置を自力走行可能に構成しても良い。この図14に示した解砕コンベア装置100Aの構成を次に簡単に説明する。但し、先の各図と同様の部分及び同様と見なせる部分には同符号を付し説明を省略する。
【0060】
図14において、170は自力走行を可能とする走行体で、この走行体170は、トラックフレーム171と、このトラックフレーム171の両端に設けた従動輪172及び駆動輪173と、この駆動輪173に直結した駆動装置174と、従動輪172及び駆動輪173に掛け回した履帯175とで構成されている。176は走行体170のトラックフレーム171と本体フレーム101とを回転可能に接続する旋回フレーム、177は本体フレーム101を走行体170に対して旋回駆動させる駆動装置である。
【0061】
178は動力装置で、この動力装置178は、本体フレーム101上に設けられている。この動力装置178内には、搬送コンベア102、添加材供給装置120、解砕装置150、走行体170、駆動装置177等の動カ源となるエンジン(図示せず)や、このエンジンによって駆動される少なくとも1つの油圧ボンプ(図示せず)、この油圧ボンプからの圧油の方向及び流量を制御する複数のコントロールバルブからなる制御弁装置(図示せず)等が備えられている。179は解砕コンベア装置100Aの運転席で、この運転席179は、動力装置178の前側(図14中左側)の区画に設けられており、走行体170を操作する操作レバー180等が配してある。その他の構成は、先に説明した解砕コンベア装置100と同様である。
【0062】
この以上の構成の本実施の形態においても、制御装置によって、図13で説明した制御手順を実行することにより、同様の効果を得ることができる。また、この図14の解砕コンベア装置100Aは、動力装置178を備えているので、各機器の駆動装置を外部電源等を使用することなく単体で作動させることが可能となり、持ち込んだ現場で即座に作業が可能となる。また、走行体170を備えているため、現場内で高い機動性を発揮し、レイアウト変更が容易となり、また、クレーン等といった特別な作業機械を用意しなくても、トレーラの荷台に自力で上り下りできるので、現場間搬送が容易となる。更に、走行体170は履帯175を備えたいわゆるクローラ式のものであるため、工事現場等において、軟弱な地盤に対しても容易に乗り入れることができ、現場の地盤の条件にあまり制限されず、作業スペースを有効に活用できる。また、仮に搬送コンベア102の旋回機能がない場合、解砕コンベア装置100Aの土砂の受入位置や放出位置を変更するためには、走行体170を駆使してピボットターンさせ、解砕コンベア装置100A自体の位置を微動制御しなければならず、作業者にとって大変煩わしい作業となるが、搬送コンベア102が走行体170に対して旋回するため、土砂の受入位置や搬出位置を容易に変更することができる。
【0063】
なお、以上において、最終的に解砕装置150の過負荷が解消できなかった場合、異常をインジケータ表示する例を説明したが、例えば、警告音を発したり警告灯表示を行う構成に代えても、またこれらを適宜組合せても良い。また、解砕装置150の運転状態は、駆動装置161の電流値の他、駆動装置161の回転数や回転速度を直接検出することも考えられ、この場合には、検出した回転数や回転速度が、予め設定したしきい値を下回ったとき、前述の負荷軽減の措置を行うようにすれば足りる。また、駆動装置161を電動モータとしたが、油圧モータとした場合には、回転数や回転速度の他に、油圧モータの入口圧を圧力スイッチ等によって検出し、駆動装置の負荷状態を運転状態として検知することも考えられる。この場合は、検出したモータ入口圧が、予め設定したしきい値を超えたときに、前述の負荷軽減の措置を行うようにすれば良い。
【0064】
また、以上において、解砕コンベア装置100,100Aは、いずれも解砕装置を2台有する例を図示したがが、解砕装置の台数に限定はなく、少なくとも1台設けてあれば良い。もちろん3台以上設けても良い。また、解砕コンベア装置100A、自走式土質改良機200を、ともに履帯を有するいわゆるクローラ式の走行体を備えるものとしたが、これに限られず、例えばいわゆるホイール式の走行体を備えるものとしても良い。また、添加材供給装置120の添加材の供給部122をスクリュフィーダで構成したが、これにも限られず、例えばロータリフィーダ等を用いても構わない。これらの場合も同様の効果を得る。
【0065】
また、解砕コンベア装置100又は100Aとともに土質改良システムを構成する自走式土質改良機として、パドルミキサを備えたいわゆるミキシング方式の混合装置を搭載した自走式土質改良機200を例示したが、当然ながら、解砕コンベア装置100,100Aは、いわゆるスクリュミキサを備えた混合装置、或いは高速回転する回転打撃子等を用いて土砂及び土質改良材を解砕混合するいわゆる解砕方式の混合装置を備えた土質改良機の前段又は後段に配置した土質改良システムも構成可能である。もちろん、定置式の土質改良機と組合せることもある。自走式土質改良機200の土質改良材供給装置において、土質改良材の供給部216としてロータリフィーダを図示したが、スクリュフィーダ等に代えても構わない。また、篩装置208を持たない自走式土質改良機を配置して土質改良システムを構成しても良い。逆に、改質対象となる土砂の性状によっては、解砕コンベア装置100,100Aのホッパ115上に篩装置やあおりを設けても構わない。これらの場合も同様の効果を得る。
【0066】
【発明の効果】
本発明によれば、無人運転下で解砕装置が過負荷状態に陥ったとしても、この過負荷状態を脱するよう、搬送コンベアや添加材供給速度、あるいは必要に応じて解砕装置を動作制御することで、事態に自動的に迅速対処することができ、高い処理効率を確保することができ、よって安定した土質改良作業に寄与することができる。
【図面の簡単な説明】
【図1】本発明の解砕コンベア装置の一実施の形態を配置した土質改良システムの一構成例の全体配置を表す側面図である。
【図2】本発明の解砕コンベア装置の一実施の形態の全体構造を表す側面図である。
【図3】本発明の解砕コンベア装置の一実施の形態の全体構造を表す図2中のIII−III断面図である。
【図4】本発明の解砕コンベア装置の一実施の形態の全体構造を表す図2の紙面直交方向奥側から見た側面図である。
【図5】本発明の解砕コンベア装置の一実施の形態に備えられた添加材供給装置の詳細構造を表す側面図である。
【図6】本発明の解砕コンベア装置の一実施の形態に備えられた添加材供給装置の詳細構造を表す上面図である。
【図7】本発明の解砕コンベア装置の一実施の形態に備えられた添加材供給装置の供給部及びシュートの詳細構造を表す側断面図である。
【図8】本発明の解砕コンベア装置の一実施の形態に備えられた解砕装置の詳細構造を表す側面図である。
【図9】本発明の解砕コンベア装置の一実施の形態に備えられた解砕装置の詳細構造を表す図8中のVIII−VIII断面による断面図である。
【図10】本発明の解砕コンベア装置の一実施の形態に備えられた解砕装置の詳細構造を表す図9中のIX−IX断面による断面図である。
【図11】本発明の解砕コンベア装置の一実施の形態に備えられた解砕装置の揺動部材及びカバーの揺動動作の説明図である。
【図12】図1に示した自走式土質改良機の全体構成を表す側面図である。
【図13】本発明の解砕コンベア装置の一実施の形態に備えられた制御装置による制御手順のフローチャートである。
【図14】本発明の解砕コンベア装置の一変形例の全体構造を表す側面図である。
【符号の説明】
100 解砕コンベア装置
100A 解砕コンベア装置
102 搬送コンベア
115 ホッパ
120 添加材供給装置
150 解砕装置
161 駆動装置
178 動力装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a crushing conveyor device for crushing soil to be reformed together with an additive during transportation, and more particularly, to a crushing conveyor that can ensure high processing efficiency and contribute to stable soil quality improvement work. The present invention relates to an apparatus and an operation method thereof.
[0002]
[Prior art]
2. Description of the Related Art In recent years, self-propelled soil improvement machines, which are used for mixing soil generated at construction sites and the like with soil improvement materials to produce reusable soil products, have been increasingly used. Today, the properties of the soil to be reformed by this self-propelled soil improvement machine have also been diversified with the increasing trend of promoting waste recycling. Increasingly, highly viscous soils and the like are targeted for reforming.
[0003]
In general, this type of self-propelled soil improvement machine is often provided with a sieve above a hopper for receiving earth and sand in order to remove soil (stone) and the like contained in the earth and sand in advance. In this case, when earth and sand containing a relatively large soil mass is directly introduced into the self-propelled soil improvement machine, the sieve tends to remove the soil mass that should be originally reformed. Further, in the case where a viscous soil or the like is to be modified, earth and sand tend to adhere to the lattice surface of the sieve and clog the sieve easily. Therefore, in order to reliably reform the earth and sand, in front of the self-propelled soil improvement machine, a crusher equipped with rotating blades supported vertically or oscillatably on the conveyor is arranged on the conveyor. There is a method in which the conveyed soil is crushed before soil improvement (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2000-45326 (page 5-6, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, the above-mentioned crusher has the following problems.
That is, as described above, the properties of the soil to be reformed are various. For example, when handling earth and sand containing a large amount of rock (stone) or particularly high-viscosity earth and sand, the rotation of the rotating blades is caused by the adhesion of the sand and the bite of the rock. The rotational load of the motor may become excessive, the rotational speed may decrease, and the operation may become impossible. In this case, it is sufficient that the operating state of the crusher is under manned operation and the operator can always check the operating state, but if the operating state is under unmanned operation or even under manned operation, Can not cope quickly even if the operating state of the crusher fluctuates or stops, which may reduce the processing efficiency.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a crushing conveyor device and a method for operating the crushing conveyor device, which can ensure high processing efficiency and contribute to stable soil improvement work. It is in.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a first invention is directed to a hopper for receiving earth and sand, a conveyor for conveying the earth and sand received by the hopper, and an additive for lowering the plasticity of the earth and sand on the conveyor for earth and sand on the conveyor. An additive supply device to be supplied, at least one crusher for crushing the conveyed earth and sand on the conveyor together with the additive supplied from the additive supply device, and an operation state of the crusher Control means for controlling at least the operation of the transport conveyor and the additive supply device.
[0008]
First, in the present invention, the transported earth and sand on the transport conveyor is crushed by the crushing device together with the additive supplied from the additive supply device. In this way, the soil to be reformed is efficiently refined, and even if it is highly viscous and contains a large amount of soil mass, it is uniformly mixed with the additive material and plasticity is reduced, making it difficult for sediment particles to adhere to each other. Therefore, it is difficult to re-form the earth mass. Therefore, not only as a pretreatment for soil improvement, but also as a post-treatment for soil improvement to further refine the improved soil, and furthermore, it is possible to perform soil improvement alone by using a soil improvement material as an additive. is there.
[0009]
At this time, the operating state of the crusher can be detected by comparing the detected value of the rotational speed, load, and the like of the driving device with a preset threshold value by the control means. As a result, if it is determined that the crushing device is decelerating due to overload, for example, as one measure for overcoming the overload condition, the speed of the earth and sand transport by the transport conveyor is reduced, and the earth and sand is accordingly adjusted. The feed rate of the additive is reduced in order to maintain a predetermined addition rate with respect to. As a result, the amount of sediment supplied is reduced and the load on the crusher is reduced. As a result, when the crusher comes out of an overload state, the soil transport speed and the additive material supply speed are returned to the initial values. On the other hand, if it is still not possible to escape from the overload state, the control means, for example, as a subsequent measure, temporarily stops the earth and sand transport and the additive material supply, and repeatedly drives the crushing device in the normal rotation direction and the reverse rotation direction. . Thereby, the attached earth and sand, the bite, etc. which are bitten are removed, and the overload state can be eliminated, and the crusher can be returned to a stable operation state.
[0010]
As described above, according to the present invention, even if the crushing apparatus falls into an overloaded state during unmanned operation, the control means releases the overloaded state so that the conveying conveyor or the additive material supply speed or the necessary speed can be removed. By controlling the operation of the crushing device according to the conditions, the situation can be automatically and promptly dealt with, so that a high treatment efficiency can be secured and a stable soil improvement operation can be contributed.
[0011]
Further, a second invention provides a hopper for receiving earth and sand, a conveyor for conveying the earth and sand received in the hopper, and an additive supply device for supplying an additive for reducing the plasticity of the earth and sand to the earth and sand on the conveyor. And, at least one crushing device for crushing the transported earth and sand on the transport conveyor together with the additive supplied with the additive from the additive supply device, and when the operating state of the crusher changes, the The apparatus further comprises a control means for controlling the operation of the transport conveyor, the additive supply device, and the crusher so that the driving speed of the crusher returns to a preset initial value.
[0012]
Further, a third invention provides a hopper for receiving earth and sand, a conveyor for conveying the earth and sand received in the hopper, and an additive supply device for supplying an additive for reducing the plasticity of earth and sand to the earth and sand on the conveyor. And at least one crushing device for crushing the conveyed earth and sand on the conveyance conveyor together with the additive supplied with the additive from the additive supply device, and an operating state of the crushing device set to a preset initial state A first procedure for reducing the earth and sand transport speed by the transport conveyor and the additive supply speed by the additive supply device, even if the first procedure is performed, the operating state of the crusher is in the initial state. And a control device capable of executing a second procedure of repeatedly driving the crushing device in the normal rotation direction and the reverse rotation direction in a state where the earth and sand transport and the supply of the additive are stopped when not returning to Characterized in that was.
[0013]
In a fourth aspect based on any one of the first to third aspects, the control means operates the crushing device based on a rotation speed or a load of a driving device for driving the crushing device. The state is determined.
[0014]
According to a fifth aspect of the present invention, in any one of the first to third aspects, the driving device of the crushing device is a hydraulic motor, and the control device is configured to control the crushing device based on an inlet pressure of the hydraulic motor. The operation state of the crusher is determined.
[0015]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, a power unit for supplying power to at least the transport conveyor, the additive supply unit, and the crushing unit is further provided. I do.
[0016]
According to a seventh aspect of the present invention, there is provided an operating method of a crushing conveyor device for crushing earth and sand being conveyed together with an additive material by at least one crushing device, wherein at least the earth and sand conveying speed is adjusted according to an operation state of the crushing device. And the feed rate of the additive is adjusted.
[0017]
According to an eighth aspect of the present invention, in the operating method of the crushing conveyor device for crushing the conveyed earth and sand together with the additive by at least one crushing device, the operating state of the crushing device is changed from an initial state set in advance. A first procedure for reducing the earth and sand transportation speed and the additive material supply speed when the operation is changed, and when the operation state of the crusher does not return to the initial state even after performing the first procedure, the earth and sand transportation and A second procedure of repeatedly driving the crushing device in the normal rotation direction and the reverse rotation direction while the supply of the additive is stopped.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a crushing conveyor device of the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing the overall arrangement of a configuration example of a soil improvement system in which an embodiment of a crushing conveyor device of the present invention is arranged. In FIG. 1, reference numeral 100 denotes a crushing conveyor device for crushing the target soil and the additive together with the additive material to reduce the size thereof, and reference numeral 200 denotes a self-propelled soil conditioner for mixing the received soil with the soil conditioner. In FIG. 1, the soil to be reformed is supplied to a crushing conveyor device 100 to be pre-processed (pre-crushed) by a hydraulic shovel (or a belt conveyor) (not shown) or the like, and reused by a self-propelled soil improvement machine 200. Although the soil improvement system which reforms as a possible improved soil is shown, the disintegrating conveyor device 100 replaces the arrangement with the self-propelled soil improvement device 200, and post-processes the improved soil from the self-propelled soil improvement device 200. (Refinement), or the soil to be reformed may be independently reformed. In addition, when using for post-processing, an additive is not supplied and it may be used only for refinement of refined soil.
[0019]
2 is a side view showing the entire structure of the crushing conveyor device 100, FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2, and FIG. 4 is a side view as viewed from the back side in the direction perpendicular to the plane of FIG. 2 to 4, reference numeral 101 denotes a main body frame. The main body frame 101 is provided on one side (the left side in FIG. 2) of the support beam 101a connected to a conveyor frame 103 (described later) in the longitudinal direction. A plurality of support posts 101b and a pedestal 101c provided substantially at the center of the support beam 101a in the longitudinal direction (horizontal direction in FIG. 1) are supported by the support member 110 while being inclined in the longitudinal direction.
[0020]
Reference numeral 102 denotes a transport conveyor that transports the earth and sand to be reformed. The conveyor frame 103 of the transport conveyor 102 is supported by the support beam 101a so as to be inclined upward toward the downstream side (the right side in FIG. 2) in the transport direction. Reference numerals 104 and 105 denote driven wheels and drive wheels rotatably supported at both ends of the conveyor frame 103, and reference numeral 106 denotes a transport belt looped around the driven wheels 104 and the drive wheels 105. Reference numeral 107 denotes a driving device for the conveyor 102. The driving device 107 is directly connected to the driving wheels 105, and its rotation speed is controlled by a control device (not shown) described later. Reference numeral 108 denotes a support roller for supporting the transport surface of the transport belt 106. A plurality of the support rollers 108 are provided at predetermined intervals in the longitudinal direction with respect to the conveyor frame 103. Reference numeral 109 denotes a belt tension adjusting device having a known configuration. The belt tension adjusting device 109 adjusts a mounting position of the driven wheel 104 with respect to the conveyor frame 103 in the longitudinal direction (the left-right direction in FIG. 2). .
[0021]
Reference numeral 115 denotes a hopper for receiving the soil to be reformed. The hopper 115 is supported by the support post 101b via a support member 116 so as to be located above the upstream end (left side in FIG. 1) of the conveyor frame 103 in the earth and sand transport direction. I have. The hopper 115 is open at the top and bottom, and the upper opening is wider than the lower opening. The width of the lower opening is substantially the same as or slightly smaller than the width of the conveyor belt 106. Further, on the downstream side wall of the hopper 115, a sediment cutout (not shown) is cut out so as to face the conveyor belt 106, and the reforming target cut out of the hopper 115 by the conveyor 102 per unit time is cut out. The amount of earth and sand (the amount of earth and sand transported) is determined by the opening area of the earth and sand cutting outlet and the transport speed of the transport belt 106.
[0022]
Reference numeral 120 denotes an additive supply device that supplies an additive to the conveyed earth and sand on the transport belt 106. The additive supply device 120 is mounted on the gantry 101c so as to be located on the downstream side (right side in FIG. 2) of the hopper 115. I support it. There is no particular limitation on the additive material for the earth and sand, but a material having a property of reducing the plasticity of the earth and sand, such as lime, is preferable.
[0023]
FIG. 5 is a side view showing the detailed structure of the additive supply device 120 in a partial cross section, and FIG. 6 is a top view showing the detailed structure of the additive supply device 120. However, FIG. 5 shows a state viewed from the same direction as FIG. As shown in FIGS. 5 and 6, the additive supply device 120 includes a storage section 121 for the addition material having a substantially rectangular horizontal cross section, a supply section 122 for leading out the addition material in the storage section 121 downward, A substantially quadrangular pyramid-shaped chute 123 for guiding the additive in the storage section 121 to the supply section 122 is provided. The additive supply device 120 is supported by the gantry 101c via a flange-shaped frame plate 123A provided above the chute 123.
[0024]
The storage part 121 is composed of a bellows part 121A forming a body connected to the frame plate 123A and an upper cover 121B of the bellows part 121A. The bellows portion 121A is made of a stretchable and flexible material (for example, a polyethylene rubber material), and is reinforced by a plurality of reinforcing rings 124 because the weight of the additive stored therein acts. Since the lateral pressure of the additive applied to the bellows portion 121A is higher at the lower side, the mounting pitch of the reinforcing rings 124 is narrower at the lower side as shown in FIG.
[0025]
Reference numeral 131 denotes a plurality of brackets provided on the outer peripheral portion of the upper cover 121B, and reference numeral 132 denotes a post suspended from each bracket 131. Each post 132 is inserted through a guide tube 134 provided on the frame plate 123A, and can protrude below the frame plate 123A. The post 132 slides up and down, so that the bellows portion 121A expands and contracts. The height of the storage section 121 changes. Reference numeral 135 denotes a stopper pin for fixing the post 132 to the guide cylinder 134. The stopper pin 135 is provided through a pin hole (not shown) of the guide cylinder 134, and is provided on one of the upper and lower pin holes 133 of the post 132 (only the upper one). (Shown in FIG. 5). Thus, for example, during operation, the bellows portion 121A is extended to secure the internal volume of the storage portion 121, and when the crushing conveyor device 100 is transported by a trailer or the like, the bellows portion 121A is contracted to restrict the transportation. The total height is reduced to the height that clears.
[0026]
Reference numeral 125 denotes a filling port for the additive provided substantially at the center of the upper cover 121B. Reference numeral 126 denotes an opening / closing lid for the filling port 125. The opening / closing lid 126 is attached to the upper cover 121B via a hinge 127. The flexible container (not shown) suspended by a crane or the like at the time of filling the additive is also guided toward the filling port 125 when the additive is filled. Reference numeral 128 denotes a cutter provided in the storage unit 121. The cutter 128 is protruded from a support member 128A suspended from the upper cover 121B toward the filling port 125, and is inserted into the filling port 125 when the additive is charged. The lower part of the flexible container is cut off, and the additive material flows out into the storage part 121. In addition, 126A is a handle of the opening / closing lid 126, 126B is a container handle for locking the opening / closing lid 126 in a closed state, and 129 is a ladder for an operator to climb to the work floor 130 on the frame plate 123A.
[0027]
FIG. 7 is a side sectional view illustrating a detailed structure of the supply unit 122 and the chute 123. In FIG. 7, the chute 123 is formed in a substantially quadrangular pyramid shape whose diameter is reduced toward the lower opening 123B below. Has a so-called R material stretched (R may be added by welding beads).
[0028]
Reference numeral 136 denotes a substantially cylindrical casing of the supply section 122. The casing 136 has an additive inlet 136a on the upstream side (left side in FIG. 7) and on the downstream side (right side in FIG. 7) in the direction of transport of the additive. And an outlet 136b. The casing 136 is inclined substantially parallel to the conveyor 102, and the height of the additive supply device 120 is lower than that in the case where the casing 136 is horizontal. 137a and 137b are end brackets of the casing 136, and the end brackets 137a and 137b are provided with bearings 138a and 138b, respectively. A rotating shaft 139 (which may be solid) is rotatably supported.
[0029]
141 is a driving device for the supply unit 122. The driving device 141 is fixed to the support member 142, the output shaft is directly connected to the rotation shaft 139, and the driving force of the driving device 141 is directly transmitted to the rotation shaft 139. The additive material is sequentially transferred to the outlet 136b by the rotating screw 140, and is supplied to the transported earth and sand on the transport conveyor 102 by a fixed amount. The rotation speed of the driving device 141 is controlled by a control device (not shown) described later, and the supply speed of the additive is adjusted thereby.
The pitch of the screw 140 is gradually increased from the inlet 136a to the outlet 136b, and the receiving capacity of the screw 140 is increased toward the downstream so that the additive material from the inlet 136a can be removed. The inflow is made uniform, and the occurrence of the so-called rat hole phenomenon is suppressed.
[0030]
Referring back to FIGS. 2 to 4, reference numeral 150 denotes a crusher for crushing the conveyed earth and sand on the conveyor 102 together with the additive. Hereinafter, the detailed structure of the crusher 150 will be described with reference to FIGS.
[0031]
First, FIG. 8 is a side view showing a detailed structure of the crushing device 150, and FIG. 9 is a cross-sectional view taken along the line VIII-VIII in FIG. 8 and 9, reference numeral 151 denotes a support frame of the crushing device 150. The support frame 151 includes a base frame 151a provided on the conveyor frame 103, and a plurality of posts 151b erected on the base frame 151a. , And a bracket 151c provided on the post 151b. A swing member 152 is swingably supported by the support member 151. The upper end of the swing member 152 is connected to the bracket 151c via a support shaft 153. Reference numeral 168 denotes a stopper pin that limits the downward movement range of the swing member 152. The stopper pin 168 projects inside the bracket 151c and abuts on the swing member 152 at the lower limit position.
[0032]
Reference numeral 155 denotes a rotating body (see FIG. 9) for crushing the earth and sand together with the additive material. The rotating body 155 has a rotating shaft 156 rotatably held at the tip of a swinging member 152 and a radial ( (See FIG. 10 described later) and a plurality of crushing blades 157, and the rotation trajectory of the crushing blade 157 approaches the conveyor belt 106. The rotating shaft 156 is provided substantially horizontally above the conveyor belt 106 so as to be substantially orthogonal to the conveyor frame 103. The rotating shaft 156 includes support portions 156a, 156a at both ends supported by the swing member 152 via bearings 158, 158, and an intermediate portion 156b having both ends connected to the support portions 156a, 156a. ing. The intermediate portion 156b and the supporting members 156a, 156a have their flanges 156c, 156c bolted to each other, and the intermediate portion 156b is easily attached and detached.
[0033]
FIG. 10 is a cross-sectional view taken along the line IX-IX in FIG. As shown in FIG. 10, during operation, the rotating body 155 rotates in the direction opposite to the earth and sand transport direction, whereby the transported object (that is, the earth and sand and the additive) is appropriately bounced back and crushed with the transported object. The frequency of contact with the blade 157 is sufficiently ensured. The crushing blade 157 is inclined in a direction opposite to the rotation direction. The tip of each crushing blade 157 is curved in an alternate direction between adjacent ones in the axial direction of the rotating shaft 156, so that the contact area between the conveyed material and the crushing blade 157 is reduced. Secured.
[0034]
Reference numeral 159 denotes a mounting plate mounted on the intermediate portion 156b of the rotating shaft 156 at substantially equal intervals in the axial direction. Each of the crushing blades 157 is actually detachably mounted on the mounting plate 159 by bolts 160. And are easily interchangeable. As described above, since the intermediate portion 156b is detachable from the support portions 156a, 156a of the rotating shaft 156, when the crushing blade 157 is replaced, the intermediate shaft 156 and the intermediate shaft 156 can be removed. It has become.
[0035]
Reference numeral 161 denotes a driving device of the crushing device 150. The driving device 161 is provided on the bracket 151c, and its driving speed is controlled by a control device (not shown) described later. Reference numerals 162 and 163 denote sprockets mounted on the output shaft 161a and the rotary shaft support 156a of the driving device 161, respectively. Reference numeral 164 denotes a chain wound around the sprockets 162 and 163. The driving force of the driving device 161 is transmitted through the chain 164. 10, the rotating body 155 is driven to rotate.
[0036]
Reference numeral 165 denotes a cover that covers the rotating body 155. The cover 165 prevents scattering of earth and sand and additive materials that are flipped up by the rotating body 155. The cover 165 is rotatably supported by a rotation shaft 156 (support portion 156 a), and rotates relative to the swing member 152. At this time, the fulcrum (that is, the support portion 156b of the rotating shaft) is located on the upstream side (left side in FIG. 8) of the center of gravity of the cover 165 so that a clockwise rotating force in FIG. Or the downstream side is heavier). On the other hand, a plate 166 having a groove 166a formed concentrically with the support portion 156a of the rotating shaft is attached to the side surface of the cover 165 (the side surface in the direction perpendicular to the paper surface in FIG. 9), and the plate 166 has a groove 166a. The rotation range of the cover 165 is limited by fitting a pin 167 provided inside the swing member 152.
[0037]
Here, FIGS. 11A to 11C are explanatory diagrams of the swing operation of the swing member 152 and the cover 165. First, as shown in FIG. 11A, when no load is applied, the swinging member 152 is in a state of being received by the stopper pin 168 (see FIG. 8) by its own weight. At this time, the cover 165 is located close to the transport surface of the transport belt 106, and has almost no gap between itself and the transport surface.
[0038]
Next, during operation, when the transported earth and sand is guided into the cover 165, a force in the transport direction acts on the crushing blade 157 due to the disintegration reaction force of the transported earth and sand. Then, as shown in FIG. 11B, the swing member 152 swings in the transport direction according to the disintegration reaction force of the earth and sand, and the cover 165 rotates relative to the swing operation of the swing member 168. In this case, until the pin 167 contacts the groove 166a, the lower end of the downstream side of the cover 165 contacts the conveyance surface regardless of the swinging state of the swinging member 152.
[0039]
When the oscillating member 152 oscillates further as shown in FIG. 11C due to a further increase in the crushing reaction force or a large stone or the like being bitten, the cover 165 is attached to the pin 167. The rotation is limited by this, and it is separated from the conveyance surface in a substantially parallel manner. As described above, the swinging member 152 swings in response to the disintegration reaction force, and escapes the rotating body 155, thereby preventing biting of a wrench or the like to some extent to facilitate the work, and the cover 165 is provided with the cover 165. By rotating relative to the swing of the swing member 152 so that the gap with the transport belt 106 is not significantly widened, the structure is configured not to impair the effect of preventing scattering.
[0040]
Although not particularly shown in FIGS. 1 to 11 described above, the driving device 107 of the transport conveyor 102, the additive material supply unit 122, and the like are not shown in the above-described crushing conveyor device 100 in FIGS. And a control device for controlling the drive device 161 of the crushing device 150 (the control procedure will be described later with reference to FIG. 13). The arrangement of the control device is not particularly limited. For example, the control device may be provided on the main body frame 101, or may be separately provided and wired to the driving devices 107, 141, and 161. In FIGS. 2 and 3, reference numeral 111 denotes a floor provided on the support beam 101a for work such as maintenance. The floor 111 is appropriately provided around each device such as the conveyor 102, the hopper 115, and the crusher 150. It is provided.
[0041]
Subsequently, the overall configuration of the self-propelled soil conditioner 200 shown in FIG. 1 will be described with reference to FIG. In FIG. 12, reference numeral 201 denotes a traveling body capable of running on its own. The traveling body 201 includes a track frame 202, a driven wheel 203 and a driving wheel 204 provided at both ends of the track frame 202, and a driving wheel 204. It is composed of a directly connected drive device 205 and a crawler belt 206 wrapped around the driven wheel 203 and the drive wheel 204. Reference numeral 207 denotes a main body frame provided above the track frame 202.
[0042]
Reference numeral 208 denotes a sieving device for sorting the injected earth and sand in accordance with the particle size. The sieving device 208 has a grid 209 having a predetermined mesh size installed therein. The sieve device 208 is supported on the upper side of one side (left side in FIG. 12) in the longitudinal direction of the main body frame 207 via a spring 210 so as to be able to vibrate and remove a screen larger than the mesh size of the grid 209 while vibrating. , To guide small things down. Reference numeral 211 denotes a driving device for the sieve device 208.
[0043]
Reference numeral 212 denotes a hopper for receiving the sediment sorted by the sieving device 208. The hopper 212 is formed in a frame shape that expands upward, and is located on one side in the longitudinal direction of the main body frame 207 so as to be located below the sieving device 208 ( 12 (left side in FIG. 12). Reference numeral 213 denotes a transport conveyor for transporting earth and sand in the hopper 212. The transport conveyor 213 is supported by the main body frame 207 so as to be inclined upward from below the hopper 212 in the transport direction (rightward in FIG. 12). Have been.
[0044]
Reference numeral 214 denotes a soil-improving material supply device for adding the stored soil-improving material to the earth and sand. The soil-improving material supply device 214 includes a storage section 215 as a storage section for storing the substantially cylindrical box-shaped soil improvement material, and a storage section 215. And a supply unit 216 serving as a supply unit for adding a soil improving material to the earth and sand on the conveyor 213, and is provided upright in the vicinity of the center of the main body frame 207 in the longitudinal direction (horizontal direction in FIG. 12). It is supported by a plurality of (for example, three) columns 217.
[0045]
Reference numeral 218 denotes a mixing device that mixes soil and soil with a soil quality improving material to generate improved soil. The mixing device 218 is provided substantially horizontally near the center of the main body frame 207 in the longitudinal direction (the left-right direction in FIG. 12). Although not specifically shown for prevention, an inlet for the earth and sand and soil improvement material discharged from the conveyor 213 is provided at an upper portion on one side (left side in FIG. 12), and an outlet for the improved soil is provided at a lower portion on the other side (right side in FIG. 12). Have. Although not particularly shown for the purpose of preventing complication, the mixing device 218 has at least one paddle-type mixer (not shown) for mixing and processing the earth and sand introduced from the inlet and the soil improving material and transferring the mixed material to the outlet. Have. A driving device 219 drives the paddle mixer.
[0046]
Reference numeral 220 denotes a discharge conveyor for discharging the improved soil from the mixing device 218 out of the machine. The discharge conveyor 220 extends from below the outlet of the mixing device 218 and ascends in the transport direction (rightward in FIG. 12). It is suspended and supported from the main body frame 207 and the like by a support member (not shown) so as to be inclined.
[0047]
Reference numeral 221 denotes a power unit provided with a drive source. The power unit 221 is supported at the other longitudinal end (right side in FIG. 12) of the main body frame 207 via a support member 222, and includes an engine and the engine. And at least one control valve for controlling the pressure oil supplied from the hydraulic pump to each drive device.
[0048]
In the above-described soil improvement system using one embodiment of the crushing conveyor device of the present invention, for example, the soil to be reformed accumulated at a predetermined stock location (not shown) is converted into a separately provided hydraulic shovel, belt conveyor, or the like (see FIG. (Not shown), when it is put into the hopper 115 of the crushing conveyor device 100, the soil to be reformed put into the hopper 115 is sequentially transported by the transport conveyor 102, and the additive material is supplied from the additive material supply device 120 during the transport. Supplied. Further, the conveyed earth and sand conveyed on the conveyor 102 by the crushing devices 150 and 150 are finely crushed (granulated) together with the additive material. Even if the refined soil to be refined in this way is highly viscous and contains a large amount of soil mass, it is uniformly mixed with the additive material, and its plasticity is reduced, making it difficult for sediment particles to adhere to each other. Therefore, it is difficult to re-form the earth mass. In the system shown in FIG. 1, the mixed soil of the crushed and mixed earth and sand and the additive is introduced into the self-propelled soil improvement machine 200 from the downstream end (right side in FIG. 1) of the transport conveyor 102 in the transport direction. You.
[0049]
According to the particle size of the mixed soil of the sand and the additive supplied to the self-propelled soil improvement machine 200, those having passed through the grid 209 of the sieving device 208 by the sieving device 208 are sorted and introduced into the lower hopper 212. Is done. The mixed soil introduced into the hopper 212 is transported out of the hopper 212 by the transport conveyor 213, and is introduced into the mixing device 218 together with the soil improving material added at a predetermined ratio from the soil improving material supply device 214 during the transportation. The mixed soil introduced into the mixing device 218 is uniformly agitated and mixed with the soil improving material here, and when the mixed soil is led out onto the discharge conveyor 220 as the improved soil, the mixed soil is sequentially carried out by the discharge conveyor 220.
[0050]
Next, a control procedure of the control device in the crushing conveyor device 100 will be described with reference to FIG. When the automatic operation of the crushing conveyor device 100 is started, the control device first sets the rotation speed of each of the driving devices 107, 141, 161 loaded on the crushing conveyor device 100 to an initial value in step 101, The transport conveyor 102, the additive supply device 120, and the crushing device 150 are driven, and the process proceeds to step 102. The initial value is input by an operator via input means (not shown) (operation panel or the like).
[0051]
In step 102, the current value Ia of the driving device 161 of the crusher 150 detected by an ammeter (not shown) or the like is input. The detection cycle of the current Ia is stored in advance in a ROM or the like as a set value (changeable), and is measured by a built-in timer.
[0052]
Here, the properties of the soil to be reformed are various, and when handling materials containing a large amount of rock (stone) or particularly highly viscous soil, the crushing blades 157 cause the cover 165 to adhere to the sand, The crushing reaction force increases due to collision or biting of the crushing device, the crushing device 150 falls into an overload state, the rotating body 155 is decelerated, and it may stop significantly. In the following step 103, the detected current value Ia of the driving device 161 is set to the threshold value I. 0 (The rated current value of the driving device 161), and it is determined whether or not the operating state of the crushing device 150 has fallen into such an overload state by checking whether it is larger than the rated current value. Since the drive device 161 is controlled by the inverter as described above, the current value Ia of the drive motor 161 becomes the rated current value I 0 The rotation speed is kept constant in the following range, but when the rotation speed decreases, the current value Ia becomes the rated current value I 0 Exceeds. That is, Ia> I 0 State means an overload state of the driving device 161. By monitoring the current value Ia of the driving device 161, the operating state (load condition) of the driving device 161 is detected. Ia ≦ I 0 If the determination in step 103 is not satisfied in step S103, the procedure returns to step 101 with the operation in that state, and Ia> I 0 If the determination in step 103 is satisfied, the process proceeds to step 104.
[0053]
In step 104, since the driving device 161 has at least decelerated and the crushing performance has been reduced, as a first measure (corresponding to the “first procedure” in the claims), the driving device 161 To reduce the load, the driving device 107 of the conveyor 102 is decelerated from the initial value, and the amount of earth and sand supplied to the crushing device 150 is reduced. At the same time, with the decrease in the earth and sand supply amount, the driving device 141 of the additive supply section 122 is decelerated in accordance with the set addition rate, and the addition rate of the additive is kept constant.
[0054]
In step 105, the detected current value Ia of the driving device 161 again becomes the threshold value I 0 It is determined whether or not the rotation speed of the driving device 161 has returned to the initial value by the load reduction measure in step 104 (that is, Ia ≦ I). 0 If so, the process proceeds to step 106, in which the rotational speeds of the driving devices 107 and 141 are returned, the earth and sand transport speed and the additive material supply speed are returned to the initial values, and the process returns to step 102. On the other hand, the rotation speed of the driving device 161 does not return to the initial value, and in this step 105, Ia> I 0 In step 107, the process proceeds to step 107, in which a stop command is output to the driving devices 107 and 141 to temporarily stop the transportation of the earth and sand and the supply of the additive.
[0055]
In Step 108, as a second measure for eliminating the overload of the driving device 161 (corresponding to the "second procedure" in the claims), the driving device 161 is instructed alternately to rotate forward and reverse. By repeatedly performing the normal rotation and the reverse rotation of the rotating body 155, the earth and sand adhered to the crushing blades 157 and the cover 165, the entrapped rub, and the like are removed. The number of times and the time of the forward rotation and the reverse rotation of the driving device 161 are set in consideration of the size and the processing capacity of the crushing conveyor device 100, and when the rotating member 155 is rotated forward and backward a set number of times (or a set time). Then, the process proceeds to step 109, where a stop command is output to the driving device 161 and the crushing device 150 is also stopped.
[0056]
In the following step 110, a command is issued to start the driving device 107 while the crushing device 150 is temporarily stopped. Then, the removed earth and sand, rubble, and the like push the cover 165 of the crushing device 150 and are removed from the cover 165 from the gap generated by swinging as shown in FIG. At this time, during the stop, the drive unit 161 is de-energized and the output shaft is in a neutral state. Therefore, in this step 110, the rotating body 155 rolls in accordance with the transported earth and sand, and the earth and sand are further discharged. It will be in an easy state. In this step, since the uncrushed soil passes through the crushing device 150, it is preferable that the amount of soil transported during that time is as small as possible. Therefore, the start-up time of the driving device 107 (the time until shifting to the subsequent steps in this example) is set as short as possible in consideration of the transport distance required for the rake discharge by the capacity of the crushing device 150. I do.
[0057]
In the following step 111, the drive device 161 is started (started with the initial value), and the process proceeds to step 112. In step 112, the detected current value Ia of the drive device 161 is again set to the threshold value I. 0 Determine if it is greater than. If the overload is eliminated by the above-described second measure, and the rotation speed of the driving device 161 has returned to the initial value (that is, Ia ≦ I 0 If so, the process proceeds to step 106, in which the rotational speeds of the driving devices 107 and 141 are returned, the earth and sand transport speed and the additive material supply speed are returned to the initial values, and the process returns to step 102. On the other hand, the rotational speed of the driving device 161 did not return to the initial value even after the second measure was taken, and in this step 112, Ia> I 0 In this case, as an error process, the system of the crushing conveyor device 100 is completely stopped, an error is displayed on, for example, an indicator provided on an operation panel or the like, an abnormality is notified to an operator (operator), and the above procedure is terminated. . Thereby, the worker can go up on the floor 111 and quickly maintain the crushing device 150, and when the grime is removed and the operation is restarted, the control device repeats the above procedure from step 101 again.
[0058]
As described above, according to the present embodiment, the control device controls the operation of the transport conveyor 102, the additive supply device 120, and, if necessary, the crushing device 150 according to the operation state of the crushing device 150. Thus, even if the crusher 150 falls into an overload state during unmanned operation, the overload state can be automatically eliminated. Further, even if the sediment or sediment is remarkably bitten by the crushing blades 157, the cover 165, or the like, and the overload state cannot be eliminated as a result, the abnormality is displayed as an indicator to notify the operator. This can prompt the worker to take prompt action. Therefore, it is possible to improve the operation rate of the crushing conveyor device 100 and secure high processing efficiency, and as a result, it is possible to contribute to stable soil improvement work.
[0059]
2 to 4 show the stationary type crushing conveyor device 100, but the present invention is not limited to this, and the configuration is not particularly limited as long as it does not deviate from the technical idea of the present invention. It may be deformed, and for example, as shown in FIG. 14, the crushing conveyor device may be configured to be able to run on its own. Next, the configuration of the crushing conveyor device 100A shown in FIG. 14 will be briefly described. However, parts that are the same as or similar to those in the preceding drawings are given the same reference numerals, and descriptions thereof are omitted.
[0060]
In FIG. 14, reference numeral 170 denotes a traveling body capable of running on its own. The traveling body 170 includes a track frame 171, a driven wheel 172 and a driving wheel 173 provided at both ends of the track frame 171, and a driving wheel 173. It is composed of a directly connected drive device 174 and a crawler belt 175 wrapped around a driven wheel 172 and a drive wheel 173. Reference numeral 176 denotes a turning frame that rotatably connects the track frame 171 of the traveling body 170 and the main body frame 101, and 177 denotes a driving device that drives the main frame 101 to pivot with respect to the traveling body 170.
[0061]
A power unit 178 is provided on the main frame 101. In the power unit 178, an engine (not shown) serving as a power source such as the conveyor 102, the additive supply unit 120, the crushing unit 150, the traveling body 170, the driving unit 177, and the like, and driven by this engine At least one hydraulic pump (not shown), a control valve device (not shown) including a plurality of control valves for controlling the direction and flow rate of the hydraulic oil from the hydraulic pump, and the like are provided. Reference numeral 179 denotes a driver's seat of the crushing conveyor device 100A. The driver's seat 179 is provided in a section on the front side (left side in FIG. 14) of the power unit 178, and is provided with an operation lever 180 for operating the traveling body 170 and the like. It is. Other configurations are the same as those of the crushing conveyor device 100 described above.
[0062]
Also in the present embodiment having the above configuration, a similar effect can be obtained by executing the control procedure described with reference to FIG. 13 by the control device. Further, since the crushing conveyor device 100A of FIG. 14 includes the power unit 178, it is possible to operate the driving devices of the respective devices independently without using an external power supply or the like, and immediately at the site where the crushing conveyor device is brought in. Work becomes possible. In addition, because of the provision of the traveling body 170, high mobility can be exhibited at the site, layout can be easily changed, and even if a special work machine such as a crane is not prepared, the trailer bed can be climbed on its own. Since it can go down, transportation between sites becomes easy. Further, since the traveling body 170 is of a so-called crawler type provided with a crawler belt 175, it can easily enter even on soft ground at a construction site or the like, and is not so limited by the conditions of the ground at the site. Work space can be used effectively. Further, if the conveyor 102 does not have a swivel function, in order to change the sediment receiving position and the discharging position of the crushing conveyor device 100A, the traveling body 170 is pivotally turned, and the crushing conveyor device 100A itself is used. Must be finely controlled, which is very troublesome for the operator. However, since the conveyor 102 turns with respect to the traveling body 170, the receiving position and the discharging position of the earth and sand can be easily changed. .
[0063]
In the above, an example has been described in which an indicator is displayed for an abnormality when the overload of the crushing device 150 cannot be finally eliminated. However, for example, a configuration in which a warning sound is generated or a warning light is displayed may be used. These may be appropriately combined. In addition, the operating state of the crushing device 150 may be such that the rotation speed and the rotation speed of the drive device 161 are directly detected in addition to the current value of the drive device 161, and in this case, the detected rotation speed and the rotation speed are detected. However, when the value falls below a preset threshold value, it is sufficient to take the above-described measures for reducing the load. Although the driving device 161 is an electric motor, when a hydraulic motor is used, in addition to the number of rotations and the rotation speed, the inlet pressure of the hydraulic motor is detected by a pressure switch or the like, and the load state of the driving device is changed to the operating state. It is also conceivable to detect as. In this case, when the detected motor inlet pressure exceeds a preset threshold value, the above-described measures for reducing the load may be performed.
[0064]
Further, in the above, the example in which each of the crushing conveyor devices 100 and 100A has two crushing devices is illustrated, but the number of crushing devices is not limited, and at least one crushing device may be provided. Of course, three or more units may be provided. Further, the crushing conveyor device 100A and the self-propelled soil improvement machine 200 are both provided with a so-called crawler type traveling body having crawler tracks, but are not limited thereto, and may be provided with a so-called wheel type traveling body. Is also good. In addition, the additive material supply unit 122 of the additive material supply device 120 is configured by a screw feeder. However, the invention is not limited thereto. For example, a rotary feeder or the like may be used. In these cases, a similar effect is obtained.
[0065]
In addition, as a self-propelled soil improvement machine that constitutes a soil improvement system together with the crushing conveyor device 100 or 100A, a self-propelled soil improvement device 200 equipped with a so-called mixing type mixing device equipped with a paddle mixer is exemplified, Meanwhile, the crushing conveyor devices 100 and 100A are provided with a mixing device having a so-called screw mixer, or a so-called crushing type mixing device that crushes and mixes the earth and sand and the soil improvement material using a high-speed rotating impactor. A soil improvement system arranged before or after the soil improvement machine can also be configured. Of course, it may be combined with a stationary soil improvement machine. In the soil improvement material supply device of the self-propelled soil improvement device 200, a rotary feeder is illustrated as the soil improvement material supply unit 216, but may be replaced with a screw feeder or the like. Further, a soil improvement system may be configured by disposing a self-propelled soil improvement machine having no sieve device 208. Conversely, depending on the properties of the earth and sand to be reformed, a sieve device and a tilting device may be provided on the hopper 115 of the crushing conveyor devices 100 and 100A. In these cases, a similar effect is obtained.
[0066]
【The invention's effect】
According to the present invention, even if the crushing apparatus falls into an overloaded state during unmanned operation, the conveyor or the feed rate of the additive, or the crushing apparatus is operated as necessary so as to escape from the overloaded state. By performing the control, the situation can be automatically and promptly dealt with, high processing efficiency can be secured, and it is possible to contribute to stable soil improvement work.
[Brief description of the drawings]
FIG. 1 is a side view showing an overall arrangement of a configuration example of a soil improvement system in which an embodiment of a crushing conveyor device of the present invention is arranged.
FIG. 2 is a side view showing the entire structure of one embodiment of the crushing conveyor device of the present invention.
FIG. 3 is a sectional view taken along the line III-III in FIG. 2 showing an entire structure of the crushing conveyor device according to the embodiment of the present invention.
FIG. 4 is a side view showing the entire structure of one embodiment of the crushing conveyor device of the present invention, as viewed from the back side in the direction perpendicular to the paper surface of FIG.
FIG. 5 is a side view showing a detailed structure of an additive supply device provided in one embodiment of the crushing conveyor device of the present invention.
FIG. 6 is a top view showing a detailed structure of an additive supply device provided in one embodiment of the crushing conveyor device of the present invention.
FIG. 7 is a side sectional view showing a detailed structure of a supply section and a chute of an additive supply apparatus provided in an embodiment of the crushing conveyor device of the present invention.
FIG. 8 is a side view showing a detailed structure of a crushing device provided in an embodiment of the crushing conveyor device of the present invention.
FIG. 9 is a cross-sectional view taken along the line VIII-VIII in FIG. 8, showing a detailed structure of the crushing device provided in the embodiment of the crushing conveyor device of the present invention.
FIG. 10 is a sectional view taken along the line IX-IX in FIG. 9 showing a detailed structure of the crushing device provided in the embodiment of the crushing conveyor device of the present invention.
FIG. 11 is an explanatory diagram of a swinging operation of a swing member and a cover of the crushing device provided in the embodiment of the crushing conveyor device of the present invention.
FIG. 12 is a side view showing the overall configuration of the self-propelled soil conditioner shown in FIG.
FIG. 13 is a flowchart of a control procedure by a control device provided in an embodiment of the crushing conveyor device of the present invention.
FIG. 14 is a side view showing the entire structure of a modification of the crushing conveyor device of the present invention.
[Explanation of symbols]
100 Crushing conveyor device
100A crushing conveyor device
102 Conveyor
115 Hopper
120 Additive feeder
150 crusher
161 drive
178 power unit

Claims (8)

土砂を受け入れるホッパと、
このホッパに受け入れた土砂を搬送する搬送コンベアと、
この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、
前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、
この解砕装置の運転状態に応じ、少なくとも前記搬送コンベア及び添加材供給装置を動作制御する制御手段とを備えたことを特徴とする解砕コンベア装置。
A hopper that accepts earth and sand,
A conveyor for conveying the earth and sand received in the hopper,
An additive material supply device for supplying an additive material for lowering the plasticity of the earth and sand to the earth and sand on the conveyor,
At least one crushing device that crushes the transported earth and sand on the transport conveyor together with the additive supplied with the additive from the additive supply,
A crushing conveyor device comprising: at least a control means for controlling the operation of the transport conveyor and the additive supply device in accordance with the operation state of the crushing device.
土砂を受け入れるホッパと、
このホッパに受け入れた土砂を搬送する搬送コンベアと、
この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、
前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、
この解砕装置の運転状態が変動した場合、前記解砕装置の駆動速度が予め設定した初期値に復帰するよう、前記搬送コンベア、添加材供給装置、及び解砕装置を動作する制御制御手段とを備えたことを特徴とする解砕コンベア装置。
A hopper that accepts earth and sand,
A conveyor for conveying the earth and sand received in the hopper,
An additive material supply device for supplying an additive material for lowering the plasticity of the earth and sand to the earth and sand on the conveyor,
At least one crushing device that crushes the transported earth and sand on the transport conveyor together with the additive supplied with the additive from the additive supply,
When the operating state of the crushing device fluctuates, the driving speed of the crushing device returns to a preset initial value, so that the transport conveyor, the additive supply device, and control control means for operating the crushing device, A crushing conveyor device comprising:
土砂を受け入れるホッパと、
このホッパに受け入れた土砂を搬送する搬送コンベアと、
この搬送コンベア上の搬送土砂に、土砂の塑性を下げる添加材を供給する添加材供給装置と、
前記搬送コンベア上の搬送土砂を、前記添加材供給装置から添加材を供給された添加材とともに解砕する少なくとも1つの解砕装置と、
この解砕装置の運転状態が予め設定した初期状態から変動した場合に、前記搬送コンベアによる土砂搬送速度及び添加材供給装置による添加材供給速度を減速する第1の手順、この第1の手順を行っても前記解砕装置の運転状態が初期状態に復帰しない場合に、土砂搬送及び添加材供給を停止した状態で前記解砕装置を正転方向及び逆転方向に繰り返し駆動させる第2の手順を実行可能な制御装置とを備えたことを特徴とする解砕コンベア装置。
A hopper that accepts earth and sand,
A conveyor for conveying the earth and sand received in the hopper,
An additive material supply device for supplying an additive material for lowering the plasticity of the earth and sand to the earth and sand on the conveyor,
At least one crushing device that crushes the transported earth and sand on the transport conveyor together with the additive supplied with the additive from the additive supply,
When the operating state of the crusher changes from an initial state set in advance, a first procedure for reducing the earth and sand transport speed by the transport conveyor and the additive supply speed by the additive supply device, If the operating state of the crushing apparatus does not return to the initial state even if it is performed, a second procedure of repeatedly driving the crushing apparatus in the normal rotation direction and the reverse rotation direction with the earth and sand transportation and the supply of the additive stopped. A crushing conveyor device comprising an executable control device.
前記制御手段は、前記解砕装置を駆動する駆動装置の回転数又は負荷を基に、前記解砕装置の運転状態を判定することを特徴とする請求項1乃至3のいずれか1項記載の解砕コンベア装置。4. The method according to claim 1, wherein the control unit determines an operation state of the crushing device based on a rotation speed or a load of a driving device that drives the crushing device. 5. Crushing conveyor device. 前記解砕装置の駆動装置は油圧モータであり、前記制御装置は、この油圧モータの入口圧を基に、前記解砕装置の運転状態を判定することを特徴とする請求項1乃至3のいずれか1項記載の解砕コンベア装置。4. The driving device of the crushing device is a hydraulic motor, and the control device determines an operation state of the crushing device based on an inlet pressure of the hydraulic motor. The crushing conveyor device according to claim 1. 少なくとも前記搬送コンベア、添加材供給装置、及び解砕装置に動力を供給する動力装置を更に備えたことを特徴とする請求項1乃至5のいずれか1項記載の解砕コンベア装置。The crushing conveyor device according to any one of claims 1 to 5, further comprising a power device that supplies power to at least the transport conveyor, the additive supply device, and the crushing device. 少なくとも1つの解砕装置によって、搬送中の土砂を添加材とともに解砕する解砕コンベア装置の運転方法において、
前記解砕装置の運転状態に応じ、少なくとも土砂搬送速度及び添加材供給速度を調整することを特徴とする解砕コンベア装置の運転方法。
An operation method of a crushing conveyor device for crushing earth and sand being transported together with an additive material by at least one crushing device,
An operation method of a crushing conveyor device, wherein at least the earth and sand conveying speed and the additive material supply speed are adjusted according to the operation state of the crushing device.
少なくとも1つの解砕装置によって、搬送中の土砂を添加材とともに解砕する解砕コンベア装置の運転方法において、
前記解砕装置の運転状態が予め設定した初期状態から変動した場合に、土砂搬送速度及び添加材供給速度を減速する第1の手順と、
この第1の手順を行っても前記解砕装置の運転状態が初期状態に復帰しない場合に、土砂搬送及び添加材供給を停止した状態で前記解砕装置を正転方向及び逆転方向に繰り返し駆動させる第2の手順とを有することを特徴とする解砕コンベア装置の運転方法。
An operation method of a crushing conveyor device for crushing earth and sand being transported together with an additive material by at least one crushing device,
When the operating state of the crushing apparatus fluctuates from a preset initial state, a first procedure of reducing the earth and sand transport speed and the additive supply speed,
If the operating state of the crushing apparatus does not return to the initial state even after performing the first procedure, the crushing apparatus is repeatedly driven in the normal rotation direction and the reverse rotation direction with the earth and sand transport and the supply of the additive stopped. Operating method of the crushing conveyor device, comprising:
JP2003073618A 2003-03-18 2003-03-18 Crushing conveyor device Expired - Fee Related JP4245945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003073618A JP4245945B2 (en) 2003-03-18 2003-03-18 Crushing conveyor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073618A JP4245945B2 (en) 2003-03-18 2003-03-18 Crushing conveyor device

Publications (2)

Publication Number Publication Date
JP2004278216A true JP2004278216A (en) 2004-10-07
JP4245945B2 JP4245945B2 (en) 2009-04-02

Family

ID=33289470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073618A Expired - Fee Related JP4245945B2 (en) 2003-03-18 2003-03-18 Crushing conveyor device

Country Status (1)

Country Link
JP (1) JP4245945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129730A1 (en) * 2006-05-10 2007-11-15 Komatsu Ltd. Self-propelled crusher and management system for self-propelled crusher
JP2008168291A (en) * 2006-12-14 2008-07-24 Nippon Soda Co Ltd Jet mill
JP2010077670A (en) * 2008-09-25 2010-04-08 Hitachi Constr Mach Co Ltd Apparatus for feeding soil improving material
CN112727434A (en) * 2021-01-05 2021-04-30 北京三一智造科技有限公司 Control method and control device of rotary drilling rig

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129730A1 (en) * 2006-05-10 2007-11-15 Komatsu Ltd. Self-propelled crusher and management system for self-propelled crusher
GB2451786A (en) * 2006-05-10 2009-02-11 Komatsu Mfg Co Ltd Self-propelled crusher and management system for self-propelled crusher
US7942355B2 (en) 2006-05-10 2011-05-17 Komatsu Ltd. Self-propelled crusher and management system for self-propelled crusher
JP2008168291A (en) * 2006-12-14 2008-07-24 Nippon Soda Co Ltd Jet mill
JP2010077670A (en) * 2008-09-25 2010-04-08 Hitachi Constr Mach Co Ltd Apparatus for feeding soil improving material
JP4695682B2 (en) * 2008-09-25 2011-06-08 日立建機株式会社 Soil improvement material supply equipment
CN112727434A (en) * 2021-01-05 2021-04-30 北京三一智造科技有限公司 Control method and control device of rotary drilling rig
CN112727434B (en) * 2021-01-05 2023-05-12 北京三一智造科技有限公司 Control method and control device of rotary drilling rig

Also Published As

Publication number Publication date
JP4245945B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4113421B2 (en) Crushing treatment system
JP3962864B2 (en) Soil mixing machine
JP2004278216A (en) Shredding conveyor apparatus and method of operating the same
JP2000328598A (en) Soil mixing and improving machine
JP2006326415A (en) Soil insolubilization treatment vehicle
JP3887270B2 (en) Crushing conveyor device and soil quality improvement system
JP4108952B2 (en) Self-propelled soil improvement machine
JP3693558B2 (en) Soil mixing machine
JP3798282B2 (en) Self-propelled soil improvement machine
JP3670855B2 (en) Soil improvement method by smashing and mixing, and soil improvement device with smashing and mixing machine
JP3769485B2 (en) Self-propelled soil improvement machine and bridge prevention device
JP2000008407A (en) Foreign matter removal device and soil improvement device equipped therewith
JP3343523B2 (en) Self-propelled soil improvement machine
JP2002086004A (en) Dehydrated cake pulverizing apparatus and dehydrated cake pulverizing treatment apparatus
JP2003170118A (en) Schaking equipment for earth and sand and self- propelled soil improving machine
JP3705705B2 (en) Self-propelled soil improvement machine and soil improvement method
JP2001342621A (en) Self propelled soil improving machine and mixer therefor
JP3676087B2 (en) Crusher and soil quality improvement equipment with crusher
JP4398614B2 (en) Self-propelled soil improvement machine
JP2002086009A (en) Dehydrated cake pulverizing system and movable mixing and grinding machine
JP3760122B2 (en) Self-propelled soil improvement machine
JP2002070064A (en) Self-propelled soil improving machine and mixing device therefor
JP2000325820A (en) Crawler type crushing machine
JP2000004601A (en) Crushed soil-selecting machine and soil-improving device installed with the same machine
JP2005087904A (en) Soil improving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A131 Notification of reasons for refusal

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090107

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120116

LAPS Cancellation because of no payment of annual fees