JP2004274643A - 光送信装置および光送信方法 - Google Patents

光送信装置および光送信方法 Download PDF

Info

Publication number
JP2004274643A
JP2004274643A JP2003065940A JP2003065940A JP2004274643A JP 2004274643 A JP2004274643 A JP 2004274643A JP 2003065940 A JP2003065940 A JP 2003065940A JP 2003065940 A JP2003065940 A JP 2003065940A JP 2004274643 A JP2004274643 A JP 2004274643A
Authority
JP
Japan
Prior art keywords
optical
signal
carrier
mach
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003065940A
Other languages
English (en)
Other versions
JP3761528B2 (ja
Inventor
Masahide Miyaji
正英 宮地
Ichiro Seto
一郎 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003065940A priority Critical patent/JP3761528B2/ja
Publication of JP2004274643A publication Critical patent/JP2004274643A/ja
Application granted granted Critical
Publication of JP3761528B2 publication Critical patent/JP3761528B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】変調スペクトルの占有帯域が狭く、かつ非線形耐力に優れた光送信装置を提供する。
【解決手段】伝送すべきNRZ符号形式のデータ信号のクロック周波数に等しい周波数間隔の2本のキャリア成分を有する光信号を発生する光キャリア発生部と、入力された前記データ信号をNRZI符号に符号変換する符号変換手段と、前記光キャリア発生部から入力された光信号を前記符号変換手段により符号変換された信号で位相変調する位相変調手段と、この位相変調手段から出力された光信号から、前記光キャリア発生部にて発生された光信号のキャリア周波数成分を抑圧するマッハ・ツェンダ型干渉計と、このマッハ・ツェンダ型干渉計が出力した光信号から、前記2本のキャリアの周波数帯域を通す帯域光フィルタとを備えたことを特徴とする光送信装置。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、光伝送に用いられる光送信装置に関し、特に超高速の波長多重伝送に用いられる光送信装置および光送信方法に関する。
【0002】
【従来の技術】
従来、光伝送において伝送容量を増大させるには、波長多重数を増加させる方向と伝送速度を増加させる方向がある。しかし、限られた波長資源の中ではこの両者は相反する。即ち伝送速度に比例して1波あたりの占有帯域が増加するため、波長多重数が減少してしまうという性格を有する。よって、限られた波長資源の中で伝送容量の更なる増大を図るためには、周波数利用効率を向上させる必要がある。
【0003】
変調スペクトルがコンパクトな光変調方式として、光デュオバイナリ変調方式が提案されている(例えば、特許文献1参照)。
この光デュオバイナリ変調方式は、伝送する信号の帯域程度のスペクトル幅を占有するのみであるので、周波数利用効率の観点から非常に優れた変調方式である。また、出力される光信号もバイナリ信号であるために、従来の受信器との整合性も確保できる。さらに、光ファイバの波長分散に対して優れた耐力を有している。
【0004】
超高速伝送においては、光ファイバ中の非線形現象に対する耐力が重要となる。例えば、光増幅器の中継間隔や伝送距離を同一とした場合に、同一の光信号対雑音比を得るためには、40Gbpsシステムにおいては10Gbpsシステムに比べて概ね4倍の光パワーを光ファイバに入力する必要がある。しかしながら、光デュオバイナリ変調方式の非線形耐力は非常に乏しく、超高速伝送には適していない。
【0005】
この非線形耐力に優れた変調方式としては、キャリア抑圧RZ(CS−RZ)変調方式(例えば、非特許文献2参照)、交番チャープRZ(AC−RZ)変調方式(例えば、非特許文献3参照)や差動位相を用いたキャリア抑圧RZ(DPCS−RZ)変調方式(例えば、非特許文献4参照)などが提案されている。DPCS−RZ変調方式では隣接するマークビットどうし互いに光位相が反転するという特徴を有するために、非線形耐力が優れている。
【0006】
しかしながら、いずれの方式においても、光スペクトルの占有帯域が広いために、高い周波数利用効率を実現することが困難である。
【非特許文献1】
K.Yonenaga et al., Electron. Lett. vol.31, No.4, 1995, p.302−304
【非特許文献2】
Y.Miyamoto et al., OAA’99, post−deadline paper PDP−4, 1999
【非特許文献3】
R.Ohhira et al., OFC’2001, WM2, 2000
【非特許文献4】
伊藤他、差動位相を利用したキャリアレスRZ変調方式の検討、40Gbit/s光伝送技術研究会OCS 40G−6−9、2002年6月20日、p.35−38
【0007】
【発明が解決しようとする課題】
このように従来の光送信装置においては、光デュオバイナリ変調方式では光ファイバ中での非線形耐力が著しく劣るため超高速伝送には適していないという問題があった。また、非線形耐力に優れた変調方式では光スペクトルの占有帯域が広いために高密度多重には適していないという問題があった。
【0008】
この発明は、変調スペクトルの占有帯域が狭く、かつ非線形耐力に優れた光送信装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するために、この発明においては、伝送すべきNRZ符号形式のデータ信号のクロック周波数に等しい周波数間隔の2本のキャリア成分を有する光信号を発生する光キャリア発生部と、入力された前記データ信号をNRZI符号に符号変換する符号変換手段と、前記光キャリア発生部から入力された光信号を前記符号変換手段により符号変換された信号で位相変調する位相変調手段と、この位相変調手段から出力された光信号から、前記光キャリア発生部にて発生された光信号のキャリア周波数成分を抑圧するマッハ・ツェンダ型干渉計と、このマッハ・ツェンダ型干渉計が出力した光信号から、前記2本のキャリアの周波数帯域を通す帯域光フィルタとを備えたことを特徴とする光送信装置を提供する。
【0010】
【発明の実施の形態】
実施の形態の説明に入る前に、本発明の原理について図面を用いて説明する。図13(a)にDPCS−RZ方式の光スペクトルを示す。DPCS−RZ方式では、非線形耐力は優れるが少なくともビットレート(B)の2倍の帯域を占有するために、波長多重伝送に適用した場合に高密度化、即ち周波数利用効率という観点では問題があった。
【0011】
我々は図13(a)の光スペクトルが図13(b))に示す通り、キャリア周波数f0を挟んで、上下側波帯の2つの成分に分離でき、更に時系列的にはこの2つの成分が同時には発生しないことを見出した。
【0012】
そこで図14(a)に示す通り、キャリア周波数としてf1およびf2を有する2つの光キャリア成分(キャリア周波数の差はビットレートに一致)に対して同時にDPCS−RZ変調を施し、図14(b)に示す両者が重なるクロスハッチ部の内、f1−f2を含む破線部分のみを光フィルタで抽出する。
【0013】
これにより、変調スペクトルの占有帯域として光デュオバイナリ変調並の狭帯域化を図りつつ、かつDPCS−RZ方式の非線形耐力に優れるという特性をある程度保持した光送信装置を得ることができる。
【0014】
(第1の実施の形態)
本発明の第1の実施の形態に係る光送信装置について図面を用いて詳細に説明する。
図1は、本発明の第1の実施の形態に係る光送信装置の構成を説明するための図である。
図1において、光送信装置1は、光キャリア発生部100,信号入力端子101,符号変換部102,光位相変調器103,マッハ・ツェンダ干渉計104,光フィルタ105から構成されている。
【0015】
光キャリア発生部100は、半導体レーザ111,112および光合波器120から構成されている。半導体レーザ111は、光周波数f1で発振する。半導体レーザ112は、f0とは異なる光周波数f2で発振する。これら発振された2つのレーザ光は光合波器120へ入力される。
【0016】
光合波器120は、半導体レーザ111,112から入力された2つのレーザ光を合波して光位相変調器103へ出力する。なお、以下各実施の形態では半導体レーザを用いるが、本発明はこれに限らずガスを用いたレーザを用いても良い。
【0017】
図示しない制御回路からの制御信号により、半導体レーザ111および112から出力される光キャリア周波数の差は、伝送するデータ信号のクロック周波数に一致するように設定されている。
【0018】
伝送するデータ信号であるNRZ(Non−Return to Zero)信号は、信号入力端子101を介して符号変換部102へ入力される。
符号変換部102は、信号入力端子101から入力されたNRZ信号をNRZI(Non−Return to Zero Inverse)信号に変換して光位相変調器103へ出力する。
【0019】
光位相変調器103は、光キャリア発生部100内の光合波器120から入力された合波されているレーザ光を、符号変換部102から入力されたNRZI信号により位相変調してマッハ・ツェンダ干渉計104へ出力する。
【0020】
マッハ・ツェンダ干渉計104のFSR(Free Spectrum Range)は、光キャリア発生部100より出力される2つのレーザ光(光キャリア)の周波数差周波数の差に概ね一致し、この透過特性は光キャリア発生部100より出力される光キャリア成分(2つのキャリア成分の両方)を抑圧するように調整される。
【0021】
マッハ・ツェンダ干渉計104は、光位相変調器103から入力された位相変調された信号の内、光キャリア発生部100より出力される光キャリア成分を抑圧して狭帯域光フィルタ105へ出力する。
【0022】
狭帯域光フィルタ105の透過中心周波数は、光キャリア発生部100から出力される2つのレーザ光(光キャリア)周波数の中央に一致するように設定されている。狭帯域光フィルタ105は、マッハ・ツェンダ干渉計104から入力された光を、2つの光キャリア周波数間の帯域を通して他の周波数帯を抑制するよう帯域制限して光伝送路へ出力する。このときの帯域制限としては、半値全幅(FWHM)がビットレート程度以上の光フィルタで帯域を制限すれば良い。
【0023】
次に、このように構成された本発明の第1の実施の形態に係る光送信装置の動作について、各部における出力光スペクトルと光波形を示す図2から図5を用いて説明する。図2〜5(a)は光スペクトルを示し、図2〜5(b)は光波形を示している。
【0024】
図2は、光キャリア発生部100の出力信号を示す図である。
本実施の形態では伝送速度を40[Gbps]と設定しており、光キャリア周波数の差は図2(a)に示す通り40[GHz]に設定している。
光波形としては、2本の光キャリア周波数のビート成分として、40[GHz]の正弦波信号が表れている。
図3は、光位相変調器103から出力される光信号を示す図である。
光位相変調器103により位相変調が施されるため、光スペクトルは図3(a)に示す通り光スペクトルが顕著に広がり、ピークから20[dB]下がったポイントにおける光スペクトル幅は約100[GHz]となっている。
【0025】
光波形としては図2(b)から変化はない。
図4は、マッハ・ツェンダ干渉計104から出力される光信号を示す図である。
図4(a)に示す通り光スペクトルは、マッハ・ツェンダ干渉計104により、光キャリア発生部100からの光キャリア成分が抑圧されている。また、光スペクトルは光位相変調器103で受けた位相変調成分が強度変調成分に変換されている。
【0026】
この結果、光波形としては図4(b)に示す通り信号入力端子101から入力されたNRZ信号が光RZ信号に変換された形で表れる。
このままでは光スペクトルが大きく広がったままであるため、スペクトル利用効率が低くなってしまう。
図5は、狭帯域光フィルタ105から出力される光信号を示す図である。
本実施の形態では狭帯域光フィルタとして3[dB]帯域幅、40[GHz]の3次ガウスフィルタを用いている。
光スペクトルは狭帯域光フィルタ105により帯域制限された結果、図5(a)に示す通り大幅に帯域制限されている(20dBダウンで約40GHz)。
しかし、光波形としては図5(b)に示す通り、良好なアイ開口が得られている。
次に、本発明の第1の実施の形態に係る光送信装置の非線形耐力について図6を用いて説明する。なお、比較のため従来のDuobinary方式とNRZ方式についても図6中に示している。
【0027】
伝送路としては、SMF(Single Mode Fiber)80[km]の4スパンを仮定し、各光中継器においてファイバの分散および分散スロープについては100%補償した。
【0028】
図6の横軸は各スパンのSMFへの入力パワーを示し、縦軸はアイ開口度劣化を示す。
図6から本発明の方式は、従来のDuobinary方式やNRZ方式に比べ、狭い光スペクトル幅を有しているにもかかわらず、伝送路中の非線形効果に対して他の2方式より優れた耐力を有していることが分かる。
【0029】
以上説明したように、本発明の光送信装置は、伝送速度と同程度の狭いスペクトル幅を有しているために、高密度波長多重方式において優れた周波数利用効率を実現できる。
【0030】
また、非線形耐力についても従来の狭スペクトルの変調方式に比べ優れた特性を有するために、長距離伝送において良好な受信感度を得ることができる。
更に、波長多重伝送時においては、光合波器を狭帯域フィルタ105の代わりに使用することもできる。
(第2の実施の形態)
本発明の第2の実施の形態に係る光送信装置について図面を用いて詳細に説明する。
図7は、本発明の第2の実施の形態に係る光送信装置1の構成を説明するための図である。尚、図1と同一部分には同一符号を付し、その説明を省略する。
図7は、図1と比べて光キャリア発生部100内の構成が異なっている。
図7において、光キャリア発生部100は、半導体レーザ111,信号入力端子701,分周器702,変調電圧調整部703,光位相変調器704,光フィルタ705から構成されている。半導体レーザ111は、光周波数f1で発振する。
【0031】
伝送するデータ信号のクロック信号は、信号入力端子701を介して分周器702へ入力される。
分周器702は、信号入力端子701から入力されたクロックを二分周して変調電圧調整部703へ出力する。
変調電圧調整部703は、光位相変調器704から出力される光の内、半導体レーザ111から出力される光キャリア成分が最小となるように、光位相変調器704への印加電圧値を調整する。このとき最小が最良なのであるが、必ずしも最小である必要はなく、本発明の効果を得られる範囲であれば、略最小であっても良い。
【0032】
半導体レーザ111は、レーザ光を光位相変調器704へ出力する。
光位相変調器704は、半導体レーザ111から入力されたレーザ光を変調電圧調整部703から印加された印加電圧値に応じて位相変調して光フィルタ705へ出力する。
【0033】
図8に光フィルタ705の入出力光スペクトルを示す。
光位相変調器103が、半導体レーザ111から入力されたレーザ光(光周波数f1で発振)に対してキャリア成分が最小となるように位相変調を施すと、図8(a)に示す通り大きな高調波成分が発生する。
【0034】
そこで光フィルタ705により、図8(b)に示す通り光位相変調器704にて位相変調された出力光の高調波成分を抑圧する。これにより、伝送するデータ信号のクロック周波数に相当する周波数間隔を有する2本の光キャリア信号を得ることが出来る。なお、図の中心および両端のキャリアは、メインのキャリア成分に対して50[dB]以上抑圧されているので問題ない。
【0035】
このように光キャリア発生部100を構成することによって、1台の半導体レーザで2本の光キャリア信号を得ることが出来、装置をより小さく作ることが出来る。また、光キャリアの周波数間隔も入力するデータ信号に応じて可変することが出来る。
【0036】
尚、上述の図7を用いた説明では伝送するデータ信号のクロック信号を、光キャリア発生部100の外部から入力する構成とした。これに代え、伝送するデータ信号から、伝送するデータ信号のクロック成分を抽出する構成としても良い。
【0037】
以上のように光キャリア発生部100を構成したとしても、第1の実施の形態と同様の効果を得ることが出来る。
(第3の実施の形態)
本発明の第3の実施の形態に係る光送信装置について図面を用いて詳細に説明する。
図9は、本発明の第3の実施の形態に係る光送信装置1の構成を説明するための図である。尚、図1と同一部分には同一符号を付し、その説明を省略する。
図9は、図7と比べて光キャリア発生部100内の構成が異なっている。図7では光キャリア発生部100内で位相変調していたのに代え、図9では光キャリア発生部100内で強度変調している。
【0038】
図9において、光キャリア発生部100は、半導体レーザ111,信号入力端子701,分周器702,変調電圧調整部703,強度変調器902,バイアス制御部901から構成されている。
【0039】
伝送するデータ信号のクロック信号は、信号入力端子701を介して分周器702へ入力される。
変調電圧調整部703は、マッハ・ツェンダ型強度変調器902から出力される光の内、半導体レーザ111から出力される光キャリア成分が最小となるように、マッハ・ツェンダ型強度変調器902へ出力する変調信号を調整する。このとき最小が最良なのであるが、必ずしも最小である必要はなく、本発明の効果を得られる範囲であれば、略最小であっても良い。
【0040】
マッハ・ツェンダ型強度変調器902は、半導体レーザ111から入力されたレーザ光を変調電圧調整部703から印加された変調信号に応じて強度変調して光位相変調器103へ出力する。
【0041】
バイアス制御部901は、マッハ・ツェンダ型強度変調器902の動作点を最適化するようにマッハ・ツェンダ型強度変調器902にバイアス電圧を印加する。
次に、図10および図11を用いて、バイアス制御部901からマッハ・ツェンダ型強度変調器902へ印加されるバイアス電圧について説明する。
マッハ・ツェンダ型強度変調器902の変調電圧に対する透過特性は、図10に示す通りである。
横軸は変調電圧調整部703からマッハ・ツェンダ型強度変調器902の電極に印加される変調信号の電圧の大きさを示し、縦軸はマッハ・ツェンダ型強度変調器902から出力される光パワーの大きさを示す。
【0042】
図11(a)は、変調電圧調整部703から出力される変調信号を示す図である。
図11(b),(c),(d)は、バイアス制御部901において図10に示すそれぞれA,B,Cの各ポイントにDCバイアスを設定した場合のマッハ・ツェンダ型強度変調器902から出力される光波形を示す図である。
【0043】
本実施の形態では、バイアス制御部901からマッハ・ツェンダ型強度変調器902へ印加されるバイアス電圧は、図10に示すAまたはBのポイントにDCバイアスを設定する。
【0044】
ここで、変調電圧調整部703において、マッハ・ツェンダ型強度変調器902に印加される変調信号の振幅(peak−to−peak)が半波長電圧の2倍となるように調整した。
【0045】
図11(b)および(c)に示す通り、マッハ・ツェンダ型強度変調器902の動作点を透過特性が最小(バイアス:A)もしくは最大(バイアス:B)となる電圧に設定すれば、分周器702により二分周したクロック信号を用いて本来のクロック周波数を有する光パルス列、即ちクロック周波数に相当する周波数間隔を有する光キャリアが発生されることがわかる(図11(b)、(c))。このとき最小または最小が最良なのであるが、必ずしも最小/最大である必要はなく、分周器702により二分周したクロック信号を用いて本来のクロック周波数を有する光パルス列を得られる範囲であれば、略最小/略最大であっても良い。
【0046】
また、マッハ・ツェンダ型強度変調器の場合、光位相変調器と比べて高調波成分が小さいために、図7では必要であった光フィルタ705で高調波成分を抑圧する必要がない。従って、低コスト化、低損失化を実現することができる。
【0047】
なお、上記の実施形態では、強度変調器として単一電極マッハ・ツェンダ型強度変調器を用いたが、二電極型マッハ・ツェンダ変調器を用いても良い。この場合、二電極型マッハ・ツェンダ変調器に印加する変調信号の振幅を半分にできるため、変調電圧調整部703において高出力増幅器が不要となり、更に低コスト化・小型化を図ることができる。また、変調器出力光パルスのチャープを低減できるため、光スペクトル広がりを抑圧することができる。
【0048】
(第4の実施の形態)
本発明の第4の実施の形態に係る光送信装置について図面を用いて詳細に説明する。この実施の形態は、第3の実施の形態を波長多重伝送に適用した光送信装置である。
【0049】
図12は、本発明の第4の実施の形態に係る光送信装置2の構成を説明するための図である。尚、図9と同一部分には同一符号を付し、その説明を省略する。
図12は、図9に示す光送信装置1から光フィルタ105を除いた構成である光送信部1201をn(nは自然数)個備えている。n個の光送信部1201内の半導体レーザ111は、互いに異なる光周波数で発振する。
【0050】
各光送信部1201からは図4に示す光スペクトルおよび光波形を有する光信号が出力される。ただし、光スペクトルの中心周波数は各光送信部1201で互いに異なっている。
【0051】
各光送信部1201から出力された光信号は、光合波器1202の各入力ポートへ入力される。光合波器1202の各入力ポートから出力ポートへの透過特性は、隣接するチャンネルとの干渉を抑圧するような光フィルタリング特性を有している。この光フィルタリング特性の透過中心周波数は、各光送信部1201内に実装されている半導体レーザ111の発振周波数と概ね一致している。
【0052】
このように波長多重方式においては、光合波器の透過波長特性により光スペクトルの狭窄化を図ることにより、各光送信装置に必要であった狭帯域光フィルタ105を省くことができるため、光送信装置全体としてのコストを低減することが可能となる。
【0053】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【0054】
【発明の効果】
以上説明したように、本発明によれば、変調スペクトルが非常に狭く、かつ伝送路中の非線形効果に対する耐力のある光送信装置が実現できるので、超高速伝送システムにおいても高密度波長多重が可能となるため、限られた波長資源の有効活用が可能となり、システムのトータルコストを削減できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る光送信装置の構成を示す図。
【図2】本発明の第1の実施形態における光キャリア発生部からの出力を示す図。
【図3】本発明の第1の実施形態における光位相変調器103から出力される光信号を示す図。
【図4】本発明の第1の実施形態におけるマッハ・ツェンダ干渉計104から出力される光信号を示す図。
【図5】本発明の第1の実施形態における狭帯域光フィルタ105から出力される光信号を示す図。
【図6】本発明の第1の実施形態における光送信装置の非線形耐力を説明する図。
【図7】本発明の第2の実施形態に係る光送信装置の構成を示す図。
【図8】本発明の第2の実施形態における光キャリア発生部を説明する図。
【図9】本発明の第3の実施形態に係る光送信装置の構成を示す図。
【図10】マッハ・ツェンダ型光強度変調器の印加電圧と変調電圧に対する透過特性を示す図。
【図11】本発明の第3の実施形態における光キャリア発生部を説明する図。
【図12】本発明の第4の実施形態に係る光送信装置の構成を示す図。
【図13】DPCS−RZ変調方式における光スペクトルを説明する図。
【図14】本発明の原理を説明するための図。
【符号の説明】
1,2…光送信装置、100…光キャリア発生部、101,701…信号入力端子、102…符号変換部、103,704…光位相変調器、104…マッハ・ツェンダ干渉計、105,705…光狭帯域フィルタ、111,112…半導体レーザ、120…光合波器、702…分周器、703…変調電圧調整部、901…バイアス制御部、902…マッハ・ツェンダ型光強度変調器、1201…光送信部、1202…光合波器。

Claims (8)

  1. 伝送すべきNRZ符号形式のデータ信号のクロック周波数に等しい周波数間隔の2本のキャリア成分を有する光信号を発生する光キャリア発生部と、
    入力された前記データ信号をNRZI符号に符号変換する符号変換手段と、
    前記光キャリア発生部から入力された光信号を前記符号変換手段により符号変換された信号で位相変調する位相変調手段と、
    この位相変調手段から出力された光信号から、前記光キャリア発生部にて発生された光信号のキャリア周波数成分を抑圧するマッハ・ツェンダ型干渉計と、
    このマッハ・ツェンダ型干渉計が出力した光信号から、前記2本のキャリアの周波数帯域を通す帯域光フィルタとを備えたことを特徴とする光送信装置。
  2. 前記光キャリア発生部は、
    互いに異なる光周波数を有する複数のレーザと、
    前記複数のレーザからの光を合波する光合波手段とを備えたことを特徴とする請求項1記載の光送信装置。
  3. 前記光キャリア発生部は、
    1つのキャリア成分を有する光信号を発生する光源と、
    前記データ信号のクロック周波数成分を二分周する分周手段と、
    入力された制御信号により制御され、前記分周手段で二分周された信号により前記光源から入力された光信号を位相変調する光源側位相変調手段と、
    この光源側位相変調手段から出力される光信号に含まれる前記光キャリア発生部にて発生された光信号のキャリア周波数成分を略最小とする前記制御信号を前記光源側位相変調手段へ出力する制御手段と、
    前記光源側位相変調手段から入力された光信号から高調波成分を抑圧する光フィルタとを具備することを特徴とする請求項1記載の光送信装置。
  4. 前記光キャリア発生部は、
    1つのキャリア成分を有する光信号を発生する光源と、
    前記データ信号のクロック周波数成分を二分周する分周手段と、
    この分周手段で二分周された信号により前記光源からの光信号を強度変調するマッハ・ツェンダ型強度変調手段と、
    このマッハ・ツェンダ型強度変調手段に印加するバイアス電圧を制御するバイアス制御手段とを具備し、
    このバイアス制御手段は、
    前記分周手段から二分周された信号のDC成分に相当する電圧が、前記マッハ・ツェンダ型強度変調手段の光透過特性の略最小もしくは略最大に対応するように制御することを特徴とする請求項1記載の光送信装置。
  5. 前記マッハ・ツェンダ型強度変調手段は、二電極型マッハ・ツェンダ強度変調器であることを特徴とする請求項4記載の光送信装置。
  6. 前記帯域光フィルタは、光合波器であることを特徴とする請求項1記載の光送信装置。
  7. 更に、前記データ信号から、前記データ信号のクロック周波数成分を抽出するクロック抽出手段を備えたことを特徴とする請求項4乃至6のいずれか1項に記載の光送信装置。
  8. 光キャリア発生部により、伝送すべきNRZ符号形式のデータ信号のクロック周波数に等しい周波数間隔の2本のキャリア成分を有する光信号を発生し、
    符号変換手段により、入力された前記データ信号をNRZI符号に符号変換し、
    位相変調手段により、前記光キャリア発生部から出力された光信号を前記符号変換手段により符号変換された信号で位相変調し、
    マッハ・ツェンダ型干渉計により、前記位相変調手段から入力された光信号から、前記光キャリア発生部にて発生された光信号のキャリア周波数成分を抑圧し、
    帯域光フィルタにより、前記マッハ・ツェンダ型干渉計が出力した光信号から、前記2本のキャリアの周波数帯域を通すことを特徴とする光送信方法。
JP2003065940A 2003-03-12 2003-03-12 光送信装置および光送信方法 Expired - Fee Related JP3761528B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065940A JP3761528B2 (ja) 2003-03-12 2003-03-12 光送信装置および光送信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003065940A JP3761528B2 (ja) 2003-03-12 2003-03-12 光送信装置および光送信方法

Publications (2)

Publication Number Publication Date
JP2004274643A true JP2004274643A (ja) 2004-09-30
JP3761528B2 JP3761528B2 (ja) 2006-03-29

Family

ID=33126782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065940A Expired - Fee Related JP3761528B2 (ja) 2003-03-12 2003-03-12 光送信装置および光送信方法

Country Status (1)

Country Link
JP (1) JP3761528B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148377A1 (ja) * 2006-06-19 2007-12-27 Fujitsu Limited 光信号処理装置
JP2010171524A (ja) * 2009-01-20 2010-08-05 Audio Technica Corp 赤外線送信機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148377A1 (ja) * 2006-06-19 2007-12-27 Fujitsu Limited 光信号処理装置
JPWO2007148377A1 (ja) * 2006-06-19 2009-11-12 富士通株式会社 光信号処理装置
JP4733745B2 (ja) * 2006-06-19 2011-07-27 富士通株式会社 光信号処理装置
US8190032B2 (en) 2006-06-19 2012-05-29 Fujitsu Limited Optical signal processing apparatus
JP2010171524A (ja) * 2009-01-20 2010-08-05 Audio Technica Corp 赤外線送信機

Also Published As

Publication number Publication date
JP3761528B2 (ja) 2006-03-29

Similar Documents

Publication Publication Date Title
US6763197B1 (en) Optical transmitter and optical transmitter control method using variable duty ratio setting and alternate phase inversion for optical clock pulses
US6882802B2 (en) Modulator and method of modulating optical carrier with clock signal before or after the carrier is modulated with data pulse
JP3984220B2 (ja) デュオバイナリ光伝送装置
EP1416654B1 (en) Duobinary optical transmission
EP1424795B1 (en) Optical transmission system using optical phase modulator
JP2004140833A (ja) 光伝送システム
US6868102B2 (en) CS-RZ optical clock signal generator, and a resynchronized optical multiplexer containing such a generator
US7305189B2 (en) Phase modulation for an optical transmission system
JP3761528B2 (ja) 光送信装置および光送信方法
US7379671B2 (en) Optical transmitter
JP3545673B2 (ja) 光通信装置、光送信器および光受信器
JP2001339346A (ja) 光送信器および光送信器制御方法
JP3845606B2 (ja) 光変調装置及び光変調方法
JP5385858B2 (ja) 光直交周波数分割多重光信号の生成方法及び生成装置
JP3819912B2 (ja) 光送信装置および光通信システム
US7319823B2 (en) Modulation scheme and transmission system for NRZ signals with left and right side filtering
JP2002164850A (ja) 光送信器及び光変調方法
US7426349B2 (en) Method of signal transmission in a WDM communication system
US20050041983A1 (en) Method of forming a coded optical signal with a return to zero or non return to zero format
EP1355435B1 (en) Phase modulation for an optical transmission system
WO2023175813A1 (ja) 光送信器、光送信装置、及び光送信方法
US7848660B1 (en) VSB transmitter using locked filter
JP2004104385A (ja) 光伝送システム、光送信装置及びこれらの方法
EP1473856B1 (en) Duobinary optical transmission apparatus
EP1411659A1 (en) Apparatus and method for regeneration of optical signals

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees