JP2004273388A - Cylindrical storage battery - Google Patents

Cylindrical storage battery Download PDF

Info

Publication number
JP2004273388A
JP2004273388A JP2003066266A JP2003066266A JP2004273388A JP 2004273388 A JP2004273388 A JP 2004273388A JP 2003066266 A JP2003066266 A JP 2003066266A JP 2003066266 A JP2003066266 A JP 2003066266A JP 2004273388 A JP2004273388 A JP 2004273388A
Authority
JP
Japan
Prior art keywords
separator
core space
battery
thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003066266A
Other languages
Japanese (ja)
Inventor
Teruhito Nagae
輝人 長江
Yasuhiro Kudo
康洋 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003066266A priority Critical patent/JP2004273388A/en
Publication of JP2004273388A publication Critical patent/JP2004273388A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical storage battery with safety improved through securing a gas channel even if the temperature of the battery rises abnormally. <P>SOLUTION: The cylindrical storage battery is provided with a spiral-shaped electrode group having a winding core space part 10a remaining after winding cores used in forming the spiral-shaped electrode group at a center part are removed, and is characterised in that the METSUKE (weight per area) of separators 11a (12a, 13a, 14a, 15a, 16a) arranged at the winding core space part 10a is smaller than that of separators arranged at an electrode facing part. Thus, if the METSUKE of the separators arranged at the winding core space part 10a is small, the fiber volume existing there 10a can be reduced. With this, when an abnormal heat is generated before the separators are molten, it becomes hard for a gas exhaust port fitted at a sealing body to be choked, and the time needed for choking can be elongated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池あるいはリチウムイオン電池などの非水電解質電池に係り、特に、正極と負極との間にセパレータを介在させて渦巻状に巻回した渦巻状電極群を円筒形外装缶内に備えた円筒形蓄電池に関する。
【0002】
【従来の技術】
一般に、ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池などのアルカリ蓄電池あるいはリチウムイオン電池などの非水電解質電池は、正極と負極の間にセパレータを介在させ、これらを渦巻状に巻回して電極群を形成した後に上下端に集電体を接続して電極体を形成する。この電極体を円筒状の金属製外装缶(電池缶)に収納し、正極用集電体より延出する集電リード板を封口体下面に溶接し、電解液を注入した後、外装缶の開口部に絶縁ガスケットを介在させて封口体を装着することにより密閉して構成されている。
【0003】
このような電池に用いられるセパレータにおいては、耐酸化性に優れ、かつ電解液に対する耐性に優れるとともに、充分な量の電解液を保持でき、電解液を保持した状態で充分なガス透過性を有することが要望されている。このようなセパレータに用いられる材質としては、ナイロンなどのポリアミド系繊維や、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂繊維が使用されている。
【0004】
【発明が解決しようとする課題】
ところで、ポリアミド系樹脂繊維やポリオレフィン系樹脂繊維は80〜120℃付近に軟化点を有している。このため、過充電時やハイレートの放電時、あるいは誤使用等によって、電池内部の温度がこの軟化点を超える温度まで上昇すると、ポリアミド系樹脂繊維やポリオレフィン系樹脂繊維からなるセパレータの軟化が始まる。セパレータが軟化した後、冷えて固化すると、固化した部分の開孔は閉塞されることとなる。すると、電池内でガスが発生すると、発生したガスの通路が閉塞されて、電池膨れが生じるという問題を生じた。
【0005】
また、セパレータが軟化し、さらに電池内部温度が上昇して、セパレータの融点まで温度上昇すると、溶融した樹脂が電池内の空間部に沿って、即ち、渦巻状に巻回された電極群の中心部(電池内で空間部が形成されている部分)に沿って這い上がるようになる。すると、外装缶(電池缶)の開口部を封止する封口体に設けられたガスの排気口を溶融した樹脂が塞ぐ事態も生じて、電池の内部圧力が異常に上昇し、電池缶の膨れ等の電池の変形も生じるようになる。
【0006】
そこで、本発明は上記問題点を解消するためになされたものであって、電池の温度が異常に上昇しても、ガス通路を確保できるようにして安全性が向上した円筒形蓄電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の円筒形蓄電池は、中心部に渦巻状電極群を形成する際に用いられた巻芯が除去された後に残存した巻芯空間部を有する渦巻状電極群を備え、かつ巻芯空間部に配置されたセパレータの目付は電極対向部に配置されたセパレータの目付よりも小さいことを特徴とする。
【0008】
このように、巻芯空間部に配置されたセパレータの目付が電極対向部に配置されたセパレータの目付よりも小さいと、巻芯空間部に存在する繊維量を少なくすることが可能となる。これにより、セパレータが溶融するまでの異常発熱が発生した場合、封口体に設けられているガス排気口が閉塞されにくくなるとともに、閉塞されるまでの時間を長くすることが可能となる。これにより、この種のセパレータを用いた電池の安全性が向上することとなる。この場合、電極対向部に配置されたセパレータの目付も低減すると、繊維量が低減した分だけ電解液の保持量が低減するようになる。この結果、電池特性を維持することができなくなるとともに、耐ショート性も低下するという不具合も発生するようになるので好ましくない。
【0009】
また、巻芯空間部に配置されたセパレータの厚みを電極対向部に配置されたセパレータの厚みよりも薄くすると、巻芯空間部の空間容積が増加するようになるので、缶底側から電池上部への排気通路を大きくすることが可能となる。これにより、セパレータが溶融するには至らないが、高率(ハイレート)で連続的に充電された電池内部において多量のガスが発生するような異常が発生した場合に、電池内部のガスは缶底側に滞留することなく安全弁に到達するできるようになる。この結果、電池の温度が異常に上昇した場合の安全性を向上させることが可能となる。
【0010】
この場合も、電極対向部に配置されたセパレータの厚みも薄くすると、この部分のセパレータの見かけ密度も減少して、電解液の保持量が低減して電池特性を維持することができなくなるので好ましくない。なお、巻芯空間部の空間容積が増加すると、この巻芯空間に溶接電極を挿入して集電タブと缶底とを溶接する場合においては、缶底での溶接性が向上するので好ましい。
【0011】
また、巻芯空間部に配置されたセパレータの目付および厚みを電極対向部に配置されたセパレータの目付および厚みよりも小さくすると、巻芯空間部に存在する繊維量を少なくすることが可能になるとともに、巻芯空間部の空間容積を増加させることが可能となる。これにより、封口体に設けられているガス排気口が閉塞されにくくなるとともに、缶底側から電池上部への排気通路を大きくすることが可能となり、さらに、巻芯空間部に溶接電極を容易に挿入することが可能となるので、缶底での溶接性が向上する。
【0012】
さらに、巻芯空間部に配置されたセパレータが電極対向部に配置されたセパレータの目付よりも小さく、かつ厚みも薄くなるように二重化(2枚のセパレータを貼り合わせること)されていると、巻芯空間部に存在する繊維量が少なくなるとともに、巻芯空間部の空間容積も大きくなる。これにより、封口体に設けられているガス排気口が閉塞されにくくなるとともに、缶底側から電池上部への排気通路も大きくなるため、この種のセパレータを用いた電池の安全性がさらに向上することとなる。
【0013】
【発明の実施の形態】
以下に、本発明をニッケル−水素蓄電池に適用した場合の実施の形態を図1および図2に基づいて説明する。なお、図1はセパレータの断面を模式的に示す断面図である。また、図2は図1のセパレータを用いて形成された渦巻状電極群を外装缶内に収容した状態の横断面を模式的に示す断面図である。
【0014】
1.セパレータの作製
(1)実施例1
ポリエチレン繊維(PE:融点は138℃)とポリプロピレン繊維(PP:融点は160℃)を所定の配合比率となるように配合した。ついで、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した後、圧延して目付が40g/mで、厚みが0.10mmの第1基布11aを作製した。また、上述と同様に湿式抄紙した後、圧延して、目付が20g/mで、厚みが0.05mmの第2基布11bを作製した。ついで、第1基布11aの上に第2基布11bを配置して、これらを張り合わせた。このとき、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に第1基布11aのみが配置されるように張り合わせた(二重化した)後、親水化処理して、図1(a)に示すような実施例1のセパレータ11を作製した。
【0015】
(2)実施例2
海成分がポリエチレンテレフタレート(PET)で、島成分がポリプロピレン(PP)からなる海島型繊維を所定の配合比率となるように配合した後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した。ついで、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に配置される部分12aの海成分(PET)をアルカリにて溶脱した。この後、圧延し、親水化処理して、巻芯空間部10aに配置される部分12aの目付が40g/mで、その他の部分の目付が60g/mで、厚みが0.15mmの実施例2のセパレータ12を、図1(b)に示すように作製した。
【0016】
(3)実施例3
海成分がポリアミドで、島成分がポリプロピレン(PP)からなる海島型繊維を所定の配合比率となるように配合した後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した。ついで、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に配置される部分13aの海成分(ポリアミド)をアルカリにて溶脱した。この後、圧延し、親水化処理して、巻芯空間部10aに配置される部分13aの目付が40g/mで、その他の部分の目付が60g/mで、厚みが0.15mmの実施例3のセパレータ13を、図1(c)に示すように作製した。
【0017】
(4)実施例4
ポリエチレン繊維(PE:融点は138℃)とポリプロピレン繊維(PP:融点は160℃)を所定の配合比率となるように配合した。この後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した後、圧延して目付が60g/mで、厚みが0.15mmの基布を作製した。ついで、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に配置される部分14aを凹凸があるローラで圧延して、この部分14aの厚みが0.12mmになるように圧延した。この後、親水化処理して、図1(d)に示すような実施例4のセパレータ14を作製した。
【0018】
(5)実施例5
ポリエチレン繊維(PE:融点は138℃)とポリプロピレン繊維(PP:融点は160℃)を所定の配合比率となるように配合した。この後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した後、圧延して目付が60g/mで、厚みが0.15mmの基布を作製した。ついで、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に配置される部分15aのみに熱を加えて加圧して、この部分15aの厚みを0.12mmに低減させた。この後、親水化処理して、図1(e)に示すような実施例5のセパレータ15を作製した。
【0019】
(6)実施例6
海成分がポリエチレンテレフタレート(PET)で、島成分がポリプロピレン(PP)からなる海島型繊維を所定の配合比率となるように配合した後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した。ついで、後に正、負極とともに渦巻状に巻回された際に、巻芯空間部10a(図2参照)に配置される部分16aの海成分(PET)をアルカリにて溶脱した。この後、圧延して、巻芯空間部10aに配置される部分16aの目付が40g/mで、その他の部分の目付が60g/mで、厚みが0.15mmの基布を作製した。ついで、この基布の巻芯空間部10aに配置される部分16aを凹凸があるローラで圧延して、この部分16aの厚みを0.12mmに圧延した。この後、親水化処理して、図1(f)に示すような実施例6のセパレータ16を作製した。
【0020】
(7)比較例1
海成分がポリアミドで、島成分がポリプロピレン(PP)からなる海島型繊維を所定の配合比率となるように配合した後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙して基布とした。ついで、この基布の海成分(ポリアミド)をアルカリにて溶脱した。この後、圧延した後、親水化処理して、目付が40g/mで、厚みが0.10mmの比較例1のセパレータ17を、図1(g)に示すように作製した。
【0021】
(8)比較例2
ポリエチレン繊維(PE:融点は138℃)とポリプロピレン繊維(PP:融点は160℃)を所定の配合比率となるように配合した。この後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙した後、圧延して目付が60g/mで厚みが0.15mmの基布を作製した。ついで、この基布を凹凸があるローラで加圧して、厚みを0.12mmに圧延した。この後、親水化処理して、目付が40g/mで、厚みが0.10mmの比較例2のセパレータ18を、図1(h)に示すように作製した。
【0022】
(9)比較例3
ポリエチレン繊維(PE:融点は138℃)とポリプロピレン繊維(PP:融点は160℃)を所定の配合比率となるように配合した。この後、これらの繊維を空気中に飛散させて金網で捕集して湿式抄紙し、圧延した後、親水化処理して、目付が60g/mで、厚みが0.15mmの比較例3のセパレータ19を、図1(i)に示すように作製した。
【0023】
2.ニッケル正極の作製
水酸化ニッケルを主成分とする正極活物質粉末100質量部と、0.2質量%のヒドロキシプロピルセルロースを溶解させた水溶液50質量部とを混合して正極活物質スラリーを調製した。この正極活物質スラリーを多孔度95%の発泡ニッケル21に充填し、乾燥させた後、これを圧延してニッケル正極20を作製した。なお、電池の公称容量が1500mAhになるように正極活物質スラリーを発泡ニッケル21に充填した。
【0024】
3.水素吸蔵合金負極の作製
水素吸蔵合金粉末にポリテトラフルオロエチレン(PTFE)などの結着剤と、適量の水とを加えて混合し、水素吸蔵合金ペーストを調製した。ついで、この水素吸蔵合金ペーストを負極基板(パンチングメタル)31の両面に塗布し、乾燥した後、所定の厚みとなるようにプレスして水素吸蔵合金負極30を作製した。なお、電極容量が2250mAhになるように水素吸蔵合金ペーストをパンチングメタル31に充填した。
【0025】
4.ニッケル−水素蓄電池の作製
ついで、上述のように作製したニッケル正極20の上に、上述のように作製した各セパレータ11(12,13,14,15,16,17,18,19)を配置した。また、上述のように作製した水素吸蔵合金負極30の上に、各セパレータ11(12,13,14,15,16,17,18,19)を配置した。ついで、これらを重ね合わせた後、2枚のセパレータ11(12,13,14,15,16,17,18,19)の端部11a(12a,13a,14a,15a,16a,17a,18a,19a)を図示しない巻芯のスリット部に狭持した。
【0026】
ついで、巻芯を所定の回数だけ巻回して、ニッケル正極20、セパレータ11(12,13,14,15,16,17,18,19)、水素吸蔵合金負極30およびセパレータ11(12,13,14,15,16,17,18,19)を渦巻き状に巻き取った。この後、巻芯を引き抜くことにより渦巻状電極群10を作製した。この場合、巻芯を引き抜くことにより渦巻状電極群10の中心部に巻芯空間部10aが形成されることとなる。ついで、これらの電極群10の上端部に正極集電体(図示せず)を溶接し、下端部に負極集電体(図示せず)を溶接した後、これらを有底筒状の外装缶40内にそれぞれ挿入した。
【0027】
この後、負極集電体を外装缶40の内底面に溶接するとともに、正極集電体から延出する集電リード板の先端部を安全弁を内蔵する封口体(図示せず)の底面に溶接し、外装缶40内に所定量の電解液(水酸化カリウム(KOH)と水酸化リチウム(LiOH)と水酸化ナトリウム(NaOH)の混合水溶液)を注入した。ついで、封口体を外装缶40の開口部に絶縁ガスケットを介して載置し、外装缶40の開口部の端部を内方にかしめることによって電池を密閉して、公称容量1500mAhのAAサイズの各ニッケル−水素蓄電池A〜FおよびX〜Zを作製した。
【0028】
なお、セパレータ11を用いたものを電池Aとし、セパレータ12を用いたものを電池Bとし、セパレータ13を用いたものを電池Cとし、セパレータ14を用いたものを電池Dとし、セパレータ15を用いたものを電池Eとし、セパレータ16を用いたものを電池Fとし、セパレータ17を用いたものを電池Xとし、セパレータ18を用いたものを電池Yとし、セパレータ19を用いたものを電池Zとした。
【0029】
5.試験
(1)短絡試験
各10000個の電極群をそれぞれ外装缶40内に挿入した状態で、正、負極間の絶縁抵抗を測定して、この抵抗値が1.5kΩ以下を短絡と判定して、短絡が発生した電池の個数を求めた。ついで、求めた短絡発生個数に基づいて短絡発生率(%)を算出すると、下記の表1に示すような結果が得られた。
【0030】
(2)缶底溶接性試験
各10000個の電極群を外装缶40内に挿入した状態で、それぞれの負極集電体をそれぞれの外装缶40の内底面に溶接した際に、溶接不良が発生した個数を求めた。ついで、求めた溶接不良発生個数に基づいて溶接不良発生率(%)を算出すると、下記の表1に示すような結果が得られた。
【0031】
(3)ガスバーナー燃焼による安全性試験
まず、上述のようにして作製した各ニッケル−水素蓄電池A〜FおよびX〜Zを用いて、これらの各電池を、25℃の温度雰囲気で、120mAの充電電流で16時間充電した後、1時間休止し、240mAの放電電流で放電終止電圧が1.0Vになるまで放電した後、1時間休止する。この充放電を3回繰り返して各電池A〜FおよびX〜Zを活性化した。
【0032】
ついで、上述のように活性化した各ニッケル−水素蓄電池A〜FおよびX〜Zをそれぞれ10000個ずつ用いて、25℃の温度雰囲気で1500mAの充電電流で充電を行い、満充電に達した後、電池電圧が10mV低下(−ΔV=10mV)した時点で充電を1時間休止させた。この後、ガスバーナーを燃焼させ、電池温度を250℃に上昇させて、封口体が外れた電池の個数の割合(封口体外れ率)を求めると、下記の表1に示すような結果となった。
【0033】
(4)高率充電時の安全性試験
また、上述のように活性化した各ニッケル−水素蓄電池A〜FおよびX〜Zをそれぞれ10000個ずつ用いて、25℃の温度雰囲気で6000mAの充電電流で短絡が発生するまで充電を行い、短絡が発生した時点で封口体が外れた電池の個数の割合(封口体外れ発生率)を求めると、下記の表1に示すような結果となった。
【0034】
(5)サイクル寿命試験
上述のようにして活性化した各ニッケル−水素蓄電池A〜FおよびX〜Zをそれぞれ10000個ずつ用いて、25℃の温度雰囲気で1500mAの充電電流で充電し、満充電に達した後、電池電圧が10mV低下(−ΔV=10mV)した時点で充電を1時間休止させる。ついで、1500mAの放電電流で電池電圧が1.0Vになるまで放電させるという充放電サイクルを繰り返して行い、初期容量との比率が60%に達したサイクル(回)をサイクル寿命として求めると、下記の表1に示すような結果となった。
【0035】
【表1】

Figure 2004273388
【0036】
上記表1の結果から明らかなように、目付(60g/m)および厚み(0.15mm)が均一なセパレータ19を用いた電池Zにおいては、缶底溶接不良発生率が0.10%で、ガスバーナー燃焼時の封口体外れ率が15%で、6A高率充電時の封口体外れ率が10%と大きいことが分かる。これは、巻芯空間部10aに存在するセパレータ19aの厚みが0.15mmと大きいために、巻芯空間部10aの容積が減少して溶接電極を巻芯空間部10aに挿入する際に、巻芯空間部10aに存在するセパレータ19aが邪魔になったためと考えられる。
また、巻芯空間部10aに存在するセパレータ19aの目付が60g/mと大きいために、巻芯空間部10aに存在する繊維量が多くなる。これにより、ガスバーナー燃焼時や高率充電時に、セパレータ19が溶融するまでの異常発熱が発生した場合、溶融した繊維が封口体に設けられているガス排気口を閉塞して、封口体外れが生じたと考えられる。
【0037】
また、目付(60g/m)および厚み(0.12mm)が均一なセパレータ18を用いた電池Yにおいては、ガスバーナー燃焼時の封口体外れ率が15%と大きく、サイクル寿命が400サイクルと小さいことが分かる。これは、巻芯空間部10aに存在するセパレータ18aの目付が60g/mと大きいために、巻芯空間部10aに存在する繊維量が多くなる。これにより、ガスバーナー燃焼時にセパレータ18が溶融するまでの異常発熱が発生した場合、溶融した繊維が封口体に設けられているガス排気口を閉塞して、封口体外れが生じたと考えられる。また、電極対向部のセパレータ18の厚みが0.12mmと小さいために、電解液の保持量が少なくなって、サイクル寿命が小さくなったと考えられる。
【0038】
さらに、目付(40g/m)および厚み(0.10mm)が均一なセパレータ17を用いた電池Xにおいては、短絡発生率が0.10%と大きく、かつサイクル寿命も400サイクルと小さいことが分かる。これは、セパレータ17の目付は40g/mと小さく、かつ厚みが0.12mmと小さいために、正極と負極が直接接触しやすくなったためと考えられる。また、電極対向部のセパレータ17の目付は40g/mと小さく、かつ厚みが0.12mmと小さいために、電解液の保持量が少なくなって、サイクル寿命が小さくなったと考えられる。
【0039】
これに対して、巻芯空間部10aの厚みが0.12mmのセパレータ14,15を用いた電池D,Eにおいては、ガスバーナー燃焼時の封口体外れ率が15%と大きい反面、短絡発生率は0.02%で、缶底溶接不良発生率は0.03%で、6A高率充電時の封口体外れ率は3%と小さく、サイクル寿命は500サイクルと大きいことが分かる。これは、巻芯空間部10aに配置されたセパレータ14a,15aに圧延処理が施されて厚みが薄くなっているので、巻芯空間部の空間容積が増加するようになる。
【0040】
この結果、缶底側から電池上部への排気通路を大きくすることが可能となり、セパレータ14,15が溶融するには至らないが、高率(ハイレート)で連続的に充電された電池内部において多量のガスが発生するような異常が発生した場合に、電池内部のガスは缶底側に滞留することなく安全弁に到達するできるようになったためと考えられる。
【0041】
これにより、電池の温度が異常に上昇した場合の安全性を向上させることが可能となるが、巻芯空間部10a以外の電極対向部分のセパレータ14,15も圧延処理すると、この部分のセパレータの見かけ密度も減少して、電解液の保持量が低減して電池特性を維持することができなくなるので好ましくない。この場合、巻芯空間部10aの空間容積が増加するので、この巻芯空間部10aに溶接棒を挿入して集電タブと缶底とを溶接する場合の溶接性が向上する。
【0042】
また、巻芯空間部10aの目付が40g/mのセパレータ12,13を用いた電池B,Cにおいては、缶底溶接不良発生率は0.10%と大きい反面、短絡発生率は0.02%で、ガスバーナー燃焼時の封口体外れ率が4%で、6A高率充電時の封口体外れ率は3%と小さく、サイクル寿命は500サイクルと大きいことが分かる。これは、巻芯空間部10aに配置されたセパレータ12a,13aに目付低減処理が施されているので、巻芯空間部10aに存在する繊維量を少なくすることが可能となる。
【0043】
これにより、セパレータ14a,15aが溶融するまでの異常発熱が発生しても、封口体に設けられているガス排気口が閉塞されにくくなったためと考えられる。この場合、巻芯空間部10a以外の電極対向部のセパレータ14,15の目付も低減すると、繊維量が低減した分だけ電解液の保持量が低減して電池特性を維持することができなくなるとともに、耐ショート性も低下するという不具合も発生するようになるので好ましくない。
【0044】
また、巻芯空間部10aの目付が40g/mで厚みが0.12mmのセパレータ16を用いた電池Fにおいては、短絡発生率は0.02%で、缶底溶接不良発生率は0.03%で、ガスバーナー燃焼時の封口体外れ率は2%で、6A高率充電時の封口体外れ率は2%と小さく、サイクル寿命は500サイクルと大きいことが分かる。これは、巻芯空間部10aに配置されたセパレータ16aは目付低減処理が施されているとともに圧延処理が施されているので、巻芯空間部10aに存在する繊維量を少なくすることが可能になるとともに、巻芯空間部10aの空間容積も増加するようになる。これにより、封口体に設けられているガス排気口が閉塞されにくくなるとともに、缶底側から電池上部への排気通路も大きくなったためと考えられる。
【0045】
さらに、巻芯空間部10aに目付が40g/mで厚みが0.10mmの第1基布11aのみが存在するようにした貼り合わせセパレータ11を用いた電池Aにおいては、短絡発生率は0.02%で、缶底溶接不良発生率は0.01%で、ガスバーナー燃焼時の封口体外れ率は1%で、6A高率充電時の封口体外れ率は1%と小さく、サイクル寿命は500サイクルと大きいことが分かる。これは、巻芯空間部10aに配置されたセパレータ11aは目付が小さく、かつ厚みも薄いために、巻芯空間部10aに存在する繊維量は少なく、かつ巻芯空間部10aの空間容積も大きい。これにより、封口体に設けられているガス排気口が閉塞されにくくなるとともに、缶底側から電池上部への排気通路も大きくなったためと考えられる。
【0046】
【発明の効果】
上述のように、本発明においては、巻芯空間部10aに配置されたセパレータの目付が小さいか、厚みが薄いか、あるいは目付が小さくかつ厚みが薄く形成されているので、巻芯空間部10aに存在する繊維量を少なくすることが可能となったり、あるいは巻芯空間部10aの空間容積を増大させたり、さらに巻芯空間部10aでの繊維量が少なくかつ空間容積を増大させることが可能となる。これにより、セパレータが溶融するまでの異常発熱が発生した場合、封口体に設けられているガス排気口が閉塞されにくくなるとともに、閉塞されるまでの時間を長くすることが可能となる。また、缶底側から電池上部への排気通路も大きくなる。これにより、この種のセパレータを用いた電池の安全性が向上することとなる。さらに、巻芯空間部10aの空間容積が増加するので、溶接棒を容易に挿入することができるようになるので、缶底での溶接性が向上する。
【0047】
なお、上述した実施形態においては、本発明の好ましい例としてニッケル−水素蓄電池に適用する例について説明したが、本発明はニッケル−水素蓄電池に限らず、ニッケル−カドミウム蓄電池などの他のアルカリ蓄電池、あるいはリチウムイオン電池などの非水電解質電池に適用できることは明らかである。さらに、上述した実施形態においては、本発明を円筒型の蓄電池に適用した例について説明したが、本発明はこれに限らず、巻回電極群を備える各種の形状の蓄電池に本発明を適用できることもいうまでもない。
【図面の簡単な説明】
【図1】セパレータの断面を模式的に示す断面図である。
【図2】図1のセパレータを用いて形成された渦巻状電極群を外装缶内に収容した状態の横断面を模式的に示す断面図である。
【符号の説明】
10…渦巻状電極群、10a…巻芯空間部、11,12,13,14,15,16,17,18,19…セパレータ、11a…第1基布、12a…第2基布、13a,14a,15a,16a,17a,18a,19a…巻芯空間部に配置されるセパレータ、20…ニッケル正極、21…発泡ニッケル、30…水素吸蔵合金負極、31…負極基板(パンチングメタル)、40…外装缶(電池缶)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nickel-hydrogen storage battery, a non-aqueous electrolyte battery such as an alkaline storage battery such as a nickel-cadmium storage battery or a lithium ion battery, and particularly, spirally wound with a separator interposed between a positive electrode and a negative electrode. The present invention relates to a cylindrical storage battery provided with a spiral electrode group in a cylindrical outer can.
[0002]
[Prior art]
In general, alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries or non-aqueous electrolyte batteries such as lithium-ion batteries have a separator interposed between a positive electrode and a negative electrode, and these are spirally wound to form an electrode group. After that, a current collector is connected to the upper and lower ends to form an electrode body. The electrode body is housed in a cylindrical metal outer can (battery can), a current collecting lead plate extending from the positive electrode current collector is welded to the lower surface of the sealing body, and an electrolyte is injected. It is hermetically sealed by mounting a sealing body with an insulating gasket interposed in the opening.
[0003]
The separator used in such a battery has excellent oxidation resistance, and is excellent in resistance to an electrolytic solution, can hold a sufficient amount of the electrolytic solution, and has sufficient gas permeability in a state in which the electrolytic solution is held. It is desired. As a material used for such a separator, polyamide fibers such as nylon and polyolefin resin fibers such as polypropylene and polyethylene are used.
[0004]
[Problems to be solved by the invention]
By the way, polyamide resin fibers and polyolefin resin fibers have a softening point at around 80 to 120 ° C. For this reason, when the temperature inside the battery rises to a temperature exceeding this softening point due to overcharging, high-rate discharging, misuse, or the like, the softening of the separator made of polyamide resin fibers or polyolefin resin fibers starts. When the separator softens and then cools and solidifies, the opening in the solidified portion is closed. Then, when gas is generated in the battery, the passage of the generated gas is closed, and there is a problem that the battery swells.
[0005]
Also, when the separator softens and the temperature inside the battery rises to the melting point of the separator, the melted resin flows along the space inside the battery, that is, the center of the spirally wound electrode group. Crawling along the portion (the portion where the space is formed in the battery). Then, a situation occurs in which the molten resin blocks the gas exhaust port provided in the sealing body that seals the opening of the outer can (battery can), and the internal pressure of the battery rises abnormally, causing the battery can to swell. And the like.
[0006]
Therefore, the present invention has been made to solve the above problems, and provides a cylindrical storage battery having improved safety by securing a gas passage even when the temperature of the battery abnormally rises. The purpose is to:
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the cylindrical storage battery of the present invention includes a spiral electrode group having a core space remaining after the core used in forming the spiral electrode group in the center is removed. It is characterized in that the basis weight of the separator provided and arranged in the core space is smaller than the basis weight of the separator arranged in the electrode facing part.
[0008]
As described above, when the basis weight of the separator disposed in the core space is smaller than the basis weight of the separator disposed in the electrode facing portion, the amount of fibers existing in the core space can be reduced. Accordingly, when abnormal heat generation occurs until the separator is melted, the gas exhaust port provided in the sealing body is less likely to be closed, and the time until the gas outlet is closed can be lengthened. Thereby, the safety of the battery using this kind of separator is improved. In this case, if the basis weight of the separator disposed at the electrode facing portion is also reduced, the amount of retained electrolyte is reduced by the amount of the reduced fiber amount. As a result, the battery characteristics cannot be maintained, and the short-circuit resistance also deteriorates, which is not preferable.
[0009]
Also, if the thickness of the separator arranged in the core space is made thinner than the thickness of the separator arranged in the electrode facing part, the space volume of the core space will increase, so that the top of the battery from the bottom of the can It is possible to enlarge the exhaust passage to the air. As a result, if the separator does not melt, but an abnormality occurs such that a large amount of gas is generated inside the battery continuously charged at a high rate (high rate), the gas inside the battery is removed from the bottom of the can. The safety valve can be reached without stagnation on the side. As a result, it is possible to improve safety when the temperature of the battery abnormally rises.
[0010]
Also in this case, if the thickness of the separator disposed in the electrode facing portion is also reduced, the apparent density of the separator in this portion is also reduced, and the amount of the electrolyte held is reduced, and the battery characteristics cannot be maintained. Absent. In addition, when the space volume of the core space is increased, when the current collecting tab and the can bottom are welded by inserting a welding electrode into the core space, weldability at the can bottom is improved, which is preferable.
[0011]
When the basis weight and the thickness of the separator arranged in the core space are smaller than the basis weight and the thickness of the separator arranged in the electrode facing part, the amount of fibers present in the core space can be reduced. At the same time, the space volume of the core space can be increased. This makes it difficult for the gas exhaust port provided in the sealing body to be closed, and makes it possible to enlarge the exhaust passage from the bottom of the can to the upper part of the battery. Further, the welding electrode can be easily provided in the core space. Since it becomes possible to insert, the weldability at the bottom of the can is improved.
[0012]
Furthermore, if the separator arranged in the core space is smaller than the basis weight of the separator arranged in the electrode facing part and is made thinner so that the thickness becomes thinner (the two separators are bonded together), As the amount of fibers existing in the core space decreases, the volume of the core space also increases. As a result, the gas exhaust port provided in the sealing body is less likely to be blocked, and the exhaust passage from the bottom of the can to the upper part of the battery is increased, so that the safety of the battery using this type of separator is further improved. It will be.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment in which the present invention is applied to a nickel-hydrogen storage battery will be described below with reference to FIGS. FIG. 1 is a cross-sectional view schematically showing a cross section of the separator. FIG. 2 is a cross-sectional view schematically showing a cross section in a state where a spiral electrode group formed using the separator of FIG. 1 is housed in an outer can.
[0014]
1. Production of separator
(1) Example 1
Polyethylene fiber (PE: melting point: 138 ° C.) and polypropylene fiber (PP: melting point: 160 ° C.) were blended at a predetermined blending ratio. Next, these fibers are scattered in the air, collected by a wire mesh, wet-laid, and then rolled to have a basis weight of 40 g / m2. 2 Thus, a first base cloth 11a having a thickness of 0.10 mm was produced. Further, after the wet papermaking is performed in the same manner as described above, the paper is rolled to have a basis weight of 20 g / m 2 Thus, a second base cloth 11b having a thickness of 0.05 mm was produced. Next, the second base cloth 11b was arranged on the first base cloth 11a, and these were attached to each other. At this time, after being wound together with the positive and negative electrodes in a spiral shape, the first base cloth 11a is laminated (duplexed) so that only the first base cloth 11a is disposed in the core space 10a (see FIG. 2). The separator 11 of Example 1 as shown in FIG.
[0015]
(2) Example 2
After blending sea-island type fibers having a sea component of polyethylene terephthalate (PET) and an island component of polypropylene (PP) at a predetermined blending ratio, these fibers are scattered in the air and collected by a wire mesh. And wet papermaking. Then, when the spiral was wound together with the positive and negative electrodes later, the sea component (PET) of the portion 12a disposed in the core space 10a (see FIG. 2) was leached with alkali. Thereafter, the core is rolled and subjected to a hydrophilic treatment, and the basis weight of the portion 12a arranged in the core space 10a is 40 g / m2. 2 And the basis weight of other parts is 60 g / m 2 Then, the separator 12 of Example 2 having a thickness of 0.15 mm was produced as shown in FIG.
[0016]
(3) Example 3
After blending sea-island type fibers having a sea component of polyamide and an island component of polypropylene (PP) so as to have a predetermined blending ratio, these fibers were scattered in the air, collected by a wire mesh, and wet-laid. . Subsequently, when the spiral was wound together with the positive and negative electrodes later, the sea component (polyamide) in the portion 13a disposed in the core space 10a (see FIG. 2) was leached with alkali. Thereafter, rolling and hydrophilization treatment are performed, and the weight of the portion 13a arranged in the core space 10a is 40 g / m2. 2 And the basis weight of other parts is 60 g / m 2 Then, the separator 13 of Example 3 having a thickness of 0.15 mm was produced as shown in FIG.
[0017]
(4) Example 4
Polyethylene fiber (PE: melting point: 138 ° C.) and polypropylene fiber (PP: melting point: 160 ° C.) were blended at a predetermined blending ratio. Thereafter, these fibers are scattered in the air, collected by a wire mesh, wet-laid, and then rolled to have a basis weight of 60 g / m2. 2 Thus, a base cloth having a thickness of 0.15 mm was produced. Then, when subsequently wound in a spiral shape together with the positive and negative electrodes, the portion 14a disposed in the core space 10a (see FIG. 2) is rolled by a roller having irregularities so that the thickness of the portion 14a is reduced to zero. .12 mm. Thereafter, a hydrophilic treatment was performed to produce a separator 14 of Example 4 as shown in FIG.
[0018]
(5) Example 5
Polyethylene fiber (PE: melting point: 138 ° C.) and polypropylene fiber (PP: melting point: 160 ° C.) were blended at a predetermined blending ratio. Thereafter, these fibers are scattered in the air, collected by a wire mesh, wet-laid, and then rolled to have a basis weight of 60 g / m2. 2 Thus, a base cloth having a thickness of 0.15 mm was produced. Then, when the spiral is wound together with the positive and negative electrodes later, heat is applied only to the portion 15a disposed in the core space 10a (see FIG. 2), and the thickness of the portion 15a is reduced to 0. .12 mm. Thereafter, the separator 15 of Example 5 as shown in FIG.
[0019]
(6) Example 6
After blending sea-island type fibers having a sea component of polyethylene terephthalate (PET) and an island component of polypropylene (PP) at a predetermined blending ratio, these fibers are scattered in the air and collected by a wire mesh. And wet papermaking. Then, when the spiral was wound together with the positive and negative electrodes later, the sea component (PET) of the portion 16a disposed in the core space 10a (see FIG. 2) was leached with alkali. Thereafter, rolling is performed, and the weight of the portion 16a arranged in the core space 10a is 40 g / m2. 2 And the basis weight of other parts is 60 g / m 2 Thus, a base cloth having a thickness of 0.15 mm was produced. Then, the portion 16a of the base cloth disposed in the core space 10a was rolled with a roller having irregularities, and the thickness of the portion 16a was rolled to 0.12 mm. Thereafter, the separator 16 of Example 6 as shown in FIG.
[0020]
(7) Comparative example 1
After blending sea-island fibers having a sea component of polyamide and an island component of polypropylene (PP) so as to have a predetermined blending ratio, these fibers are scattered in the air, collected by a wire mesh, and subjected to wet papermaking. To make a base cloth. Next, the sea component (polyamide) of the base fabric was leached with an alkali. After this, after rolling, it is subjected to a hydrophilic treatment to give a basis weight of 40 g / m. 2 The separator 17 of Comparative Example 1 having a thickness of 0.10 mm was produced as shown in FIG.
[0021]
(8) Comparative example 2
Polyethylene fiber (PE: melting point: 138 ° C.) and polypropylene fiber (PP: melting point: 160 ° C.) were blended at a predetermined blending ratio. Thereafter, these fibers are scattered in the air, collected by a wire mesh, wet-laid, and then rolled to have a basis weight of 60 g / m2. 2 To produce a base cloth having a thickness of 0.15 mm. Next, the base fabric was pressed with a roller having irregularities to roll the base fabric to a thickness of 0.12 mm. Then, it is subjected to a hydrophilic treatment, and the basis weight is 40 g / m. 2 Then, the separator 18 of Comparative Example 2 having a thickness of 0.10 mm was produced as shown in FIG.
[0022]
(9) Comparative example 3
Polyethylene fiber (PE: melting point: 138 ° C.) and polypropylene fiber (PP: melting point: 160 ° C.) were blended at a predetermined blending ratio. Thereafter, these fibers are scattered in the air, collected by a wire mesh, wet-laid, rolled, and then subjected to a hydrophilic treatment to give a basis weight of 60 g / m2. 2 Then, a separator 19 of Comparative Example 3 having a thickness of 0.15 mm was produced as shown in FIG.
[0023]
2. Preparation of nickel positive electrode
A positive electrode active material slurry was prepared by mixing 100 parts by mass of a positive electrode active material powder containing nickel hydroxide as a main component and 50 parts by mass of an aqueous solution in which 0.2% by mass of hydroxypropyl cellulose was dissolved. This positive electrode active material slurry was filled into foamed nickel 21 having a porosity of 95%, dried, and then rolled to produce a nickel positive electrode 20. The positive electrode active material slurry was filled in the foamed nickel 21 so that the battery had a nominal capacity of 1500 mAh.
[0024]
3. Preparation of hydrogen storage alloy negative electrode
A binder such as polytetrafluoroethylene (PTFE) and an appropriate amount of water were added to the hydrogen storage alloy powder and mixed to prepare a hydrogen storage alloy paste. Next, this hydrogen storage alloy paste was applied to both surfaces of a negative electrode substrate (punched metal) 31, dried, and then pressed to a predetermined thickness to produce a hydrogen storage alloy negative electrode 30. The punching metal 31 was filled with the hydrogen storage alloy paste so that the electrode capacity was 2250 mAh.
[0025]
4. Production of nickel-hydrogen storage battery
Next, the separators 11 (12, 13, 14, 15, 16, 17, 18, and 19) manufactured as described above were arranged on the nickel positive electrode 20 manufactured as described above. Each separator 11 (12, 13, 14, 15, 16, 17, 18, 19) was disposed on the hydrogen storage alloy negative electrode 30 produced as described above. Then, after these are overlaid, the ends 11a (12a, 13a, 14a, 15a, 16a, 17a, 18a, 18a, 18a, 18a, 12a, 13a, 14a, 15 19a) was held between slit portions of a winding core (not shown).
[0026]
Next, the core is wound a predetermined number of times, and the nickel positive electrode 20, the separator 11 (12, 13, 14, 15, 16, 17, 18, 19), the hydrogen storage alloy negative electrode 30, and the separator 11 (12, 13, 14, 15, 16, 17, 18, 19) were spirally wound. Thereafter, the spirally wound electrode group 10 was manufactured by extracting the core. In this case, the core space is formed in the center of the spiral electrode group 10 by extracting the core. Next, a positive electrode current collector (not shown) is welded to the upper end of the electrode group 10, and a negative electrode current collector (not shown) is welded to the lower end thereof. 40, respectively.
[0027]
Thereafter, the negative electrode current collector is welded to the inner bottom surface of the outer can 40, and the end of the current collecting lead plate extending from the positive electrode current collector is welded to the bottom surface of a sealing body (not shown) containing a safety valve. Then, a predetermined amount of an electrolytic solution (a mixed aqueous solution of potassium hydroxide (KOH), lithium hydroxide (LiOH), and sodium hydroxide (NaOH)) was injected into the outer can 40. Next, the sealing body is placed on the opening of the outer can 40 via an insulating gasket, and the end of the opening of the outer can 40 is crimped inward to seal the battery, and the AA size with a nominal capacity of 1500 mAh. Of the nickel-hydrogen storage batteries A to F and X to Z were manufactured.
[0028]
The battery using the separator 11 is referred to as a battery A, the battery using the separator 12 is referred to as a battery B, the battery using the separator 13 is referred to as a battery C, the battery using the separator 14 is referred to as a battery D, and the battery 15 using the separator 15. A battery E using the separator 16, a battery F using the separator 16, a battery X using the separator 17, a battery Y using the separator 18, and a battery Z using the separator 19. did.
[0029]
5. test
(1) Short circuit test
With each of the 10,000 electrode groups inserted into the outer can 40, the insulation resistance between the positive electrode and the negative electrode was measured, and when the resistance value was 1.5 kΩ or less, it was determined that the battery was short-circuited. Was determined. Next, when the short-circuit occurrence rate (%) was calculated based on the obtained number of short-circuit occurrences, the results shown in Table 1 below were obtained.
[0030]
(2) Can bottom weldability test
When each negative electrode current collector was welded to the inner bottom surface of each outer can 40 in a state in which each 10,000 electrode groups were inserted into the outer can 40, the number of defective weldings was determined. Next, when the welding failure occurrence rate (%) was calculated based on the obtained welding failure occurrence number, the results shown in Table 1 below were obtained.
[0031]
(3) Safety test by gas burner combustion
First, using the nickel-hydrogen storage batteries A to F and X to Z manufactured as described above, these batteries were charged at a temperature of 25 ° C. and a charging current of 120 mA for 16 hours. After the discharge, the battery is discharged at a discharge current of 240 mA until the discharge end voltage becomes 1.0 V, and then the operation is paused for 1 hour. This charge / discharge was repeated three times to activate each of the batteries A to F and X to Z.
[0032]
Next, using each of the 10000 nickel-hydrogen storage batteries A to F and X to Z activated as described above, charging was performed at a charging current of 1500 mA in a temperature atmosphere of 25 ° C., and a full charge was obtained. When the battery voltage dropped by 10 mV (−ΔV = 10 mV), charging was suspended for 1 hour. Thereafter, the gas burner was burned, the battery temperature was raised to 250 ° C., and the ratio of the number of batteries in which the sealing body was removed (the rate of removal of the sealing body) was determined. The results shown in Table 1 below were obtained. Was.
[0033]
(4) Safety test during high rate charging
Using each of the 10000 nickel-hydrogen storage batteries A to F and X to Z activated as described above, charging was performed at a temperature of 25 ° C. with a charging current of 6000 mA until a short circuit occurred. When the ratio of the number of batteries in which the sealing member was detached (occurrence of detachment of the sealing member) was determined at the time when the occurrence of, the results shown in Table 1 below were obtained.
[0034]
(5) Cycle life test
After each of the nickel-hydrogen storage batteries A to F and X to Z activated as described above was charged at a charging current of 1500 mA in a temperature atmosphere of 25 ° C. using 10,000 each, the battery was fully charged. When the voltage drops by 10 mV (−ΔV = 10 mV), charging is suspended for one hour. Next, a charge / discharge cycle of discharging the battery with a discharge current of 1500 mA until the battery voltage becomes 1.0 V is repeatedly performed, and a cycle (times) in which the ratio to the initial capacity reaches 60% is obtained as a cycle life. The results are as shown in Table 1.
[0035]
[Table 1]
Figure 2004273388
[0036]
As apparent from the results in Table 1, the basis weight (60 g / m 2 In the battery Z using the separator 19 having a uniform thickness (0.15 mm) and a uniform thickness (0.15 mm), the rate of occurrence of defective welding at the bottom of the can was 0.10%, the rate of detachment of the sealing body during combustion of the gas burner was 15%, and the It can be seen that the detachment rate of the sealing body at the rate charging is as large as 10%. This is because when the thickness of the separator 19a existing in the core space 10a is as large as 0.15 mm, the volume of the core space 10a is reduced, and when the welding electrode is inserted into the core space 10a, the winding is performed. It is considered that the separator 19a existing in the core space 10a was in the way.
The separator 19a in the core space 10a has a basis weight of 60 g / m2. 2 Therefore, the amount of fibers existing in the core space 10a increases. Thus, when abnormal heat generation occurs until the separator 19 is melted during gas burner combustion or high-rate charging, the melted fibers close the gas exhaust port provided in the sealing body, and the sealing body may come off. Probably caused.
[0037]
In addition, the basis weight (60 g / m 2 ) And the battery Y using the separator 18 having a uniform thickness (0.12 mm), the rate of detachment of the sealing body during combustion of the gas burner was as large as 15%, and the cycle life was as small as 400 cycles. This is because the basis weight of the separator 18a existing in the core space 10a is 60 g / m2. 2 Therefore, the amount of fibers existing in the core space 10a increases. Accordingly, when abnormal heat is generated until the separator 18 is melted during the combustion of the gas burner, it is considered that the melted fiber closes the gas exhaust port provided in the sealing body and the sealing body comes off. Further, it is considered that since the thickness of the separator 18 at the electrode facing portion is as small as 0.12 mm, the amount of retained electrolyte is reduced, and the cycle life is shortened.
[0038]
Furthermore, the basis weight (40 g / m 2 ) And the battery X using the separator 17 having a uniform thickness (0.10 mm), the short circuit occurrence rate is as large as 0.10% and the cycle life is as small as 400 cycles. The basis weight of the separator 17 is 40 g / m. 2 It is considered that the positive electrode and the negative electrode became easy to directly contact with each other because the thickness was as small as 0.12 mm. The basis weight of the separator 17 at the electrode facing portion is 40 g / m. 2 Is small and the thickness is as small as 0.12 mm, it is considered that the holding amount of the electrolyte is reduced and the cycle life is shortened.
[0039]
On the other hand, in the batteries D and E using the separators 14 and 15 having the thickness of the core space 10a of 0.12 mm, the sealing member detachment rate at the time of burning the gas burner is as large as 15%, but the short circuit occurrence rate is large. Is 0.02%, the occurrence rate of defective welding at the bottom of the can is 0.03%, the rate of detachment of the sealing body during charging at a high rate of 6A is as small as 3%, and the cycle life is as large as 500 cycles. This is because the separators 14a and 15a arranged in the core space 10a are subjected to a rolling process to reduce the thickness, so that the space volume of the core space increases.
[0040]
As a result, it is possible to enlarge the exhaust passage from the bottom of the can to the top of the battery, and the separators 14 and 15 do not melt, but a large amount of the battery is continuously charged at a high rate (high rate). It is considered that when an abnormality such as the generation of the above-mentioned gas occurs, the gas inside the battery can reach the safety valve without staying at the bottom of the can.
[0041]
This makes it possible to improve the safety when the temperature of the battery rises abnormally. However, if the separators 14 and 15 in the electrode-facing portions other than the core space 10a are also rolled, the separators in this portion will be The apparent density also decreases, and the amount of retained electrolyte decreases, making it impossible to maintain battery characteristics. In this case, since the space volume of the core space 10a increases, the weldability in the case where a welding rod is inserted into the core space 10a and the current collecting tab and the can bottom are welded is improved.
[0042]
In addition, the basis weight of the core space 10a is 40 g / m. 2 In the batteries B and C using the separators 12 and 13 described above, the rate of occurrence of defective welding at the bottom of the can was as large as 0.10%, but the rate of occurrence of short circuit was 0.02%, and the rate of detachment of the sealing body during gas burner combustion was low. It can be seen that at 4%, the rate of detachment of the sealing body during charging at a high rate of 6A is as small as 3%, and the cycle life is as large as 500 cycles. This is because the weight reduction process is applied to the separators 12a and 13a arranged in the core space 10a, so that the amount of fibers existing in the core space 10a can be reduced.
[0043]
This is considered to be due to the fact that even if abnormal heat generation occurs until the separators 14a and 15a are melted, the gas exhaust port provided in the sealing body is hardly blocked. In this case, if the basis weights of the separators 14 and 15 in the electrode facing portions other than the core space 10a are also reduced, the amount of retained electrolyte is reduced by the reduced fiber amount, and battery characteristics cannot be maintained. However, a disadvantage that the short-circuit resistance is also reduced is undesirably caused.
[0044]
In addition, the basis weight of the core space 10a is 40 g / m. 2 In the battery F using the separator 16 having a thickness of 0.12 mm, the short circuit occurrence rate is 0.02%, the can bottom welding failure occurrence rate is 0.03%, and the sealing body detachment rate during gas burner combustion is It can be seen that at 2%, the rate of detachment of the sealing body during charging at a high rate of 6A is as small as 2%, and the cycle life is as large as 500 cycles. This is because the separator 16a disposed in the core space 10a has been subjected to the weight reduction process and the rolling process, so that the amount of fibers existing in the core space 10a can be reduced. At the same time, the space volume of the core space 10a also increases. This is considered to be due to the fact that the gas exhaust port provided in the sealing body was less likely to be closed, and the exhaust passage from the bottom of the can to the upper part of the battery was enlarged.
[0045]
Furthermore, the basis weight of the core space 10a is 40 g / m. 2 In the battery A using the laminated separator 11 in which only the first base cloth 11a having a thickness of 0.10 mm is present, the short-circuit occurrence rate is 0.02% and the can bottom welding failure occurrence rate is 0.1%. It can be seen that the rate of detachment of the sealing body at the time of combustion of the gas burner is 1%, the rate of detachment of the sealing body at the time of charging at a high rate of 6A is as small as 1%, and the cycle life is as large as 500 cycles. This is because the separator 11a arranged in the core space 10a has a small basis weight and a small thickness, so that the amount of fibers existing in the core space 10a is small and the space volume of the core space 10a is large. . This is considered to be due to the fact that the gas exhaust port provided in the sealing body was less likely to be closed, and the exhaust passage from the bottom of the can to the upper part of the battery was enlarged.
[0046]
【The invention's effect】
As described above, in the present invention, since the basis weight of the separator disposed in the core space 10a is small, the thickness is small, or the basis weight is small and the thickness is small, the core space 10a It is possible to reduce the amount of fibers existing in the core space, or to increase the space volume of the core space 10a, and further to reduce the amount of fibers in the core space 10a and increase the space volume. It becomes. Accordingly, when abnormal heat generation occurs until the separator is melted, the gas exhaust port provided in the sealing body is less likely to be closed, and the time until the gas outlet is closed can be lengthened. In addition, the exhaust passage from the bottom of the can to the top of the battery also becomes large. Thereby, the safety of the battery using this kind of separator is improved. Further, since the space volume of the core space 10a increases, the welding rod can be easily inserted, so that the weldability at the bottom of the can is improved.
[0047]
In the above-described embodiment, an example in which the present invention is applied to a nickel-hydrogen storage battery as a preferred example of the present invention has been described.However, the present invention is not limited to a nickel-hydrogen storage battery, and other alkaline storage batteries such as nickel-cadmium storage batteries, Alternatively, it is apparent that the present invention can be applied to a nonaqueous electrolyte battery such as a lithium ion battery. Furthermore, in the above-described embodiment, an example in which the present invention is applied to a cylindrical storage battery has been described. However, the present invention is not limited to this, and the present invention can be applied to storage batteries of various shapes including a wound electrode group. Needless to say.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a cross section of a separator.
FIG. 2 is a cross-sectional view schematically showing a cross section in a state where a spiral electrode group formed using the separator of FIG. 1 is housed in an outer can.
[Explanation of symbols]
Reference numeral 10: spiral electrode group, 10a: core space, 11, 12, 13, 14, 15, 16, 17, 18, 19 ... separator, 11a: first base cloth, 12a: second base cloth, 13a, 14a, 15a, 16a, 17a, 18a, 19a ... separators arranged in the core space, 20 ... nickel positive electrode, 21 ... nickel foam, 30 ... hydrogen storage alloy negative electrode, 31 ... negative electrode substrate (punching metal), 40 ... Outer can (battery can)

Claims (4)

正極と負極との間にセパレータを介在させて渦巻状に巻回した渦巻状電極群を円筒形外装缶内に備えた円筒形蓄電池であって、
前記渦巻状電極群は中心部に該渦巻状電極群を形成する際に用いられた巻芯が除去された後に残存した巻芯空間部を備え、
前記巻芯空間部に配置されたセパレータの目付は電極対向部に配置されたセパレータの目付よりも小さいことを特徴とする円筒形蓄電池。
A cylindrical storage battery provided with a spirally wound electrode group spirally wound with a separator interposed between a positive electrode and a negative electrode in a cylindrical outer can,
The spiral electrode group includes a core space part remaining after the core used in forming the spiral electrode group is removed at the center,
The weight of the separator arranged in the core space portion is smaller than the mass of the separator arranged in the electrode facing portion.
正極と負極との間にセパレータを介在させて渦巻状に巻回した渦巻状電極群を円筒形外装缶内に備えた円筒形蓄電池であって、
前記渦巻状電極群は中心部に該渦巻状電極群を形成する際に用いられた巻芯が除去された後に残存した巻芯空間部を備え、
前記巻芯空間部に配置されたセパレータの厚みは電極対向部に配置されたセパレータの厚みよりも薄いことを特徴とする円筒形蓄電池。
A cylindrical storage battery provided with a spirally wound electrode group spirally wound with a separator interposed between a positive electrode and a negative electrode in a cylindrical outer can,
The spiral electrode group includes a core space part remaining after the core used in forming the spiral electrode group is removed at the center,
A cylindrical storage battery, wherein the thickness of the separator arranged in the core space is smaller than the thickness of the separator arranged in the electrode facing part.
正極と負極との間にセパレータを介在させて渦巻状に巻回した渦巻状電極群を円筒形外装缶内に備えた円筒形蓄電池であって、
前記渦巻状電極群は中心部に該渦巻状電極群を形成する際に用いられた巻芯が除去された後に残存した巻芯空間部を備え、
前記巻芯空間部に配置されたセパレータの目付および厚みは電極対向部に配置されたセパレータの目付および厚みよりも小さいことを特徴とする円筒形蓄電池。
A cylindrical storage battery provided with a spirally wound electrode group spirally wound with a separator interposed between a positive electrode and a negative electrode in a cylindrical outer can,
The spiral electrode group includes a core space part remaining after the core used in forming the spiral electrode group is removed at the center,
The basis weight and thickness of the separator arranged in the core space portion are smaller than the basis weight and thickness of the separator arranged in the electrode facing portion.
正極と負極との間にセパレータを介在させて渦巻状に巻回した渦巻状電極群を円筒形外装缶内に備えた円筒形蓄電池であって、
前記渦巻状電極群は中心部に該渦巻状電極群を形成する際に用いられた巻芯が除去された後に残存した巻芯空間部を備え、
前記巻芯空間部に配置されたセパレータの目付および厚みが電極対向部に配置されたセパレータの目付および厚みよりも小さくなるように2枚のセパレータが貼り合わされていることを特徴とする円筒形蓄電池。
A cylindrical storage battery provided with a spirally wound electrode group spirally wound with a separator interposed between a positive electrode and a negative electrode in a cylindrical outer can,
The spiral electrode group includes a core space part remaining after the core used in forming the spiral electrode group is removed at the center,
A cylindrical storage battery, wherein two separators are attached so that the basis weight and the thickness of the separator arranged in the core space are smaller than the basis weight and the thickness of the separator arranged in the electrode facing part. .
JP2003066266A 2003-03-12 2003-03-12 Cylindrical storage battery Withdrawn JP2004273388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003066266A JP2004273388A (en) 2003-03-12 2003-03-12 Cylindrical storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003066266A JP2004273388A (en) 2003-03-12 2003-03-12 Cylindrical storage battery

Publications (1)

Publication Number Publication Date
JP2004273388A true JP2004273388A (en) 2004-09-30

Family

ID=33127037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003066266A Withdrawn JP2004273388A (en) 2003-03-12 2003-03-12 Cylindrical storage battery

Country Status (1)

Country Link
JP (1) JP2004273388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299553A (en) * 2014-01-28 2019-10-01 锂电池材料科技有限公司 Cylindrical electrochemical cell and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299553A (en) * 2014-01-28 2019-10-01 锂电池材料科技有限公司 Cylindrical electrochemical cell and manufacturing method
CN110299553B (en) * 2014-01-28 2023-05-12 锂电池材料科技有限公司 Cylindrical electrochemical cell and method of manufacture

Similar Documents

Publication Publication Date Title
JP5018087B2 (en) An assembled battery composed of a plurality of sealed batteries, sealed battery leads, and sealed batteries
KR20120099031A (en) Cylindrical nickel-zinc cell with positive can
JP4868809B2 (en) Cylindrical alkaline storage battery
JP2018045994A (en) Cylindrical alkaline secondary battery
JP4931492B2 (en) Cylindrical storage battery
JP5016236B2 (en) battery
JP5896551B2 (en) Manufacturing method of metal solid substrate for electrode, metal solid substrate for electrode, and electrochemical application product using the same
JP5655808B2 (en) Cylindrical alkaline storage battery
JP5157049B2 (en) Sealed battery, method for manufacturing the same, assembled battery including a plurality of sealed batteries, and method for manufacturing the same
JP4868761B2 (en) Current collector with terminal and electrochemical device using the same
JP2004273388A (en) Cylindrical storage battery
JP2000090965A (en) Cylindrical alkaline secondary battery
JP2003208883A (en) Battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP2010061892A (en) Secondary battery with spirally-rolled electrode group
JP2000251871A (en) Alkaline secondary battery
JP5456333B2 (en) Sealed alkaline storage battery
WO2014119248A1 (en) Winding type battery
JP4359099B2 (en) Cylindrical alkaline storage battery
JP2009245771A (en) Alkaline storage battery and method of manufacturing the same
JP4766832B2 (en) Current collector with terminal, electrochemical element using the same
JP2009224087A (en) Sealed battery
WO2021192978A1 (en) Alkaline storage battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP2011008930A (en) Cylindrical type alkaline storage battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606