JP2004270038A - High tensile strength hot dip galvannealed steel sheet having excellent plating property - Google Patents

High tensile strength hot dip galvannealed steel sheet having excellent plating property Download PDF

Info

Publication number
JP2004270038A
JP2004270038A JP2004181336A JP2004181336A JP2004270038A JP 2004270038 A JP2004270038 A JP 2004270038A JP 2004181336 A JP2004181336 A JP 2004181336A JP 2004181336 A JP2004181336 A JP 2004181336A JP 2004270038 A JP2004270038 A JP 2004270038A
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
content
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004181336A
Other languages
Japanese (ja)
Other versions
JP4218598B2 (en
Inventor
Kazuhiro Seto
一洋 瀬戸
Takashi Sakata
敬 坂田
Toshiyuki Kato
俊之 加藤
Shigeru Unno
茂 海野
Chiaki Kato
千昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004181336A priority Critical patent/JP4218598B2/en
Publication of JP2004270038A publication Critical patent/JP2004270038A/en
Application granted granted Critical
Publication of JP4218598B2 publication Critical patent/JP4218598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength hot dip galvannealed steel sheet which has excellent workability in press forming or the like, and has excellent plating properties as well. <P>SOLUTION: The high tensile strength hot dip galvannealed steel sheet is obtained by coating the surface of a steel sheet having a composition comprising, by mass, 0.0005 to 0.0050% C, 0.3 to 2.5% (exclusive of 0.3%) Si, 0.1 to 2.5% Mn, 0.003 to 0.10% Ti, 0.003 to 0.10% Nb, 0.0005 to 0.0080% B, 0.040 to 0.18% P, ≤0.015% S, 0.005 to 0.10% Al and ≤0.0060% N, and also comprising Si and Mn in the ranges satisfying the relation in the following inequality (1), and the balance Fe with inevitable impurities with a hot dip galvannealed layer in which the content of Fe is 9 to 12%. The inequality (1) is denoted by 1.5 (%Mn)-2≤(%Si)≤2(%Mn). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、主に自動車の車体用として、曲げ加工、プレス成形加工、絞り加工などの用途に供して好適な高張力合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a high-tensile alloyed hot-dip galvanized steel sheet suitable for use in bending, press forming, drawing, and the like, mainly for use in automobile bodies.

近年、環境問題による自動車の排気ガス規制などから燃費向上のために車体軽量化の要請が高まって来ている。また、自動車の安全性向上も重要な課題となっている。そこでこれらの問題の対応策の一つとして、引張強さが 400MPa程度以上で、かつ優れたプレス成形性を有する高張力合金化溶融亜鉛めっき鋼板が要求されている。
しかし、一般に冷延鋼板は高張力化にともないプレス成形性すなわち平均r値やTS−Elバランスが劣化し、めっき特性などの表面特性も劣化する傾向にある。したがって自動車用として供するためには、高張力化とともに、めっき特性およびプレス成形性を向上させることが重要になる。
2. Description of the Related Art In recent years, there has been an increasing demand for weight reduction of a vehicle body in order to improve fuel efficiency due to regulations on exhaust gas of automobiles due to environmental problems. Improving vehicle safety is also an important issue. Therefore, as one of measures for solving these problems, a high-tensile alloyed hot-dip galvanized steel sheet having a tensile strength of about 400 MPa or more and excellent press formability is required.
However, in general, the cold-rolled steel sheet tends to deteriorate in press formability, that is, the average r value and TS-El balance, and the surface characteristics such as plating characteristics also deteriorate as the tensile strength increases. Therefore, it is important to improve the plating properties and the press formability as well as to increase the tensile strength in order to use the product for automobiles.

これまで、高張力化にともなうプレス成形性改善のために、各種の方法が提案されている。
例えば、特許文献1に開示の成形性にすぐれる高強度冷延鋼板のように、Cを低減した極低炭素鋼をベースとして、加工性、時効性の改善のために炭窒化物形成成分であるTi, Nbなどを添加し、さらに加工性を害さないSi, Mn, Pでおもに高張力化をはかる手段が開示されている。特にSiは平均r値や伸びなどで示される加工性を劣化させることなく高張力化する有利な成分であるが、一方で多量のSiを含有させると表面特性の劣化が避けがたく、めっき特性が著しく劣化するという問題があった。
特開昭63−100158号公報
Until now, various methods have been proposed for improving the press formability accompanying the increase in tension.
For example, as in the case of a high-strength cold-rolled steel sheet excellent in formability disclosed in Patent Document 1, a carbonitride forming component is used to improve workability and aging based on an ultra-low carbon steel with reduced C. There is disclosed means for adding a certain amount of Ti, Nb, etc., and for increasing the tensile strength mainly with Si, Mn, P which does not impair the workability. In particular, Si is an advantageous component that increases the tensile strength without deteriorating the workability represented by the average r value and elongation, but when a large amount of Si is contained, deterioration of the surface characteristics is unavoidable, and the plating characteristics However, there was a problem that the temperature was remarkably deteriorated.
JP-A-63-100158

このため、合金化溶融亜鉛めっき用の鋼板を高張力化する場合には、特許文献2(成形性に優れた高強度冷延鋼板と溶融亜鉛めっき高強度冷延鋼板およびそれらの製造方法)に開示されているようにSiを0.03%以下に制限し、強化成分として主にP,Mnを用いる方法が一般的であった。しかし、多量のPの添加は溶融亜鉛めっきの合金化を遅延させるほか、特に極低炭素鋼において2次加工脆性を引き起こしやすいという問題があった。またMnもめっき特性への影響は少ないとはいえ、Siが 0.1%以下に制限された状態では1%以上のMn含有量からめっき特性が劣化しはじめるほか、多量に含有させると変態点が低下して熱延板が硬質化したり焼鈍時に再結晶しないなどの材質劣化につながる不具合が発生するという問題があった。
このようにP,Mnだけで加工性とめっき特性を維持しつつ高張力化を図るには限界があった。
特開平5−255807号公報
For this reason, in the case of increasing the tensile strength of a steel sheet for alloyed hot-dip galvanizing, Patent Document 2 (High-strength cold-rolled steel sheet excellent in formability, hot-dip galvanized high-strength cold-rolled steel sheet, and a method of manufacturing them) As disclosed, a method in which Si is limited to 0.03% or less and P and Mn are mainly used as reinforcing components has been generally used. However, the addition of a large amount of P not only delays alloying of hot-dip galvanization, but also tends to cause secondary working embrittlement, particularly in extremely low carbon steel. In addition, although the influence of Mn on the plating characteristics is small, the plating characteristics start to deteriorate from the Mn content of 1% or more when Si is limited to 0.1% or less, and the transformation point decreases when the content is large. As a result, there is a problem that the hot-rolled sheet is hardened or does not recrystallize during annealing, which leads to deterioration of the material.
As described above, there is a limit in achieving high tension while maintaining workability and plating characteristics using only P and Mn.
JP-A-5-255807

この発明は、前記した問題点を有利に解決しようとするもので、自動車用に供して好適なプレス成形などの加工性に優れ、かつめっき特性にも優れる高張力合金化溶融亜鉛めっき鋼板を提案することを目的とする。   The present invention is intended to advantageously solve the above-mentioned problems, and proposes a high-tensile alloyed hot-dip galvanized steel sheet that is excellent in workability such as press forming suitable for use in automobiles and has excellent plating properties. The purpose is to do.

さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、強化成分としてSiを有効に活用し、かつSiとMnとの相互関係を特定することにより、良好なめっき特性とプレス成形性とを兼ね備えた引張強さ 400 MPa以上の高張力合金化溶融亜鉛めっき鋼板が得られることの新規知見を得た。
この発明は、上記の知見に立脚するものである。
By the way, the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by effectively utilizing Si as a reinforcing component, and by specifying the correlation between Si and Mn, good plating characteristics and New knowledge has been obtained that a high-tensile alloyed hot-dip galvanized steel sheet with a tensile strength of 400 MPa or more that combines press formability can be obtained.
The present invention is based on the above findings.

すなわち、この発明の要旨構成は次のとおりである。
C:0.0005mass% 以上、 0.0050mass%以下、
Si:0.3 mass% 以上、 2.5 mass%以下(但し、0.3 mass% を除く)、
Mn:0.1 mass% 以上、 2.5 mass%以下、
Ti:0.003 mass% 以上、 0.10mass%以下、
Nb:0.003 mass% 以上、 0.10mass%以下、
B:0.0005mass% 以上、 0.0080mass%以下、
P:0.040 mass% 以上、 0.18mass%以下、
S:0.015 mass% 以下、
Al:0.005 mass% 以上、 0.10mass%以下および
N:0.0060mass% 以下
で、かつ、SiおよびMnを下記式(1) の関係のもとで含有し、残部はFeおよび不可避的不純物の組成よりなる鋼板表面に、めっき層中のFe含有率が9〜12%の合金化溶融亜鉛めっき層を有してなるめっき特性に優れる高張力合金化溶融亜鉛めっき鋼板。

1.5 (maas% Mn)−2≦(mass% Si)≦2(mass% Mn) ----(1)
That is, the gist configuration of the present invention is as follows.
C: 0.0005 mass% or more, 0.0050 mass% or less,
Si: 0.3 mass% or more, 2.5 mass% or less (excluding 0.3 mass%),
Mn: 0.1 mass% or more, 2.5 mass% or less,
Ti: 0.003 mass% or more, 0.10 mass% or less,
Nb: 0.003 mass% or more, 0.10 mass% or less,
B: 0.0005 mass% or more, 0.0080 mass% or less,
P: 0.040 mass% or more, 0.18 mass% or less,
S: 0.015 mass% or less,
Al: 0.005 mass% or more, 0.10 mass% or less and N: 0.0060 mass% or less, and Si and Mn are contained under the relationship of the following formula (1), and the balance is based on the composition of Fe and unavoidable impurities. A high-tensile alloyed hot-dip galvanized steel sheet having excellent galvanizing properties, comprising an alloyed hot-dip galvanized layer having a Fe content of 9 to 12% in the coating layer on the surface of the steel sheet.
Record
1.5 (maas% Mn) -2 ≦ (mass% Si) ≦ 2 (mass% Mn) ---- (1)

この発明は、極低炭素鋼においてSiを強化成分として活用し、SiとMnとの含有量の相互関係を特定することにより、めっき特性に優れ、かつプレス成形用としても好適な特性を有する高張力合金化溶融亜鉛めっき鋼板を得るもので、この発明による鋼板は自動車の軽量化、安全性の向上に大きく寄与することができる。   This invention utilizes Si as a strengthening component in ultra-low carbon steel and specifies the mutual relationship between the contents of Si and Mn, thereby achieving high plating properties that are excellent in plating properties and suitable for press forming. The steel sheet according to the present invention is intended to obtain a tension alloyed hot-dip galvanized steel sheet, and can greatly contribute to reducing the weight of automobiles and improving safety.

まず、この発明の基礎となった実験結果についてのべる。
C:0.002 mass%、Ti : 0.04mass %、Nb : 0.03mass %、B:0.002 mass%、P:0.10mass%、S:0.006 mass%、Al : 0.04mass %およびN:0.002 mass%を含有し、かつSiおよびMnの含有量の異なる板厚0.75mmの冷延鋼板のSiおよびMn含有量とめっき特性の関係について調査した。
なお、これらの鋼板は上記組成になるシートバーを、820 〜910 ℃の範囲の仕上げ圧延温度で熱間圧延を行い、続いて酸洗後圧下率75〜85%の範囲で冷間圧延を行ったのち、さらに溶融亜鉛めっきラインにおいて 780〜890 ℃の温度範囲で焼鈍を施した後 450〜500 ℃の温度域まで急冷し、Alを0.13mass%含有する溶融亜鉛めっき浴に浸漬してめっきしたのち、 450〜550 ℃の温度範囲の合金化処理(めっき層中のFe含有率約10%)を施すことにより製造したものである。また、めっき特性は目視による外観(不めっき)の判定と90°曲げ試験による耐パウダリング性の判定とで評価した。
これらの鋼板につき、SiおよびMn含有量とめっき特性の関係について調査した結果を表1にまとめて示す。
First, the experimental results on which the present invention is based will be described.
C: 0.002 mass%, Ti: 0.04 mass%, Nb: 0.03 mass%, B: 0.002 mass%, P: 0.10 mass%, S: 0.006 mass%, Al: 0.04 mass%, and N: 0.002 mass%. The relationship between the Si and Mn contents and the plating properties of 0.75 mm cold-rolled steel sheets having different Si and Mn contents was investigated.
In addition, these steel sheets are subjected to hot rolling at a finish rolling temperature in the range of 820 to 910 ° C., followed by cold rolling in a rolling reduction range of 75 to 85% after pickling. After that, it was further annealed in a hot-dip galvanizing line at a temperature range of 780 to 890 ° C, quenched to a temperature range of 450 to 500 ° C, and immersed in a hot-dip galvanizing bath containing 0.13 mass% of Al for plating. After that, it is manufactured by performing an alloying treatment in a temperature range of 450 to 550 ° C (Fe content in the plating layer is about 10%). The plating characteristics were evaluated by visual judgment of appearance (non-plating) and judgment of powdering resistance by a 90 ° bending test.
Table 1 summarizes the results of an investigation on the relationship between the Si and Mn contents and the plating properties of these steel sheets.

Figure 2004270038
Figure 2004270038

この結果、表1から明らかなように、SiとMnとの相互関係が1.5(mass% Mn) −2≦ (mass% Si) ≦2 (mass% Mn) の範囲にあるときめっき外観、耐パウダリング性ともに良好であることが判明した。上記範囲をはずれてSiあるいはMnのうち少なくともどちらか一方が多い場合にはめっき特性が劣化する。この理由は必ずしも明らかではないが、鋼板表面に生成される酸化膜が、Si単独添加の場合SiO2、Mn単独添加の場合MnO となりともに溶融亜鉛との濡れ性が悪いのに対し、Si, Mnを上記関係式を満たして含有させた場合にはMnSiO3主体の酸化膜となり、溶融亜鉛との濡れ性が向上するためと考えられる。 As a result, as apparent from Table 1, when the mutual relationship between Si and Mn is in the range of 1.5 (mass% Mn) -2 ≦ (mass% Si) ≦ 2 (mass% Mn), the plating appearance and powder resistance It turned out that both ringing properties were good. If the content is out of the above range and at least one of Si and Mn is large, the plating characteristics deteriorate. The reason for this is not necessarily clear, but the oxide film formed on the steel sheet surface becomes SiO 2 when Si is added alone and MnO when Mn is added alone, and both have poor wettability with molten zinc, whereas Si, Mn It is considered that when satisfies the above relational expression, an oxide film mainly composed of MnSiO 3 is formed, and the wettability with molten zinc is improved.

次にこの発明における各成分組成範囲の限定理由について述べる。
C:0.0005mass%以上、0.0050mass%以下
Cは、良好な加工性、とくに良好なTS−Elバランスを有する鋼板を得るために、その含有量は0.0050mass%以下とすることが必要であり、好ましくは0.0040mass%以下、より好ましくは0.0030mass%以下の極低炭素鋼であることが望ましい。しかし、同時に多量のPを含有させる場合には、Cが0.0005mass%よりも少なくなると耐2次加工脆性が劣化する。従ってC含有量は、0.0005mass%以上、0.0050mass%以下に限定するが、好ましくは0.0005mass%以上、0.0040mass%以下、より好ましくは0.0005mass%以上、0.0030mass%以下である。
Next, the reasons for limiting the component composition ranges in the present invention will be described.
C: 0.0005 mass% or more, 0.0050 mass% or less C is required to have a content of 0.0050 mass% or less in order to obtain a steel sheet having good workability, particularly good TS-El balance. It is desirable that the ultra-low carbon steel is preferably 0.0040 mass% or less, more preferably 0.0030 mass% or less. However, when a large amount of P is contained at the same time, when C is less than 0.0005 mass%, the secondary working brittleness is deteriorated. Accordingly, the C content is limited to 0.0005 mass% or more and 0.0050 mass% or less, but is preferably 0.0005 mass% or more and 0.0040 mass% or less, more preferably 0.0005 mass% or more and 0.0030 mass% or less.

Si : 0.3 mass%以上、2.5 mass% 以下(但し、0.3 mass% を除く)
Siは、加工性の劣化を少なくし鋼を強化する作用があり、Siを活用して加工性を維持しつつ鋼を強化するというこの発明の主旨から引張強度を400 MPa 級以上とする場合のSi含有量は0.3 mass%以上を必要とする。しかし2.5 mass%を超えると耐2次加工脆性の劣化を招く。従ってSi含有量は、0.3 mass%以上、2.5 mass%以下(但し、0.3 mass% を除く)に限定する。
Si: 0.3 mass% or more, 2.5 mass% or less (excluding 0.3 mass%)
Si has the effect of reducing the deterioration of workability and strengthening the steel.Since the purpose of the present invention is to use Si to strengthen the steel while maintaining the workability, when the tensile strength is 400 MPa class or more, The Si content needs to be 0.3 mass% or more. However, when the content exceeds 2.5 mass%, the secondary processing brittleness is deteriorated. Therefore, the Si content is limited to 0.3 mass% or more and 2.5 mass% or less (excluding 0.3 mass%).

Mn : 0.1 mass %以上、2.5 mass%以下
Mn含有量は、加工性・耐2次加工脆性の観点からは低減させることが望ましいが、0.1 mass%よりも少ない場合は自動車用材料として充分な強化効果が得られない。また、熱延時の変態点を上げるSiを多量に含有させた場合にはオーステナイト域での正常な熱延を実施することが困難になるため、変態点を下げるMnを好ましくは0.2 mass%以上、より好ましくは0.4 mass%以上添加して変態点を適当な温度域に調整することが望ましい。一方、含有量が2.5 mass%を超えると耐2次加工脆性の改善が困難になるほか、鋼が著しく硬化して冷間圧延が困難となる。従ってMn含有量は、0.1 mass%以上、2.5 mass%以下に限定するが、好ましくは0.2 mass%以上、2.5 mass%以下、より好ましくは0.4 mass%以上、2.5 mass%以下である。
Mn: 0.1 mass% or more, 2.5 mass% or less
It is desirable to reduce the Mn content from the viewpoints of workability and resistance to secondary working brittleness, but if it is less than 0.1 mass%, a sufficient reinforcing effect as a material for automobiles cannot be obtained. In addition, when a large amount of Si that raises the transformation point during hot rolling is contained, it becomes difficult to perform normal hot rolling in the austenite region, so that Mn that lowers the transformation point is preferably 0.2 mass% or more, It is more preferable to add 0.4 mass% or more to adjust the transformation point to an appropriate temperature range. On the other hand, if the content exceeds 2.5 mass%, it is difficult to improve the resistance to secondary working brittleness, and the steel is extremely hardened, so that cold rolling becomes difficult. Therefore, the Mn content is limited to 0.1 mass% or more and 2.5 mass% or less, but is preferably 0.2 mass% or more and 2.5 mass% or less, and more preferably 0.4 mass% or more and 2.5 mass% or less.

Ti : 0.003 mass %以上、0.10mass%以下
Nb : 0.003 mass %以上、0.10mass%以下
Tiは、N,C,Sの一部あるいは全部を、またNbは、Cの一部あるいは全部を固定することにより、極低炭素鋼の加工性と非時効性を確保するのに有効である。しかし、いずれも含有量が0.003 mass%未満ではその効果がないためこの値を下限とする。一方、いずれも0.1 mass%超となると逆に加工性を劣化させるためこの値を上限とする。ただし、加工性のさらなる向上の観点からはC量が0.0020mass% 以下程度に低減されている場合にはTi, Nbの合計で好ましくは0.03mass%以上、0.10mass%以下、より好ましくは0.03mass%以上、0.08mass%以下である。
Ti: 0.003 mass% or more, 0.10 mass% or less
Nb: 0.003 mass% or more, 0.10 mass% or less
Ti fixes part or all of N, C, and S, and Nb fixes part or all of C, which is effective in securing workability and non-aging properties of ultra-low carbon steel. . However, if the content is less than 0.003 mass%, the effect is not obtained, so this value is set as the lower limit. On the other hand, in any case, when the content exceeds 0.1 mass%, the workability deteriorates conversely, so this value is made the upper limit. However, from the viewpoint of further improving the workability, when the C content is reduced to about 0.0020 mass% or less, the total of Ti and Nb is preferably 0.03 mass% or more, 0.10 mass% or less, more preferably 0.03 mass% or less. % Or more and 0.08 mass% or less.

B:0.0005mass%以上、0.0080mass%以下
Bは、粒界に偏析し、2次加工脆性の防止に顕著な効果を示すが、含有量が0.0005mass%未満ではその効果が小さく、一方0.0080mass%を超えて含有させてもその効果が飽和するばかりでなく降伏強度の上昇、伸びの低下などあって加工性を劣化させる。従ってその含有量は、0.0005mass%以上、0.0080mass%以下に限定する。ただし、Bの添加によってわずかであるが加工性が劣化するため、0.15mass% を超えるPを含有するような場合を除いて好ましくは0.0005mass%以上、0.0050mass%以下、より好ましくは0.0005mass%以上、0.0030mass%以下である。
B: 0.0005 mass% or more and 0.0080 mass% or less B segregates at the grain boundary and shows a remarkable effect on prevention of secondary working embrittlement. However, if the content is less than 0.0005 mass%, the effect is small, while 0.0080 mass%. %, The effect is not only saturated, but also the yield strength is increased and the elongation is reduced, thereby deteriorating the workability. Therefore, the content is limited to 0.0005 mass% or more and 0.0080 mass% or less. However, since the addition of B slightly deteriorates the workability, it is preferably 0.0005 mass% or more, 0.0050 mass% or less, and more preferably 0.0005 mass%, except that P containing more than 0.15 mass% is contained. Above, it is 0.0030 mass% or less.

P:0.040 mass%以上、0.18mass%以下
Pは、鋼を強化するとともに、加工性、とくに平均r値を向上させる効果があり、所望の強度に応じて含有させる。その効果は含有量が0.040 mass%以上で顕著になるが、一方、0.18mass%を超えて含有させた場合にはめっきの合金化を著しく遅延させるほか、鋳造時の凝固偏析により材質も劣化させる。また材質改善を目的にC量を低減した場合には、含有量が0.12mass%以上で耐2次加工脆性が劣化しはじめ、0.15mass%以上では多量のBの添加が必要になる。
従ってP含有量は、0.040 mass%以上、0.18mass%以下に規定するが、好ましくは0.040 mass%以上、0.15mass%以下、より好ましくは 0.040mass%以上、0.12mass%以下である。
P: 0.040 mass% or more and 0.18 mass% or less P has the effect of strengthening the steel and improving the workability, particularly the average r value, and is contained according to the desired strength. The effect becomes remarkable when the content is 0.040 mass% or more. On the other hand, when the content exceeds 0.18 mass%, the alloying of the plating is significantly delayed, and the material is deteriorated due to solidification segregation during casting. . Further, when the C content is reduced for the purpose of improving the material, the secondary working embrittlement resistance starts to deteriorate at a content of 0.12 mass% or more, and a large amount of B needs to be added at a content of 0.15 mass% or more.
Therefore, the P content is specified to be 0.040 mass% or more and 0.18 mass% or less, preferably 0.040 mass% or more and 0.15 mass% or less, more preferably 0.040 mass% or more and 0.12 mass% or less.

S:0.015 mass%以下
Sは、含有量が0.015 mass%超えになるとMnSが多量に析出し加工性が劣化するのでこれを上限とする。ただし、加工性のさらなる向上の観点からは好ましくは0.010 mass%以下、より好ましくは0.008 mass%以下である。なお、含有量は少ない方が望ましいが、0.0005mass%未満になると現状技術では著しく製造コストが上昇するので実用的でない。
S: 0.015 mass% or less If S exceeds 0.015 mass%, a large amount of MnS precipitates and the workability is deteriorated. However, from the viewpoint of further improving workability, it is preferably at most 0.010 mass%, more preferably at most 0.008 mass%. It is desirable that the content be small, but if the content is less than 0.0005 mass%, it is not practical because the current technology significantly increases the production cost.

Al : 0.005 mass %以上、0.10mass%以下
Alは、脱酸および鋼中Nの析出固定のため必要に応じて添加されるが、その含有量が0.005 mass%未満では介在物が増加してしまい良好な加工性が得られない。一方、含有量が多すぎると加工性を劣化させるだけでなく、表面性状をも劣化させるため、Al含有量は0.005 mass%以上、0.10mass%以下に限定する。ただし上記メカニズムによる加工性の適正化の観点からは好ましくは0.005 mass%以上、0.06mass%以下、より好ましくは0.01mass%以上、0.06mass%以下である。
Al: 0.005 mass% or more, 0.10 mass% or less
Al is added as needed for deoxidation and precipitation fixation of N in steel. However, if the content is less than 0.005 mass%, inclusions increase and good workability cannot be obtained. On the other hand, if the content is too large, not only does the workability deteriorate, but also the surface properties deteriorate, so the Al content is limited to 0.005 mass% or more and 0.10 mass% or less. However, from the viewpoint of optimizing workability by the above mechanism, it is preferably 0.005 mass% or more and 0.06 mass% or less, more preferably 0.01 mass% or more and 0.06 mass% or less.

N:0.0060mass%以下
Nは、歪時効の主因の1つとなる有害な成分であり、含有量があまり多いと多量のTiやAlの添加が必要になるため0.0060mass%を上限とする。ただし、加工性のさらなる向上の観点からは好ましくは0.0040mass%以下、より好ましくは0.0030mass%以下である。なお、含有量は少ない方が望ましいが、0.0003mass%未満になると現状技術では著しく製造コストが上昇するので実用的でない。
N: 0.0060 mass% or less N is a harmful component that is one of the main causes of strain aging. If the content is too large, a large amount of Ti or Al must be added, so the upper limit is 0.0060 mass%. However, from the viewpoint of further improving workability, the content is preferably 0.0040 mass% or less, more preferably 0.0030 mass% or less. It is desirable that the content is small, but if the content is less than 0.0003 mass%, it is not practical because the current technology significantly increases the production cost.

次に、この発明鋼の好適製造条件について述べる。
製鋼・鋳造条件は常法にしたがって行うことで良い。
熱間圧延仕上温度は冷延、焼鈍後の加工性を良好にするため最低でも 750℃を必要とする。これ未満の温度では、熱延板中の圧延組織の残存が顕著となり、プレス成形性に有利な集合組織の形成に不利となる。一方、1000℃を超えて圧延を終了すると熱延板組織の粗大化が生じ、やはりプレス成形性に有利な集合組織が得られない。従って熱間圧延仕上温度は 750℃以上、1000℃以下とすることが好ましい。
冷間圧延においては、冷延圧下率を60%以上にしないと十分な加工性が得られないので、冷延圧下率は60%以上、好ましくは70%以上のとすることが有利である。一方、冷延圧下率を95%以上とすると加工性が劣化するので、その上限は95%とすることが好ましい。
Next, preferable production conditions of the steel of the present invention will be described.
Steelmaking and casting conditions may be performed according to a conventional method.
The hot rolling finish temperature should be at least 750 ° C to improve the workability after cold rolling and annealing. At a temperature lower than this, the rolled structure in the hot-rolled sheet is remarkably left, which is disadvantageous for forming a texture advantageous for press formability. On the other hand, if the rolling is completed at a temperature exceeding 1000 ° C., the structure of the hot-rolled sheet becomes coarse, and a texture advantageous for press formability cannot be obtained. Therefore, it is preferable that the hot rolling finishing temperature be 750 ° C or more and 1000 ° C or less.
In cold rolling, sufficient workability cannot be obtained unless the rolling reduction is 60% or more. Therefore, the cold rolling reduction is advantageously 60% or more, preferably 70% or more. On the other hand, if the cold rolling reduction is 95% or more, the workability deteriorates. Therefore, the upper limit is preferably set to 95%.

めっきは連続式溶融亜鉛めっき設備で行うことが望ましい。冷間圧延後の再結晶焼鈍温度は、700 ℃以上 950℃以下であればよいが、望ましくは 800℃以上で焼鈍するのがよい。焼鈍後は 380〜530 ℃の温度域に急冷する。急冷停止温度が 380℃未満では不めっきが発生し、一方 530℃超えではめっき表面にムラが発生するため好ましくない。急冷後は引き続いてAlを0.12〜0.145 mass%含有する溶融亜鉛めっき浴に浸漬してめっきする。浴中のAl含有量が0.12mass%未満では合金化が進み過ぎてめっき密着性(耐パウダリング性)が劣化する。一方、0.145 mass%超えでは不めっきが発生する。   The plating is desirably performed in a continuous galvanizing facility. The recrystallization annealing temperature after the cold rolling may be 700 ° C. or more and 950 ° C. or less, but preferably 800 ° C. or more. After annealing, it is rapidly cooled to a temperature range of 380 to 530 ° C. If the quenching stop temperature is less than 380 ° C, non-plating occurs, while if it exceeds 530 ° C, the plating surface becomes uneven, which is not preferable. After quenching, it is subsequently immersed in a hot-dip galvanizing bath containing 0.12 to 0.145 mass% of Al for plating. If the Al content in the bath is less than 0.12 mass%, alloying proceeds excessively and the plating adhesion (powdering resistance) deteriorates. On the other hand, when it exceeds 0.145 mass%, non-plating occurs.

めっきに続く加熱による合金化を、めっき層中のFe含有率が9〜12%となるように実施する。すなわち、 450〜550 ℃の温度範囲にて、14秒間以上、28秒間以下の加熱を行って合金化する。加熱温度が 450℃未満あるいは加熱時間が14秒間未満では合金化が十分行われず、Fe含有率が9%未満となって耐フレーキング性が劣化する。一方、加熱温度が 550℃超えあるいは加熱時間が28秒間超えでは合金化が過度に進み、耐パウダリング性が劣化する。   Alloying by heating subsequent to plating is performed so that the Fe content in the plating layer is 9 to 12%. That is, the alloy is formed by heating at a temperature of 450 to 550 ° C. for 14 seconds or more and 28 seconds or less. If the heating temperature is less than 450 ° C. or the heating time is less than 14 seconds, alloying is not sufficiently performed, and the Fe content is less than 9%, and the flaking resistance is deteriorated. On the other hand, if the heating temperature exceeds 550 ° C. or the heating time exceeds 28 seconds, alloying proceeds excessively, and the powdering resistance deteriorates.

亜鉛めっき浴の浴温は 450〜490 ℃の範囲とし、浴に侵入させる板の温度は浴温以上、(浴温+10℃)以下とすることが好ましい。浴温が 450℃未満あるいは侵入板温が浴温未満であると、亜鉛の凝固が促進されてめっき付着量の調整が困難となる。一方、浴温が 490℃超えあるいは侵入板温が(浴温+10℃)超えであると鋼板から浴中への鉄の溶出が促進されてドロスを作り表面欠陥を生じ易くなる。
なお、この発明によって得られる鋼板は、表面に潤滑剤を塗布するなどの特殊な処理を施してさらにプレス成形性、熔接性、あるいは耐食性の改善を行ってもこの発明の特性には変わりない。またこの発明の鋼板(あるいはこの発明の鋼板の表面に特殊な処理を施した鋼板)に、形状矯正などの目的で調質圧延を行ってもこの発明の特性に変わりはない。
It is preferable that the bath temperature of the galvanizing bath be in the range of 450 to 490 ° C., and the temperature of the plate to be penetrated into the bath is not lower than the bath temperature and not higher than (bath temperature + 10 ° C.). If the bath temperature is lower than 450 ° C. or the intrusion plate temperature is lower than the bath temperature, solidification of zinc is promoted, and it becomes difficult to adjust the amount of plating. On the other hand, when the bath temperature exceeds 490 ° C or the intruding plate temperature exceeds (bath temperature + 10 ° C), the elution of iron from the steel sheet into the bath is promoted, and dross is formed, which tends to cause surface defects.
The properties of the present invention do not change even if the steel sheet obtained by the present invention is subjected to a special treatment such as applying a lubricant to the surface to further improve press formability, welding property, or corrosion resistance. Further, even if the steel sheet of the present invention (or the steel sheet obtained by subjecting the surface of the steel sheet of the present invention to a special treatment) is subjected to temper rolling for the purpose of shape correction, the characteristics of the present invention are not changed.

転炉にて溶製した表2に示す成分組成の鋼スラブを素材として熱間圧延を行い、続いて酸洗後冷間圧延により板厚:0.8mm に圧延した後、連続溶融亜鉛めっきラインでめっきを施し、得られた鋼板について引張特性およびめっき特性を調査した。なお、めっき浴温は460 〜480 ℃の範囲、侵入板温はめっき浴温以上、浴温+10℃以下、金合化の条件は480 〜540 ℃の温度範囲で15〜28秒間の範囲の加熱保持とした。   Hot rolling was performed using a steel slab having the composition shown in Table 2 which was melted in a converter, then was pickled and then cold-rolled to a thickness of 0.8 mm. Plating was performed, and tensile properties and plating properties of the obtained steel sheets were investigated. The plating bath temperature ranges from 460 to 480 ° C, the intrusion plate temperature is higher than the plating bath temperature, the bath temperature + 10 ° C or lower. It was held.

Figure 2004270038
Figure 2004270038

上記製造条件として、熱間圧延仕上温度(FDT)、冷間圧延圧下率、焼鈍温度、急冷停止温度、めっき浴中のAl含有量および合金化後のめっき層中Fe含有率などの調査結果を表3にまとめて示す。   Investigation results such as the hot rolling finish temperature (FDT), cold rolling reduction, annealing temperature, quenching stop temperature, Al content in the plating bath, and Fe content in the plating layer after alloying were prepared as the above manufacturing conditions. The results are shown in Table 3.

Figure 2004270038
Figure 2004270038

ここで、引張り特性はJIS5号試験片を使用して測定し、めっき特性は前記の実験の場合と同様の方法で試験・評価した。
表2および3から、この発明の適合例はいずれもTS×Elで示されるTS−Elバランスに優れると同時に、優れためっき特性を有していることがわかる。
Here, the tensile properties were measured using a JIS No. 5 test piece, and the plating properties were tested and evaluated in the same manner as in the above-described experiment.
From Tables 2 and 3, it can be seen that all of the applicable examples of the present invention are excellent in the TS-El balance represented by TS × El and also have excellent plating characteristics.

Claims (1)

C:0.0005mass% 以上、 0.0050mass%以下、
Si:0.3 mass% 以上、 2.5 mass%以下(但し、0.3 mass% を除く)、
Mn:0.1 mass% 以上、 2.5 mass%以下、
Ti:0.003 mass% 以上、 0.10mass%以下、
Nb:0.003 mass% 以上、 0.10mass%以下、
B:0.0005mass% 以上、 0.0080mass%以下、
P:0.040 mass% 以上、 0.18mass%以下、
S:0.015 mass% 以下、
Al:0.005 mass% 以上、 0.10mass%以下および
N:0.0060mass% 以下
で、かつ、SiおよびMnを下記式(1) の関係のもとで含有し、残部はFeおよび不可避的不純物の組成よりなる鋼板表面に、めっき層中のFe含有率が9〜12%の合金化溶融亜鉛めっき層を有してなるめっき特性に優れる高張力合金化溶融亜鉛めっき鋼板。

1.5 (maas% Mn)−2≦(mass% Si)≦2(mass% Mn) ----(1)
C: 0.0005 mass% or more, 0.0050 mass% or less,
Si: 0.3 mass% or more, 2.5 mass% or less (excluding 0.3 mass%),
Mn: 0.1 mass% or more, 2.5 mass% or less,
Ti: 0.003 mass% or more, 0.10 mass% or less,
Nb: 0.003 mass% or more, 0.10 mass% or less,
B: 0.0005 mass% or more, 0.0080 mass% or less,
P: 0.040 mass% or more, 0.18 mass% or less,
S: 0.015 mass% or less,
Al: 0.005 mass% or more, 0.10 mass% or less and N: 0.0060 mass% or less, and Si and Mn are contained under the relationship of the following formula (1), and the balance is based on the composition of Fe and unavoidable impurities. A high-tensile alloyed hot-dip galvanized steel sheet having excellent galvanizing properties, comprising an alloyed hot-dip galvanized layer having a Fe content of 9 to 12% in the coating layer on the surface of the steel sheet.
Record
1.5 (maas% Mn) -2 ≦ (mass% Si) ≦ 2 (mass% Mn) ---- (1)
JP2004181336A 1994-02-15 2004-06-18 High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics Expired - Fee Related JP4218598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004181336A JP4218598B2 (en) 1994-02-15 2004-06-18 High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1836494 1994-02-15
JP2004181336A JP4218598B2 (en) 1994-02-15 2004-06-18 High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02650195A Division JP3716439B2 (en) 1994-02-15 1995-02-15 Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics

Publications (2)

Publication Number Publication Date
JP2004270038A true JP2004270038A (en) 2004-09-30
JP4218598B2 JP4218598B2 (en) 2009-02-04

Family

ID=33133220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004181336A Expired - Fee Related JP4218598B2 (en) 1994-02-15 2004-06-18 High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Country Status (1)

Country Link
JP (1) JP4218598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519415A (en) * 2007-02-23 2010-06-03 コラス・スタール・ベー・ブイ Cold rolled and continuously annealed high strength steel strip and method for producing the steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519415A (en) * 2007-02-23 2010-06-03 コラス・スタール・ベー・ブイ Cold rolled and continuously annealed high strength steel strip and method for producing the steel

Also Published As

Publication number Publication date
JP4218598B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP2000265244A (en) Hot-dip galvanized steel sheet excellent in strength and ductility, and its manufacture
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP2002206139A (en) High strength galvannealed steel sheet and high strength galvanized steel sheet having excellent plating adhesion and press formability and production method therefor
KR100308003B1 (en) High Strength Alloy Hot Dip Galvanized Steel Sheet
JP2826259B2 (en) Method for producing high-tensile cold-rolled steel sheet with excellent press formability
JP2005008904A (en) Cold rolled high tensile strength steel sheet and manufacturing method
JPH06306531A (en) Cold rolled steel sheet for machining excellent in baking hardenability and surface treated steel sheet
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
JP3464611B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and corrosion resistance and method for producing the same
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3475560B2 (en) High tensile alloyed hot-dip galvanized steel sheet excellent in plating characteristics and secondary work brittleness resistance and method for producing the same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JPS6347338A (en) Production of high tension zinc hot dip coated steel sheet
JP2003064446A (en) Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
JPH05132740A (en) Production of hot-dip galvanized steel sheet for deep drawing excellent in pitting corrosion resistance
JP2002317245A (en) High strength galvanized steel sheet having excellent press workability and production method therefor
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JP2004256893A (en) High strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JPH0578779A (en) High strength steel sheet excellent in strength-flange formability and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081103

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees