JP2005008904A - Cold rolled high tensile strength steel sheet and manufacturing method - Google Patents

Cold rolled high tensile strength steel sheet and manufacturing method Download PDF

Info

Publication number
JP2005008904A
JP2005008904A JP2003170969A JP2003170969A JP2005008904A JP 2005008904 A JP2005008904 A JP 2005008904A JP 2003170969 A JP2003170969 A JP 2003170969A JP 2003170969 A JP2003170969 A JP 2003170969A JP 2005008904 A JP2005008904 A JP 2005008904A
Authority
JP
Japan
Prior art keywords
steel sheet
phase
less
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003170969A
Other languages
Japanese (ja)
Other versions
JP3969350B2 (en
Inventor
Jun Haga
純 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003170969A priority Critical patent/JP3969350B2/en
Publication of JP2005008904A publication Critical patent/JP2005008904A/en
Application granted granted Critical
Publication of JP3969350B2 publication Critical patent/JP3969350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold rolled high tensile strength steel sheet having excellent press formability, bake hardening property and natural aging proof property and also to provide its manufacturing method. <P>SOLUTION: The cold rolled high tensile strength steel sheet has a chemical composition consisting of, by mass, >0.01 to <0.03% C, ≤0.5% Si, 0.5 to 2.5% Mn, ≤0.05% P, ≤0.01% S, 0.005 to 0.15% sol.Al, <0.008% N, ≤0.0025% B, 0.02 to 1.5% Mo and the balance Fe with impurities and satisfying the relations given by expressions sol.Al≥9.7×N and B≥1.5×10<SP>-4</SP>×(Mn<SP>2</SP>+1) and also has a structure in which a primary phase is composed of a ferrite phase and a low temperature transformation phase is contained as a secondary phase. Further, the cold rolled high tensile strength steel sheet can contain 0.003 to 0.15% Ti and/or 0.01 to 1.5% Cr. When manufacturing the steel sheet, hot rolling is performed and the resultant steel plate is coiled at 550 to 750°C, pickled and cold rolled, and the resultant steel sheet is annealed at a temperature between the Ac<SB>1</SB>transformation point and a temperature lower than the Ac<SB>3</SB>transformation point. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プレス加工等により様々な形状に成形して利用される高張力冷延鋼板とその製造方法、特に、焼付硬化性、耐常温時効性ならびに成形性の良好な高張力冷延鋼板とその製造方法に関する。
【0002】
【従来の技術】
産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。プレス成形して使用される冷延鋼板についても、高い強度が要求されるようになり、高張力冷延鋼板の適用が検討されている。特に、自動車用鋼板に関しては、地球環境への配慮等から、車体を軽量化して燃費を向上させるために、薄肉高張力冷延鋼板の需要が著しく高まってきている。
【0003】
例えば自動車外板パネルでは、耐デント性、すなわち、指で押したり石が当たったときに永久変形を起こさない性質を備えていることが必要である。耐デント性は、プレス成形し塗装焼付けした後の降伏応力が高いほど、また、鋼板の板厚が厚いほど向上するため、降伏応力の高い鋼板を使用できれば薄肉化が可能となる。
【0004】
一方、プレス成形においては、使用される鋼板の厚さが薄いほど、割れやしわが発生しやすくなるため、優れた深絞り性が必要となり、そのための鋼板特性としては、高いランクフォード値 (r値) が要求される。また、プレス型に良くなじみ、かつ、成形品をプレス型から外したときにスプリングバックの発生が少ない、すなわち、形状凍結性が良好であることも必要であり、プレス成形前の降伏応力が低いことが要求される。
【0005】
したがって、プレス成形前の特性として高いr値および低い降伏応力を有し、プレス成形して塗装焼付けした後においては高い降伏応力を持つ鋼板が、自動車用鋼板として適することになる。
【0006】
従来にあっても、これらの特性を満足させるべく開発された鋼板として、焼付硬化性鋼板(BH 鋼板) がある。これは、固溶C、N原子が転位上へ偏析して転位を固着し降伏応力が上昇する、いわゆる歪時効硬化現象を取り入れた鋼板である。BH鋼板を利用する過程においては、プレス成形時に導入される転位が、塗装焼付時に固溶C、Nによって固着されて降伏応力が上昇する。
【0007】
BH鋼板に関してはこれまでに多くの提案がなされてきている。例えば、特許文献1、特許文献2には、極低炭素鋼にTiおよびNbを添加し、さらにSi、Mn、Pを添加して引張強度を高めた、深絞り性に優れたBH鋼板の製造方法が開示されている。しかし、この方法には以下のような問題点がある。
【0008】
(1) 引張強度を高めるために、Si、Mn、P等の固溶強化元素を添加すると、引張強度のみならず降伏応力も上昇する。この結果、形状凍結性が劣化し、また、面歪みも発生しやすくなる。さらに、深絞り性劣化の原因にもなり、これは特にMnを添加した場合において著しい。
【0009】
(2) 溶融めっき鋼板を製造する場合、Si添加による不めっきの発生、P添加による合金化処理性の劣化等が生じる。
(3) 焼付硬化性と耐常温時効性の両立が困難であり、常温非時効性の確保の必要性から、実質、焼付硬化量の上限は50MPa 程度である。
【0010】
また、特許文献3、特許文献4、特許文献5には、フェライト中にマルテンサイトを分散させた複合組織を有する低炭素Alキルド鋼板の製造方法が開示されている。複合組織をもった鋼板は、引張強度が高く、降伏応力が低く、さらに、焼付硬化量が大きくても常温非時効性が確保できるという特徴を持つ。しかし、平均r値が高々1.0 程度であり、深絞り性に劣るために、自動車外板パネルへの適用が困難であるのが実情である。
【0011】
これに対し、特許文献6には、極低炭素鋼にNbとBを添加し、ミクロ組織をアシキュラーフェライトとフェライトの複合組織とした焼付硬化性と常温非時効性とに優れた加工用冷延鋼板の製造方法が開示されている。極低炭素鋼をベースとすることで高r値が得られるのであるが、引張強度が高々380MPaと低く、それ以上の高強度化は困難である。
【0012】
【特許文献1】特開昭59−31827 号公報
【特許文献2】特開昭59−38337 号公報
【特許文献3】特開昭55−50455 号公報
【特許文献4】特開昭56−90926 号公報
【特許文献5】特開昭56−146826号公報
【特許文献6】特開平2−232316号公報
【0013】
【発明が解決しようとする課題】
これらの従来技術の問題点に関して、本発明者の検討の結果によれば、C含有量が低いと、ミクロ組織を複合組織化しても十分な焼付硬化性が得られない場合があることが判明した。焼付硬化性の評価は、通常、2%の引張予ひずみを付与し、170 ℃程度で約20分間の塗装焼付け処理に相当する熱処理を施した後、引張試験を行い、熱処理後の降伏応力と2%変形応力の差を求めてこれを焼付硬化量とし、焼付硬化量が大きいほど焼付硬化性に優れるとされている。しかしながら、C含有量が約0.03%以下の鋼板では、予ひずみ量の低下に伴い焼付硬化量が低下し、予ひずみ量が約0.5 %以下の場合において、焼付硬化性がほとんど消失してしまうのである。
【0014】
ところで、近年、自動車のデザインが多様化し、プレス成形時に生じるひずみ量は部位により様々であり、ほぼ0 %から10%程度の範囲で分布するが、C含有量の低い鋼板では、ひずみ量の小さな箇所では焼付硬化量が低くなり、その結果、耐デント性が確保できないといった問題が生じる。
【0015】
ここに、本発明は、従来技術における上述のような問題点を知り、その問題点を解決するためになされたものであり、その課題は、プレス成形性が良好で、優れた焼付硬化性と耐常温時効性を有する高張力冷延鋼板、およびその製造方法を提供することである。
【0016】
【課題を解決するための手段】
本発明者は、上述の課題を解決すべく、複合組織鋼板の引張特性、焼付硬化性および耐常温時効性に及ぼす添加元素の影響について詳細な調査を行った。
【0017】
供試鋼は、質量%で、C:0.03%未満、Si:0.01%、Mn:2.5 %以下、P:0.005 %、S:0.005 %、sol.Al:0.005 〜0.1 %、N:0.003 %、Mo:0.3 %以下、B:0.002 %以下、残部Feおよび不可避不純物からなる化学組成を有するものであった。
【0018】
このような化学組成を有する鋼片を、1240℃に加熱した後、900 ℃以上の温度範囲で熱間圧延し、500 〜650 ℃で巻き取り、得られた熱延鋼板を酸洗し、80%の圧延率で冷間圧延を行い、次いで連続焼鈍した。
【0019】
なお、鋼片と鋼板とで化学組成の事実上の差異は認められなかった。
得られた焼鈍板の引張特性、焼付硬化性、耐常温時効性を調査した。ここに、引張予ひずみを付与することなく170 ℃で20分間の熱処理を施した焼鈍板の降伏応力と、そのような熱処理を施さず製造ままの焼鈍板の降伏強度の差をBHと定義した。このような予備試験の結果、次の(A) ないし(F) のようなことが分かった。
【0020】
(A) BHを30MPa 以上とするためには、鋼のミクロ組織をフェライト相と低温変態生成相の複合組織とする必要がある。これは、フェライト相とマルテンサイト相等の低温変態生成相が混在すると、フェライト内部に転位が導入され、熱処理により、その転位に鋼中の固溶Cが偏析して転位が固着されるため、予ひずみを付与しなくとも、降伏応力が増加するためと考えられる。
【0021】
(B)C含有量が0.03%未満である鋼板においてフェライト相と低温変態生成相の複合組織を安定して得るためには、BおよびMnを含有させる必要がある。
(C)図1は、BHと、B含有量とMn含有量の関係を示すグラフである。図面中の○印はBHが30MPa 以上、●印はBHが30MPa 未満であることを示す。
【0022】
同図に示されているように、BHは、B含有量およびMn含有量と相関関係を有し、BHを高くするためには、Mn含有量が多い場合ほどB含有量を増加させる必要があり、下記式(2) を満たす範囲であれば30MPa 以上のBHが得られることが分かる。
【0023】
B≧1.5 ×10−4×(Mn+1) ・・・(2)
この理由は明らかではないが、(a) BHは焼鈍板中に存在する転位へのC原子の偏析量が多いほど増加すること、(b) C原子とMn原子の間には引力相互作用が働き、Mn含有量が増加するにつれて、Cの活量が低下して転位への偏折量が低下し、BHが低下すること、(C) BはC原子とMn原子間の相互作用を弱めるため、B含有量が増加するにつれて、Cの転位偏析量が増加し、BHが増加することによると推定される。
【0024】
(D) BHが大きくなるに伴い常温時効劣化が起こりやすくなるが、Moを含有させることにより、BHが30MPa を超える場合においても常温非時効性が確保される。なお、ここで言う常温非時効性とは、常温で3 ケ月間放置した焼鈍板の降伏点伸びが0.2 %以下であることを意味する。
【0025】
(E)複合組織鋼板のr値は、C含有量の減少に伴い上昇するが、一方、C量が0.01%以下では、390MPa以上の引張強度が得られない場合がある。
(F)図2は、平均r値とsol.Al含有量/N含有量の関係を示すグラフである。r値は、sol.Al含有量がN含有量に対して多くなるに伴い上昇することが分かる。このr値の上昇は、熱間圧延後の巻取温度が高い場合ほど顕著である。この原因は、sol.Al含有量が多いほど、また、熱間圧延後の巻取温度が高いほど、熱延板中にAlN が析出しやすく、固溶N量が減少するため、焼鈍時に、深絞り性に好ましい再結晶集合組織が形成されるためと考えられる。
【0026】
以上の結果から、Mn含有量に応じて一定量以上のBを含有させ、さらにMoを添加することにより、常温非時効性を確保しつつ、BHを高めることが可能となる。また、N含有量に応じて一定量以上のsol.Alを含有させ、熱間圧延後、高温で巻取ることにより、高強度化に伴うr値の低下を補償することが可能である。
【0027】
ここに、本発明は、かかる知見に基づいてなされたものであり、その要旨は次のとおりである。
(1)質量%で、C:0.01%超0.03%未満、Si:0.5 %以下、Mn:0.5 〜2.5 %、P:0.05%以下、S:0.01%以下、sol.Al:0.005 〜0.15%、N:0.008 %未満、B:0.0025%以下、Mo:0.02〜1.5 %を含有し、かつ、下記式(1) 、(2) で与えられる関係を満足し、残部がFeおよび不純物からなる化学組成を有し、主相がフェライト相であり第二相に低温変態生成相を含む組織を備えたことを特徴とする高張力冷延鋼板。
【0028】
sol.Al≧9.7 ×N ・・・・・(1)
B≧1.5 ×10−4×(Mn+1) ・・・・・(2)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものである。
【0029】
(2)前記化学組成が、質量%で、さらに、Ti:0.003 〜0.15%を含有することを特徴とする上記(1) 記載の高張力冷延鋼板。
(3)前記化学組成が、質量%で、さらに、Cr:0.01〜1.5 %を含有することを特徴とする上記(1) または(2) 記載の高張力冷延鋼板。
【0030】
(4)上記(1) ないし(3) のいずれかに記載の化学組成を有する鋼に、熱間圧延を行い、550 〜750 ℃でコイル状に巻き取り、酸洗し冷間圧延を行った後、Ac変態点以上Ac変態点未満の温度で焼鈍をすることを特徴とする高張力冷延鋼板の製造方法。
【0031】
かくして、本発明によれば、予ひずみを付与しなくとも、170 ℃で20分間の熱処理により降伏応力が30MPa 以上、好ましくは50MPa 以上上昇する、引張強度が390 〜490MPa級の高張力冷延鋼板、およびその製造方法が提供される。
【0032】
【発明の実施の形態】
次に、本発明にかかる高張力冷延鋼板のミクロ組織、鋼成分の化学組成および圧延、焼鈍条件等の限定理由について詳述する。なお、本明細書において鋼成分の含有量はすべて質量%で表示する。
【0033】
(a)鋼のミクロ組織
本発明にかかる高張力鋼板は、フェライト相中に低温変態生成相が分散した複合組織を備えることとする。これは、鋼板に予ひずみを付与しなくとも、良好な焼付硬化性を得ることができるためである。このときの低温変態生成相の種類は特に限定しないが、鋼板の降伏応力をできるだけ低下させるためには、マルテンサイト相とすることが望ましい。
【0034】
なお、低温変態生成相として2種以上の相、例えば、マルテンサイト相とベイナイト相を含んでいてもよい。
低温変態生成相が主相となると、深絞り性が著しく劣化するため、主相がフェライト相であり、第二相が低温変態生成相であることとする。第二相の体積率は10%未満とすることが好ましく、7%未満とすればさらに好ましい。
【0035】
また、フェライト相と低温変態生成相のほかに残留オーステナイト相を含んでいてもよいが、耐常温時効性を良好に保つためには、残留オーステナイト相の体積率を、低温変態相の体積率よりも小さくし、かつ、3 %未満とすることが好ましい。
【0036】
ここに、「低温変態生成相」とは、マルテンサイト相あるいはベイナイト相等、低温変態により生成される組織をいう。その他、アシキュラーフェライト相等を挙げることができる。
【0037】
(b)鋼の化学組成
C:
C含有量が0.03%以上であると、鋼板の深絞り性が著しく損なわれる。一方、0.01%以下であると所望の引張強度が得られなくなる。したがって、含有量の範囲を0.01%超0.03%未満と定めた。望ましくは、その下限は0.013 %、上限は0.02%である。
【0038】
Si
Siは、鋼中に不可避的に含有される元素であるが、鋼板の化成処理性を著しく劣化させる。また、めっき鋼板を製造する場合、めっき密着性を低下させる。したがって、その含有量は少ないはど好ましい。しかし、Siは鋼板を強化する作用を有するので、鋼を強化する目的で、最高0.5 %まで含有させることができる。好ましくは0.1 %以下、さらに好ましくは0.02%以下である。
【0039】
Mn:
Mnは、鋼の焼入性を向上させる作用があり、フェライト相中に低温変態生成相を分散させるために0.5 %以上含有させる。一方、過度に含有させると深絞り性が劣化するので、含有量の上限を2.5 %とする。また、Mnは、焼付硬化性を劣化させるので、B含有量との前記式(2) を満たす範囲に限定する。好ましくは、下限は0.7 %、上限は1.7 %である。
【0040】
P:
Pは、鋼中に不可避的に含有される元素であるが、粒界に偏析して二次加工脆性および溶接性を劣化させる。また、めっき鋼板を製造する場合、めっき密着性を低下させる。したがって、その含有量は少ないほど好ましい。ただし、Pは安価に鋼を強化することができ、また、深絞り性をさほど劣化させることなく鋼を強化できるため、所望の強度を得るために0.05%以下の範囲で含有させてもよい。好ましくは、下限は0.01%、上限は0.035 %である。
【0041】
S:
Sは鋼中に不可避的に含有される不純物であり、粒界に偏析して鋼を脆化させるため、その含有量は少ないほど好ましく、0.01%以下と定めた。
【0042】
sol.Al
Alは溶鋼を脱酸するために用いられるだけでなく、複合組織鋼板の深絞り性を向上させる働きがあり、本発明では十分に含有させる。このためには、前記(1) 式を満足するsol.Alを含有させる。この式は、鋼中の全てのNをAlN とするのに必要なAlの化学当量に対し、5倍以上のsol.Alを含有させることを意味する。好ましいのは、0.02%超で、かつN含有量の13.5倍以上を含有させ、下記(3) 式を満足させることであり、さらに好ましいのは、0.02%超で、かつ19.3倍以上含有させ、下記(4) 式を満足させることである。
【0043】
sol.Al ≧13.5×N ・・・(3)
sol.Al ≧19.3×N ・・・(4)
また、脱酸処理により鋼中に残存するsol.Al含有量が0.005 %未満の場合には脱酸が不十分となり、0.15%を超えて含有させると、効果が飽和して不経済となる。このため、sol.Alの含有量を0.005 〜0.15%で、かつ、前記(2) 式を満たす範囲と定めた。
【0044】
N:
Nは、鋼中に不可避的に含有される元素であり、含有量の増加は深絞り性および耐常温時効性を劣化させる。したがって、0.008 %未満と定めた。好ましい範囲は0.005 %未満、さらに好ましい範囲は0.004 %未満である。
【0045】
B:
Bは焼入性を向上させるばかりでなく、焼付硬化性を向上させる働きがあり、本発明における重要な構成成分である。Mn添加による焼付硬化性の劣化を補償し、前述のBHを30MPa 以上とするために、前記(2) 式を満たす範囲に限定する。ただし、深絞り性を劣化させるので、上限を0.0025%とする。好ましい範囲は0.0020%以下である。下限は特に規定されないが、好ましくは0.0002%以上である。
【0046】
Mo
Moは、耐常温時効性を向上させるために0.02%以上含有させる。しかし、1.5 %を超えて含有させると効果が飽和して不経済となるばかりか、鋼板の化成処理性が劣化する。したがって、含有量の範囲を0.02〜1.5 %と定めた。しかし、Moは高価な元素であり、その経済性を考えたとき、上限は0.5 %とするのがよい。好ましい範囲は0.05〜0.25%、さらに好ましい範囲は0.05%〜0.15%である。
【0047】
Ti
Tiは、所望により含有され、特に含有させなくてもよいが、耐常温時効性をさらに向上させるために0.003 〜0.15%の範囲で含有させてもよい。Tiは鋼中のNをTiN として析出固定するため、Nによる時効劣化が抑制される。この効果を得るためには、0.003 %以上含有させることが好ましい。一方、0.15%を超えて含有させると効果が飽和して不経済となる。したがって、Tiを添加する場合、その含有量の範囲を0.003 〜0.15%と定めた。
【0048】
Cr
Crも、特に含有させる必要はないが、焼入性を向上させる作用があるため、含有させることが好ましい。ただし、Crは鋼板の化成処理性を劣化させるため、上限を1.5 %とする。一方、含有量が0.01%未満であると、焼入性向上効果が得られない。したがって、0.01〜1.5 %の範囲に限定した。好ましい範囲は、0.05〜1.0 %、さらに好ましい範囲は、0.10%超0.8 %以下である。
【0049】
本発明にかかる鋼板の化学組成は、残部Feおよび不純物であるが、このときの不純物としては、Cu、Ni、V、Ca、Sn、Sbなどが挙げられ、Cu、Niなどはそれぞれ0.1 %以下、V、Ca、Sn、Sbなどは0.01%以下の範囲で許容される。
【0050】
(c)焼鈍条件等の限定理由
前記の化学組成を有する鋼は、適宜手段で溶製後、連続鋳造法、または、鋼塊とした後、分塊圧延する方法などにより鋼片とされる。この鋼片は再加熱するか、連続鋳造または分解圧延後の高温の鋼片の場合は、そのまま、または、補助加熱を施して熱間圧延が行われる。
【0051】
熱間圧延の条件は特に規定しないが、オーステナイト低温域で仕上げ圧延を行って、熱延板の結晶粒を微細化し、焼鈍時に深絞り性に好ましい再結晶集合組織を発達させる観点から、Ar変態点〜Ar変態点+100 ℃の範囲で最終圧下を行うことが望ましい。なお、最終圧下をこの温度範囲で行うために、粗圧延と仕上げ圧延の間で、粗圧延材を加熱しても良い。この際に、粗圧延材の後端が先端よりも高温となるように加熱し、仕上げ圧延開始時の粗圧延材全長にわたる温度の変動が140 ℃以下となるようにすることが望ましい。これにより、製品特性のコイル内均一性が向上する。
【0052】
粗圧延材の加熱は、例えば粗圧延機と仕上げ圧延機の間にソレノイド式誘導加熱装置を設け、誘導加熱装置前の長手方向温度分布などに基づいて加熱昇温量を制御することにより可能である。
【0053】
熱間圧延後は、鋼板を冷却し、550 ℃以上でコイル状に巻取る。これは、550 ℃未満で巻取ると、巻取り後に、AlN の析出が不十分となり、Alの深絞り性向上効果が不十分となるためである。望ましいのは、600 ℃以上で巻取ることである。一方、巻取り温度が750 ℃を上回ると、スケール生成による歩留まりの低下を招くために、巻取り温度の上限を750 ℃と定めた。
【0054】
冷間圧延は、酸洗等により脱スケールした後に、常法に従って行われる。冷間圧延後に行われる再結晶焼鈍によって深絞り性に好ましい再結晶集合組織を発達させるために、圧下率を70%以上とすることが好ましい。
【0055】
焼鈍:
冷間圧延された鋼板は、必要に応じて公知の方法に従って脱脂などの処理が施され、再結晶焼鈍される。この際の焼鈍温度は、鋼のミクロ組織を主相がフェライト相であり第二相が低温変態生成相である複合組織とするために、Ac変態点以上、Ac変態点未満の温度範囲とする。これは、焼鈍温度がAc変態点未満であると、低温変態生成相が得られず、一方、Ac変態点以上であると、低温変態生成相のみからなる単相組織となり、焼付硬化性および深絞り性が著しく低下するためである。
【0056】
ここに、Ac変態点とはα→γ変態開始温度、Ac変態点とはα→γ変態完了温度である。なお、低温変態生成相を得るために焼鈍後550 ℃までの平均冷却速度を5℃/s以上とすることが好ましい。
【0057】
焼鈍後は、常法にしたがって、調質圧延を施してもよいが、伸びの低下を招くので、調質圧延の伸び率を1.0 %以下とすることが好ましい。さらに好ましいのは伸び率を0.4 %以下とすることである。
【0058】
本発明の方法に従って製造される冷延鋼板は、これを母材として電気めっきしたり、塗装鋼板にして用いることもできる。また、冷間圧延後の鋼板を、公知の溶融めっき装置に装備されている加熱炉で焼鈍をしてから溶融めっきを行い、めっき鋼板や合金化溶融めっき鋼板にしてもかまわない。もちろん、連続焼鈍炉で焼鈍を施した後、溶融めっきをして、めっき鋼板や合金化溶融めっき鋼板にしても良い。ただし、Cr含有量が 0.1%を超える場合は、めっきの合金化ムラが生じやすくなるため、合金化溶融めっき鋼板以外の鋼板とすることが好ましい。
【0059】
【実施例】
本発明の実施例について以下に説明する。
実験用真空溶解炉を用いて、表1に示される化学組成の鋼を溶解し、鋳造した。これらの鋼塊を熱間鍛造により厚さ30mmの鋼片とし、電気加熱炉を用いて1240℃に加熱し、1時間保持した。鋼片を加熱炉から抽出した後、実験用熱間圧延機を用いて、900 ℃以上の温度範囲で熱間圧延を開始し、厚さ5mmの熱延鋼板を得た。
【0060】
熱間圧延後直ちに強制空冷あるいは水スプレー冷却により500 〜650 ℃まで冷却してこれを巻取り温度とし、同温度に保持された電気加熱炉中に装入して1時間保持した後、20℃/hの冷却速度で炉冷却をして巻取り後の徐冷処理とした。
【0061】
得られた鋼板の両表面を研削して厚さ4mm厚の冷間圧延母材とし、圧延率80%で冷間圧延を行い、表2に示す740 〜860 ℃の均熱温度で40秒間保持する連続焼鈍相当の再結晶焼鈍を施した。その後、これらの焼鈍板に、伸び率0.2 %の調質圧延を施し、その性能を評価した。
【0062】
r値は、圧延方向 (0度方向) 、45度方向、および幅方向 (90度方向) から採取したJIS 5号引張試験片を引張試験に供して測定し、平均r値は、 (r+2×r45+r90) /4から計算することにより求めた。
【0063】
降伏応力(YS)、引張強度(TS)、降伏点伸び(YPE) および全伸びは、幅方向から採取したJIS 5号引張試験片に引張試験を行って求めた。
焼付硬化性は、以下の方法により評価した。冷延鋼板の幅方向からJIS 5号引張試験片を採取し、170 ℃で20分間の熱処理を施した後、引張試験に供した。このとき得られたYSと、熱処理を施さずに引張試験に供して得られたYSの差をBHと定義した。また、幅方向から採取したJIS 5号引張試験片に2%の引張予ひずみを付与し、170 ℃で20分間の熱処理を施した後、引張試験に供した。得られたYSと2%変形応力の差をBHと定義し、これらを焼付硬化性の指標とした。
【0064】
耐常温時効性は、幅方向から採取したJIS 5号引張試験片を、40℃に設定した電気炉中で3ケ月間保持した後、引張試験に供し、降伏点伸び(YPE) を測定することにより評価した。
【0065】
表3に上述のような性能評価の結果をまとめて示す。本発明の範囲内の条件で製造された冷延鋼板についての試験結果 (試番2、7、8、10、11、13、18、19) は、いずれも、平均r値が1.3 以上であり、かつ、YSが240MPa以下であり、良好なプレス成形性を示した。また、BHは30MPa 以上、BHは50MPa 以上であり、優れた焼付硬化性を示した。さらに、40℃で3ケ月間の時効処理後のYPE は0.2 %以下であり、良好な耐常温時効性を示した。
【0066】
【表1】

Figure 2005008904
【0067】
【表2】
Figure 2005008904
【0068】
【表3】
Figure 2005008904
【0069】
【発明の効果】
以上詳述したとおり、本発明によれば、プレス成形などの加工に適用できる十分な成形性を有し、かつ、極めて優れた焼付硬化性を示し、さらに、耐常温時効性に優れた高張力鋼板が製造可能である。したがって、本発明は自動車の車体軽量化を通じて地球環境問題の解決に寄与できるなど産業の発展に寄与するところ大であり、その意義は大きい。
【図面の簡単な説明】
【図1】BHとB含有量とMn含有量の関係を示すグラフである。
【図2】平均r値とsol.Al含有量/N含有量との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile cold-rolled steel sheet that is used by being formed into various shapes by press working or the like, and a manufacturing method thereof, in particular, a high-tensile cold-rolled steel sheet having good bake hardenability, room temperature aging resistance, and formability. It relates to the manufacturing method.
[0002]
[Prior art]
Now that the industrial technology field is highly divided, materials used in each technical field are required to have special and high performance. High-strength cold-rolled steel sheets used by press forming are also required, and application of high-tensile cold-rolled steel sheets is being studied. In particular, regarding automotive steel sheets, the demand for thin-walled high-tensile cold-rolled steel sheets has been remarkably increasing in order to reduce the weight of the vehicle body and improve fuel efficiency in consideration of the global environment.
[0003]
For example, an automobile outer panel needs to have dent resistance, that is, a property that does not cause permanent deformation when pressed by a finger or hits a stone. The dent resistance increases as the yield stress after press forming and paint baking is higher, and as the plate thickness of the steel plate is thicker. Therefore, if a steel plate having a high yield stress can be used, the thickness can be reduced.
[0004]
On the other hand, in press forming, the thinner the steel sheet used, the easier it is to generate cracks and wrinkles. Therefore, an excellent deep drawability is required. Value) is required. In addition, it is necessary to be well-familiar with the press die and to generate less springback when the molded product is removed from the press die, that is, to have good shape freezing property, and low yield stress before press forming. Is required.
[0005]
Therefore, a steel plate having a high r value and a low yield stress as properties before press forming and having a high yield stress after press forming and paint baking is suitable as a steel plate for automobiles.
[0006]
Even in the prior art, there is a bake hardenable steel plate (BH steel plate) as a steel plate developed to satisfy these characteristics. This is a steel sheet incorporating a so-called strain age hardening phenomenon in which solute C and N atoms segregate on dislocations to fix the dislocations and increase the yield stress. In the process of using the BH steel sheet, dislocations introduced at the time of press forming are fixed by solid solutions C and N at the time of coating baking, and the yield stress increases.
[0007]
Many proposals have been made regarding BH steel sheets. For example, Patent Document 1 and Patent Document 2 describe the production of BH steel sheets with excellent deep drawability, in which Ti and Nb are added to ultra-low carbon steel and Si, Mn, and P are added to increase tensile strength. A method is disclosed. However, this method has the following problems.
[0008]
(1) When a solid solution strengthening element such as Si, Mn, or P is added to increase the tensile strength, not only the tensile strength but also the yield stress increases. As a result, the shape freezing property deteriorates and surface distortion is likely to occur. In addition, it causes deterioration of deep drawability, which is particularly remarkable when Mn is added.
[0009]
(2) When manufacturing a hot dip galvanized steel sheet, non-plating due to addition of Si, deterioration of alloying processability due to addition of P, and the like occur.
(3) It is difficult to achieve both bake hardenability and room temperature aging resistance, and the upper limit of the bake hardening amount is substantially about 50 MPa because of the need to ensure room temperature non-aging.
[0010]
Patent Document 3, Patent Document 4, and Patent Document 5 disclose a method for producing a low-carbon Al-killed steel sheet having a composite structure in which martensite is dispersed in ferrite. A steel sheet having a composite structure is characterized by high tensile strength, low yield stress, and the ability to ensure non-aging at room temperature even when the bake hardening amount is large. However, since the average r value is at most about 1.0 and the deep drawability is inferior, it is difficult to apply to an automobile outer panel.
[0011]
On the other hand, in Patent Document 6, Nb and B are added to an ultra-low carbon steel, and the microstructure is a composite structure of acicular ferrite and ferrite, which is excellent in bake hardenability and room temperature non-aging properties. A method for producing a rolled steel sheet is disclosed. Although a high r value can be obtained by using an extremely low carbon steel as a base, the tensile strength is as low as 380 MPa at most, and it is difficult to increase the strength further.
[0012]
[Patent Document 1] JP 59-31827 A
[Patent Document 2] Japanese Patent Laid-Open No. 59-38337
[Patent Document 3] Japanese Patent Laid-Open No. 55-50455
[Patent Document 4] Japanese Patent Laid-Open No. 56-90926
[Patent Document 5] Japanese Patent Laid-Open No. 56-146826
[Patent Document 6] JP-A-2-232316
[0013]
[Problems to be solved by the invention]
Regarding the problems of these prior arts, according to the results of the study by the present inventors, it has been found that if the C content is low, sufficient bake hardenability may not be obtained even if the microstructure is made into a composite structure. did. The bake hardenability is usually evaluated by applying a tensile pre-strain of 2% and applying a heat treatment corresponding to a paint baking process at about 170 ° C. for about 20 minutes, followed by a tensile test to determine the yield stress after heat treatment. It is said that the difference in 2% deformation stress is obtained and used as the bake hardening amount, and the bake hardening amount is improved as the bake hardening amount is larger. However, in steel sheets with a C content of about 0.03% or less, the bake hardening amount decreases with a decrease in the prestrain amount, and when the prestrain amount is about 0.5% or less, the bake hardenability almost disappears. It will be done.
[0014]
By the way, in recent years, the design of automobiles has been diversified, and the amount of strain generated during press forming varies depending on the part and is distributed in the range of about 0% to 10%. However, a steel plate with a low C content has a small amount of strain. The amount of bake-hardening is lowered at the location, and as a result, the problem that dent resistance cannot be ensured occurs.
[0015]
Here, the present invention has been made in order to know the above-mentioned problems in the prior art and to solve the problems, and the problem is that the press moldability is good and the excellent bake hardenability. It is to provide a high-tensile cold-rolled steel sheet having room temperature aging resistance and a method for producing the same.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventor conducted a detailed investigation on the influence of additive elements on the tensile properties, bake hardenability, and normal temperature aging resistance of a composite structure steel plate.
[0017]
The test steel was, by mass%, C: less than 0.03%, Si: 0.01%, Mn: 2.5% or less, P: 0.005%, S: 0.005%, sol. Al: 0.005 to 0.1%, N: 0.003%, Mo: 0.3% or less, B: 0.002% or less, balance Fe and chemical composition consisting of inevitable impurities.
[0018]
A steel slab having such a chemical composition is heated to 1240 ° C., then hot-rolled in a temperature range of 900 ° C. or higher, wound at 500 to 650 ° C., and the resulting hot-rolled steel plate is pickled. Cold rolling at a rolling rate of% was followed by continuous annealing.
[0019]
In addition, the virtual difference of a chemical composition was not recognized by the steel piece and the steel plate.
The obtained annealed plate was examined for tensile properties, bake hardenability, and normal temperature aging resistance. Here, the difference between the yield stress of an annealed sheet that was heat-treated at 170 ° C. for 20 minutes without applying a tensile pre-strain and the yield strength of an as-manufactured sheet that was not subjected to such a heat treatment is expressed as BH.0Defined. As a result of such a preliminary test, the following (A) to (F) were found.
[0020]
(A) BH0In order to make the steel 30 MPa or more, the microstructure of the steel needs to be a composite structure of a ferrite phase and a low temperature transformation generation phase. This is because when a low-temperature transformation generation phase such as a ferrite phase and a martensite phase is mixed, dislocations are introduced into the ferrite, and solid solution C in the steel is segregated to the dislocations by heat treatment, and the dislocations are fixed. This is probably because the yield stress increases without applying strain.
[0021]
(B) In order to stably obtain a composite structure of a ferrite phase and a low-temperature transformation generation phase in a steel sheet having a C content of less than 0.03%, it is necessary to contain B and Mn.
(C) FIG. 1 shows BH0And a graph showing the relationship between the B content and the Mn content. ○ in the drawing is BH0Is more than 30MPa, ● mark is BH0Is less than 30 MPa.
[0022]
As shown in the figure, BH0Has a correlation with B content and Mn content,0In order to increase the Bn content, it is necessary to increase the B content as the Mn content increases.0It can be seen that
[0023]
B ≧ 1.5 × 10-4× (Mn2+1) (2)
The reason for this is not clear, but (a) BH0Increases as the amount of segregation of C atoms to dislocations existing in the annealed plate increases. (B) Attraction interaction acts between C atoms and Mn atoms, and as the Mn content increases, The activity decreases, the amount of deflection to dislocation decreases, and BH0(C) Since B weakens the interaction between C atoms and Mn atoms, as the B content increases, the amount of dislocation segregation of C increases and BH increases.0Is estimated to increase.
[0024]
(D) BH0As aging increases, aging deterioration at normal temperature is likely to occur, but by adding Mo, BH0Even when the temperature exceeds 30 MPa, room temperature non-aging is ensured. The term “non-aging at normal temperature” as used herein means that the yield point elongation of an annealed sheet left at room temperature for 3 months is 0.2% or less.
[0025]
(E) Although r value of a composite structure steel plate raises with the reduction | decrease of C content, on the other hand, when C content is 0.01% or less, the tensile strength of 390 Mpa or more may not be obtained.
(F) FIG. 2 shows the average r value and sol. It is a graph which shows the relationship of Al content / N content. The r value is sol. It can be seen that the Al content increases as the N content increases. The increase in r value is more remarkable as the coiling temperature after hot rolling is higher. This is caused by sol. The higher the Al content and the higher the coiling temperature after hot rolling, the more easily AlN precipitates in the hot rolled sheet and the amount of solid solution N decreases. This is probably because a crystal texture is formed.
[0026]
From the above results, by adding a certain amount or more of B according to the Mn content and further adding Mo, BH0Can be increased. Further, depending on the N content, sol. It is possible to compensate for the decrease in the r value that accompanies the increase in strength by containing Al and winding it at a high temperature after hot rolling.
[0027]
Here, the present invention has been made on the basis of such knowledge, and the gist thereof is as follows.
(1) By mass%, C: more than 0.01% and less than 0.03%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05% or less, S: 0 .01% or less, sol. Al: 0.005 to 0.15%, N: less than 0.008%, B: 0.0025% or less, Mo: 0.02 to 1.5%, and the following formula (1), ( 2) satisfying the relationship given in 2), with the balance being a chemical composition comprising Fe and impurities, the main phase being a ferrite phase, and the second phase having a structure containing a low-temperature transformation generation phase. Tensile cold-rolled steel sheet.
[0028]
sol. Al ≧ 9.7 × N (1)
B ≧ 1.5 × 10-4× (Mn2+1) (2)
Here, the element symbol in the formula represents the content of each element in steel in mass%.
[0029]
(2) The high-tensile cold-rolled steel sheet according to (1), wherein the chemical composition is mass% and further contains Ti: 0.003 to 0.15%.
(3) The high-strength cold-rolled steel sheet according to (1) or (2), wherein the chemical composition is mass% and further contains Cr: 0.01 to 1.5%.
[0030]
(4) The steel having the chemical composition according to any one of (1) to (3) above was hot-rolled, wound into a coil at 550 to 750 ° C., pickled and cold-rolled. Later, Ac1Above the transformation point Ac3A method for producing a high-tensile cold-rolled steel sheet, characterized by annealing at a temperature below the transformation point.
[0031]
Thus, according to the present invention, a high-strength cold-rolled steel sheet having a tensile strength of 390 to 490 MPa, whose yield stress is increased by 30 MPa or more, preferably 50 MPa or more by heat treatment at 170 ° C. for 20 minutes without applying prestrain. And a method of manufacturing the same.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reasons for limitations such as the microstructure of the high-tensile cold-rolled steel sheet according to the present invention, the chemical composition of the steel components, rolling, and annealing conditions will be described in detail. In addition, in this specification, all content of a steel component is displayed by the mass%.
[0033]
(A) Steel microstructure
The high-tensile steel sheet according to the present invention includes a composite structure in which a low-temperature transformation generation phase is dispersed in a ferrite phase. This is because good bake hardenability can be obtained without applying pre-strain to the steel sheet. Although the kind of low temperature transformation production | generation phase at this time is not specifically limited, In order to reduce the yield stress of a steel plate as much as possible, it is desirable to use a martensite phase.
[0034]
In addition, as a low-temperature transformation production | generation phase, 2 or more types of phases, for example, a martensite phase and a bainite phase may be included.
When the low temperature transformation generation phase becomes the main phase, the deep drawability deteriorates remarkably, so the main phase is the ferrite phase and the second phase is the low temperature transformation generation phase. The volume fraction of the second phase is preferably less than 10%, and more preferably less than 7%.
[0035]
In addition to the ferrite phase and the low-temperature transformation phase, a residual austenite phase may be included, but in order to maintain good room temperature aging resistance, the volume fraction of the residual austenite phase is determined from the volume fraction of the low-temperature transformation phase. It is also preferable to make it smaller and less than 3%.
[0036]
Here, the “low temperature transformation generation phase” refers to a structure produced by low temperature transformation such as martensite phase or bainite phase. Other examples include an acicular ferrite phase.
[0037]
(B) Chemical composition of steel
C:
When the C content is 0.03% or more, the deep drawability of the steel sheet is significantly impaired. On the other hand, if it is 0.01% or less, the desired tensile strength cannot be obtained. Therefore, the range of content was defined as more than 0.01% and less than 0.03%. Desirably, the lower limit is 0.013% and the upper limit is 0.02%.
[0038]
Si :
Si is an element inevitably contained in the steel, but significantly deteriorates the chemical conversion property of the steel sheet. Moreover, when manufacturing a plated steel plate, plating adhesiveness is reduced. Therefore, the content is preferably small. However, since Si has an effect of strengthening the steel sheet, it can be contained up to 0.5% for the purpose of strengthening the steel. Preferably it is 0.1% or less, More preferably, it is 0.02% or less.
[0039]
Mn:
Mn has the effect of improving the hardenability of the steel, and is contained in an amount of 0.5% or more in order to disperse the low-temperature transformation generation phase in the ferrite phase. On the other hand, since the deep drawability deteriorates if excessively contained, the upper limit of the content is set to 2.5%. Further, since Mn deteriorates the bake hardenability, it is limited to a range satisfying the above formula (2) with the B content. Preferably, the lower limit is 0.7% and the upper limit is 1.7%.
[0040]
P:
P is an element inevitably contained in the steel, but segregates at the grain boundaries and deteriorates secondary work brittleness and weldability. Moreover, when manufacturing a plated steel plate, plating adhesiveness is reduced. Therefore, the smaller the content, the better. However, P can reinforce steel at low cost and can reinforce steel without greatly degrading deep drawability. Good. Preferably, the lower limit is 0.01% and the upper limit is 0.035%.
[0041]
S:
S is an impurity inevitably contained in the steel, and segregates at the grain boundaries and embrittles the steel. Therefore, the content is preferably as small as possible, and is determined to be 0.01% or less.
[0042]
sol. Al :
Al is not only used for deoxidizing molten steel, but also has the function of improving the deep drawability of the composite steel sheet, and is sufficiently contained in the present invention. For this purpose, the sol. Al is contained. This formula shows that sol. Of 5 times or more with respect to the chemical equivalent of Al required to make all N in the steel AlN 3. It means that Al is contained. Preferably, it is more than 0.02% and contains 13.5 times or more of the N content and satisfies the following formula (3), more preferably more than 0.02%, and It is to contain 19.3 times or more and satisfy the following formula (4).
[0043]
sol. Al ≧ 13.5 × N (3)
sol. Al ≧ 19.3 × N (4)
In addition, the sol. When the Al content is less than 0.005%, deoxidation is insufficient. When the Al content exceeds 0.15%, the effect is saturated and uneconomical. For this reason, sol. The Al content was determined to be 0.005 to 0.15% and to satisfy the above formula (2).
[0044]
N:
N is an element inevitably contained in steel, and an increase in the content deteriorates deep drawability and normal temperature aging resistance. Therefore, it was determined to be less than 0.008%. A preferred range is less than 0.005%, and a more preferred range is less than 0.004%.
[0045]
B:
B not only improves hardenability but also has an effect of improving bake hardenability, and is an important constituent in the present invention. Compensates for deterioration of bake hardenability due to Mn addition,0In order to make the pressure 30 MPa or more, it is limited to a range satisfying the above-mentioned formula (2). However, since the deep drawability is deteriorated, the upper limit is made 0.0025%. A preferable range is 0.0020% or less. The lower limit is not particularly defined, but is preferably 0.0002% or more.
[0046]
Mo :
Mo is contained in an amount of 0.02% or more in order to improve normal temperature aging resistance. However, if the content exceeds 1.5%, the effect is saturated and uneconomical, and the chemical conversion property of the steel sheet deteriorates. Therefore, the content range is set to 0.02 to 1.5%. However, Mo is an expensive element, and when considering its economic efficiency, the upper limit is preferably 0.5%. A preferred range is 0.05 to 0.25%, and a more preferred range is 0.05% to 0.15%.
[0047]
Ti :
Ti is optionally contained and may not be contained in particular. However, Ti may be contained in a range of 0.003 to 0.15% in order to further improve normal temperature aging resistance. Since Ti precipitates and fixes N in steel as TiN, aging deterioration due to N is suppressed. In order to acquire this effect, it is preferable to make it contain 0.003% or more. On the other hand, if it exceeds 0.15%, the effect is saturated and uneconomical. Therefore, when adding Ti, the range of the content was defined as 0.003 to 0.15%.
[0048]
Cr :
Cr is not particularly required to be contained, but is preferably contained because it has an effect of improving hardenability. However, since Cr deteriorates the chemical conversion property of the steel sheet, the upper limit is made 1.5%. On the other hand, if the content is less than 0.01%, the effect of improving hardenability cannot be obtained. Therefore, it was limited to the range of 0.01 to 1.5%. A preferable range is 0.05 to 1.0%, and a more preferable range is more than 0.10% and 0.8% or less.
[0049]
The chemical composition of the steel sheet according to the present invention is the balance Fe and impurities. Examples of impurities at this time include Cu, Ni, V, Ca, Sn, and Sb. % Or less, V, Ca, Sn, Sb and the like are allowed within a range of 0.01% or less.
[0050]
(C) Reason for limitation such as annealing conditions
The steel having the above chemical composition is made into a steel slab by melting by an appropriate means, a continuous casting method, or a method of performing ingot rolling after forming a steel ingot. This steel slab is reheated, or in the case of a high-temperature steel slab after continuous casting or decomposition rolling, hot rolling is performed as it is or with auxiliary heating.
[0051]
The conditions for hot rolling are not particularly specified, but from the viewpoint of performing finish rolling in a low temperature range of austenite to refine the hot rolled sheet crystal grains and developing a recrystallized texture preferable for deep drawability during annealing.3Transformation point ~ Ar3It is desirable to perform the final reduction in the range of the transformation point + 100 ° C. In addition, in order to perform final reduction in this temperature range, you may heat a rough rolling material between rough rolling and finish rolling. At this time, it is desirable to heat the rear end of the rough rolled material at a higher temperature than the front end so that the temperature variation over the entire length of the rough rolled material at the start of finish rolling is 140 ° C. or less. Thereby, the uniformity within a coil of a product characteristic improves.
[0052]
Rough rolling material can be heated, for example, by installing a solenoid induction heating device between the roughing mill and the finishing mill and controlling the heating temperature rise based on the longitudinal temperature distribution before the induction heating device. is there.
[0053]
After hot rolling, the steel plate is cooled and wound into a coil at 550 ° C. or higher. This is because if the winding is performed at a temperature lower than 550 ° C., the precipitation of AlN 3 becomes insufficient after winding, and the effect of improving the deep drawability of Al becomes insufficient. It is desirable to wind up at 600 ° C. or higher. On the other hand, when the winding temperature exceeds 750 ° C., the yield due to scale generation is reduced, so the upper limit of the winding temperature is set to 750 ° C.
[0054]
Cold rolling is performed according to a conventional method after descaling by pickling or the like. In order to develop a recrystallized texture preferable for deep drawability by recrystallization annealing performed after cold rolling, the rolling reduction is preferably set to 70% or more.
[0055]
Annealing:
The cold-rolled steel sheet is subjected to a treatment such as degreasing according to a known method, if necessary, and is recrystallized and annealed. The annealing temperature at this time is such that the microstructure of the steel is a composite structure in which the main phase is a ferrite phase and the second phase is a low-temperature transformation generation phase.1Above the transformation point, Ac3The temperature range is below the transformation point. This is because the annealing temperature is Ac1If the temperature is less than the transformation point, a low-temperature transformation generation phase cannot be obtained.3This is because if it is at or above the transformation point, a single-phase structure consisting only of a low-temperature transformation-forming phase is formed, and the bake hardenability and deep drawability are significantly reduced.
[0056]
Where Ac1The transformation point is α → γ transformation start temperature, Ac3The transformation point is the α → γ transformation completion temperature. In order to obtain a low-temperature transformation generation phase, the average cooling rate up to 550 ° C. after annealing is preferably 5 ° C./s or more.
[0057]
After annealing, temper rolling may be performed according to a conventional method. However, since the elongation is reduced, the elongation of temper rolling is preferably 1.0% or less. More preferably, the elongation is set to 0.4% or less.
[0058]
The cold-rolled steel sheet produced according to the method of the present invention can be electroplated as a base material or used as a coated steel sheet. Further, the steel sheet after the cold rolling may be annealed in a heating furnace equipped in a known hot dipping apparatus and then hot-dip plated to be a plated steel sheet or an alloyed hot-dip steel sheet. Of course, after annealing in a continuous annealing furnace, hot dipping may be performed to form a plated steel sheet or an alloyed hot dipped steel sheet. However, when the Cr content exceeds 0.1%, uneven alloying of the plating tends to occur, and therefore, it is preferable to use a steel plate other than the alloyed hot-dip plated steel plate.
[0059]
【Example】
Examples of the present invention will be described below.
Steels having chemical compositions shown in Table 1 were melted and cast using a laboratory vacuum melting furnace. These steel ingots were made into steel pieces with a thickness of 30 mm by hot forging, heated to 1240 ° C. using an electric heating furnace, and held for 1 hour. After extracting the steel piece from the heating furnace, hot rolling was started in a temperature range of 900 ° C. or higher using a laboratory hot rolling mill to obtain a hot rolled steel sheet having a thickness of 5 mm.
[0060]
Immediately after hot rolling, it is cooled to 500 to 650 ° C. by forced air cooling or water spray cooling, and this is taken up as a coiling temperature, charged in an electric heating furnace maintained at the same temperature and held for 1 hour, then 20 ° C. Furnace cooling was performed at a cooling rate of / h to obtain a slow cooling treatment after winding.
[0061]
Both surfaces of the obtained steel plate are ground to form a cold rolled base metal having a thickness of 4 mm, cold rolled at a rolling rate of 80%, and held at a soaking temperature of 740 to 860 ° C. shown in Table 2 for 40 seconds. Recrystallization annealing equivalent to continuous annealing was performed. Thereafter, these annealed plates were subjected to temper rolling with an elongation of 0.2%, and the performance was evaluated.
[0062]
The r value is measured by subjecting a JIS No. 5 tensile specimen taken from the rolling direction (0 degree direction), 45 degree direction, and width direction (90 degree direction) to a tensile test, and the average r value is (r0+ 2 × r45+ R90) Calculated from / 4.
[0063]
Yield stress (YS), tensile strength (TS), yield point elongation (YPE) and total elongation were obtained by conducting a tensile test on a JIS No. 5 tensile specimen taken from the width direction.
The bake hardenability was evaluated by the following method. A JIS No. 5 tensile test piece was taken from the width direction of the cold rolled steel sheet, subjected to a heat treatment at 170 ° C. for 20 minutes, and then subjected to a tensile test. The difference between the YS obtained at this time and the YS obtained by subjecting it to a tensile test without heat treatment was expressed as BH.0Defined. Further, a 2% tensile pre-strain was applied to a JIS No. 5 tensile test piece collected from the width direction, and subjected to a heat treatment at 170 ° C. for 20 minutes, and then subjected to a tensile test. The difference between the obtained YS and 2% deformation stress is expressed as BH2These were defined as an index of bake hardenability.
[0064]
For aging resistance at normal temperature, hold a JIS No. 5 tensile test specimen taken from the width direction in an electric furnace set at 40 ° C for 3 months, then subject it to a tensile test and measure the elongation at yield (YPE). It was evaluated by.
[0065]
Table 3 summarizes the results of performance evaluation as described above. All of the test results (test numbers 2, 7, 8, 10, 11, 13, 18, 19) of the cold-rolled steel sheets manufactured under the conditions within the scope of the present invention have an average r value of 1.3 or more. And YS was 240 MPa or less, indicating good press formability. BH0Is 30 MPa or more, BH2Was 50 MPa or more, and showed excellent bake hardenability. Further, the YPE after aging treatment at 40 ° C. for 3 months was 0.2% or less, indicating good room temperature aging resistance.
[0066]
[Table 1]
Figure 2005008904
[0067]
[Table 2]
Figure 2005008904
[0068]
[Table 3]
Figure 2005008904
[0069]
【The invention's effect】
As described above in detail, according to the present invention, the present invention has sufficient formability that can be applied to processing such as press molding, exhibits extremely excellent bake hardenability, and has high tensile strength with excellent room temperature aging resistance. Steel sheets can be manufactured. Therefore, the present invention greatly contributes to the development of industries such as being able to contribute to solving global environmental problems through weight reduction of automobile bodies, and its significance is great.
[Brief description of the drawings]
FIG. 1 BH0It is a graph which shows the relationship between B content and Mn content.
FIG. 2 shows average r value and sol. It is a graph which shows the relationship with Al content / N content.

Claims (4)

質量%で、C:0.01%超0.03%未満、Si:0.5 %以下、Mn:0.5 〜2.5 %、P:0.05%以下、S:0.01%以下、sol.Al:0.005 〜0.15%、N:0.008 %未満、B:0.0025%以下、Mo:0.02〜1.5 %を含有し、かつ、下記式(1) (2) で与えられる関係を満足し、残部がFeおよび不純物からなる化学組成を有し、主相がフェライト相であり第二相に低温変態生成相を含む組織を備えたことを特徴とする高張力冷延鋼板。
sol.Al≧9.7 ×N ・・・・・(1)
B≧1.5 ×10−4×(Mn+1) ・・・・・(2)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものである。
In mass%, C: more than 0.01% and less than 0.03%, Si: 0.5% or less, Mn: 0.5 to 2.5%, P: 0.05% or less, S: 0.01% Hereinafter, sol. Al: 0.005 to 0.15%, N: less than 0.008%, B: 0.0025% or less, Mo: 0.02 to 1.5%, and the following formula (1) (2) ) With the chemical composition comprising the balance Fe and impurities, the main phase being a ferrite phase, and the second phase having a structure containing a low-temperature transformation generation phase. Cold rolled steel sheet.
sol. Al ≧ 9.7 × N (1)
B ≧ 1.5 × 10 −4 × (Mn 2 +1) (2)
Here, the element symbol in the formula represents the content of each element in steel in mass%.
前記化学組成が、質量%で、さらに、Ti:0.003 〜0.15%を含有することを特徴とする請求項1記載の高張力冷延鋼板。2. The high-tensile cold-rolled steel sheet according to claim 1, wherein the chemical composition is in mass% and further contains Ti: 0.003 to 0.15%. 前記化学組成が、質量%で、さらに、Cr:0.01〜1.5 %を含有することを特徴とする請求項1または2記載の高張力冷延鋼板。3. The high-tensile cold-rolled steel sheet according to claim 1, wherein the chemical composition is mass% and further contains Cr: 0.01 to 1.5%. 請求項1ないし請求項3のいずれかに記載の化学組成を有する鋼に、熱間圧延を行い、550 〜750 ℃でコイル状に巻き取り、酸洗し冷間圧延を行った後、Ac変態点以上Ac変態点未満の温度で焼鈍をすることを特徴とする高張力冷延鋼板の製造方法。The steel having the chemical composition according to any one of claims 1 to 3 is hot-rolled, wound into a coil at 550 to 750 ° C, pickled and cold-rolled, and then Ac 1 method for producing a high-strength cold-rolled steel sheet, which comprises annealing at a temperature below the transformation point or above Ac 3 transformation point.
JP2003170969A 2003-06-16 2003-06-16 High-tensile cold-rolled steel sheet and its manufacturing method Expired - Fee Related JP3969350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170969A JP3969350B2 (en) 2003-06-16 2003-06-16 High-tensile cold-rolled steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170969A JP3969350B2 (en) 2003-06-16 2003-06-16 High-tensile cold-rolled steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005008904A true JP2005008904A (en) 2005-01-13
JP3969350B2 JP3969350B2 (en) 2007-09-05

Family

ID=34095610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170969A Expired - Fee Related JP3969350B2 (en) 2003-06-16 2003-06-16 High-tensile cold-rolled steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3969350B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019502A (en) * 2006-06-12 2008-01-31 Nippon Steel Corp High-strength galvanized steel sheet excellent in workability, paint bake hardenability and resistance to natural aging and its production method
JP2010077511A (en) * 2008-09-29 2010-04-08 Jfe Steel Corp High strength cold rolled steel sheet and method for producing the same
WO2010087529A1 (en) 2009-02-02 2010-08-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2012052157A (en) * 2010-08-31 2012-03-15 Jfe Steel Corp Material for warm press forming, and method of manufacturing member for panel
JP2014224317A (en) * 2013-04-23 2014-12-04 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
CN115449718A (en) * 2022-08-19 2022-12-09 马鞍山钢铁股份有限公司 Ageing-resistant pickled plate and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811528B2 (en) 2009-07-28 2011-11-09 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019502A (en) * 2006-06-12 2008-01-31 Nippon Steel Corp High-strength galvanized steel sheet excellent in workability, paint bake hardenability and resistance to natural aging and its production method
JP2010077511A (en) * 2008-09-29 2010-04-08 Jfe Steel Corp High strength cold rolled steel sheet and method for producing the same
WO2010087529A1 (en) 2009-02-02 2010-08-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method therefor
US8636852B2 (en) 2009-02-02 2014-01-28 Jfe Steel Corporation High strength galvanized steel sheet and method for manufacturing the same
US9297060B2 (en) 2009-02-02 2016-03-29 Jfe Steel Corporation High strength galvanized steel sheet and method for manufacturing the same
JP2012052157A (en) * 2010-08-31 2012-03-15 Jfe Steel Corp Material for warm press forming, and method of manufacturing member for panel
JP2014224317A (en) * 2013-04-23 2014-12-04 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
CN115449718A (en) * 2022-08-19 2022-12-09 马鞍山钢铁股份有限公司 Ageing-resistant pickled plate and production method thereof
CN115449718B (en) * 2022-08-19 2024-01-16 马鞍山钢铁股份有限公司 Time-resistant pickled plate and production method thereof

Also Published As

Publication number Publication date
JP3969350B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP4639996B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5504643B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP2011236505A (en) Cold rolled steel sheet for coating and plated steel sheet for coating
CN113348259A (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP3969350B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
RU2514743C2 (en) High-strength steel sheet of higher thermal hardening and forming capacity and method of its production
JP3829621B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP5012636B2 (en) Galvanized steel sheet
JP5332547B2 (en) Cold rolled steel sheet
JP5041096B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP2009263713A (en) Cold-rolled steel sheet with high tensile strength, plated steel sheet with high tensile strength, and manufacturing method therefor
JP4867336B2 (en) High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JP3969351B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP4506005B2 (en) High strength steel sheet for warm forming and forming method thereof
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP3750600B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5245948B2 (en) Cold rolled steel strip manufacturing method
JP5040069B2 (en) High tensile cold-rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3969350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees