JP2004269588A - Polylactic acid based molded article and its manufacturing method - Google Patents

Polylactic acid based molded article and its manufacturing method Download PDF

Info

Publication number
JP2004269588A
JP2004269588A JP2003059257A JP2003059257A JP2004269588A JP 2004269588 A JP2004269588 A JP 2004269588A JP 2003059257 A JP2003059257 A JP 2003059257A JP 2003059257 A JP2003059257 A JP 2003059257A JP 2004269588 A JP2004269588 A JP 2004269588A
Authority
JP
Japan
Prior art keywords
polylactic acid
heat
crystallization
sheet
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003059257A
Other languages
Japanese (ja)
Other versions
JP4808367B2 (en
Inventor
Hiroshi Nishimura
弘 西村
Masanobu Hioki
正信 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2003059257A priority Critical patent/JP4808367B2/en
Publication of JP2004269588A publication Critical patent/JP2004269588A/en
Application granted granted Critical
Publication of JP4808367B2 publication Critical patent/JP4808367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a molded article which is prepared by subjecting a sheet comprising a polylactic acid and a neucleating agent to heat treatment and which is excellent in heat resistance and impact resistance. <P>SOLUTION: The molded article consists of a crystalline polylactic acid resin (A) having an optical purity of 95% or higher, an aromatic/aliphatic copolyester or aliphatic polyester (B) having a glass transition temperature of 0°C or lower, and a talc (C) having a mean particle diameter of 1-8 μm. The ratio of the resin (A) to the polyester (B) is (97:3) to (80:20) by mass, and the talc (C) accounts for 1-30 mass% of the whole composition. The molded article has a crystallization index, which is a difference in absolute values between the heat of crystal fusion ΔHm measured by a differential scanning calorimeter at a temperature-rise rate of 20°C/min and the heat of crystallization for temperature-rise ΔHc, satisfying the relation of formula: (¾ΔHm¾-¾ΔHc¾)≥25 J/g, a rate of crystallization at 130°C of 0.010 min<SP>-1</SP>or higher, and a falling ball impact strength, in terms of the height of a falling ball, of 20 cm or higher at a thickness of 500 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はポリ乳酸系成形体およびその製造方法に関する。
【0002】
【従来の技術】
近年、環境保全に関する社会的要求の高まりに伴い、微生物などにより分解される生分解性ポリマーが注目されている。生分解性ポリマーの具体例としては、ポリブチレンサクシネート、ポリカプロラクトン、ポリ乳酸などの脂肪族ポリエステルや、テレフタル酸/1,4ブタンジオール/アジピン酸の共重合体などの脂肪族−芳香族共重合ポリエステルといった、溶融成形可能なポリエステルが挙げられる。
【0003】
上記の脂肪族ポリエステルの中でも、自然界に広く分布し、動植物や人畜に対して無害なポリ乳酸は、融点が140〜175℃であり十分な耐熱性を有するとともに、比較的安価な熱可塑性の生分解性樹脂として期待されている。
【0004】
ところが、このポリ乳酸を単にシートや容器などに成形した場合は、成形時の熱履歴によりポリ乳酸の結晶がほぼ完全に融解してしまい、結局耐熱性に劣ったものしか得られない。
【0005】
そこで、ポリ乳酸に耐熱性を付与する試みが多数報告されている。例えば、特許文献1には、乳酸系ポリマーに核剤として通常のタルク、シリカ、乳酸カルシウムなどを添加して射出成形を試みたが、結晶化速度が遅く、また成形物が脆いため実用に耐えうる成型物を得ることができず、したがって、このような乳酸系ポリマーは、通常のタルク、シリカなどを用いて一般の射出成形、ブロー成形、圧縮成形に使用しても、結晶化速度が遅く、得られる成型物の実用耐熱性が100℃以下と低く、用途に制約があると記載されている。
【0006】
特許文献2には、ポリL−ラクチドなどに核剤としてポリグリコール酸およびその誘導体を加えることで、結晶化速度を上昇させることにより射出成形サイクル時間を短縮させ、かつ、優れた力学的性質を有する製品を得ることができると記載されている。
【0007】
しかし、特許文献1には、実際に乳酸系ポリマーに核剤を入れないで射出成形を試みたところ、特許文献2に開示されているような金型温度がTg以上の条件では、成形できなかったと記載されている。
【0008】
特許文献3には、結晶核剤および結晶化促進剤としてワックスを用い、成形物を結晶化温度で熱処理する方法、あるいは結晶化温度に設定した金型内で一定時間保持する方法が開示されている。しかし、この方法では、80℃程度までの耐熱性は改善されているものの、それ以上の温度、特に電子レンジなどを対象とした100℃以上の温度での耐熱性は不十分である。
【0009】
一方、結晶核剤を使用せずに耐熱性と耐衝撃性を付与する方法として、特許文献4には、未延伸シートを1.5〜5倍に延伸することによって結晶配向度と結晶化度を向上させる技術が開示されている。しかし、この方法では、延伸シートとなるため、トレーなどの容器に加工する際にはさらなる延伸が必要となるが、一度延伸されたシートは延伸性に劣り、深絞り成形などには不向きで必然的に用途が限定されることになる。
【0010】
【特許文献1】
特開平8−193165号公報
【0011】
【特許文献2】
特開平4−220456号公報
【0012】
【特許文献3】
特開平11−106628号公報
【0013】
【特許文献4】
特開平9−25345号公報
【0014】
【発明が解決しようとする課題】
そこで本発明は、このような課題を解決して、ポリ乳酸と結晶核剤からなるシートを熱処理した成形体であって耐熱性と耐衝撃性に優れたものを得ることを目的とする。
【0015】
【課題を解決するための手段】
本発明者らは、上記のように従来のポリ乳酸成形体の耐熱性と耐衝撃性を改良する目的で鋭意検討を重ねた結果、結晶性の高いポリ乳酸にガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステルと平均粒径1〜8μmのタルクとをある範囲で配合して押し出し成形してシート状にした後、ある条件で熱処理を実施することにより、ポリ乳酸の結晶性の向上と柔軟成分の存在とにもとづき耐熱性と耐衝撃性が著しく向上し、しかも成形サイクルの観点からも工業生産可能となるまで結晶化速度が向上することを見出し、本発明に到達した。
【0016】
すなわち本発明は、下記を要旨とするものである。
(1) 光学純度95%以上の結晶性ポリ乳酸樹脂(A)と、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)と、平均粒径1〜8μmのタルク(C)とを構成成分とし、(A)と(B)との混合比が(A)/(B)=97/3〜80/20質量%であり、かつ(C)の混合比が組成物全体量に対して1〜30質量%であるシートからなり、20℃/minの昇温条件で示差走査型熱量計にて測定した際の結晶融解熱量ΔHmと昇温結晶化熱量ΔHcとの絶対値の差である結晶化指標が(|ΔHm|−|ΔHc|)≧25J/gであり、130℃での結晶化速度が0.010min−1以上であり、厚み500μmについての落球高さが20cm以上の落球衝撃性を有することを特徴とするポリ乳酸系成形体。
【0017】
(2) 上記において、シートに、真空成形、圧空成形、真空圧空成形、プレス成形のいずれかを施して得られたものであることを特徴とするポリ乳酸系成形体。
【0018】
(3) 光学純度95%以上の結晶性ポリ乳酸系樹脂(A)と、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)と、平均粒径1〜8μmのタルク(C)とを、(A)と(B)との混合比が(A)/(B)=97/3〜80/20質量%、(C)の混合比が組成物全体量に対して1〜30質量%となるよう配合した樹脂組成物を押し出し成形によりシート状にした後、処理温度110〜150℃および処理時間1〜30秒にて熱処理するとともに成形を行うことを特徴とするポリ乳酸系成形体の製造方法。
【0019】
(4) 上記において、シートを熱処理し、その後に真空成形、圧空成形、真空圧空成形、プレス成形のいずれか一つにより成形することを特徴とするポリ乳酸系成形体の製造方法。
【0020】
(5) 上記において、シートを真空成形、圧空成形、真空圧空成形、プレス成形のいずれか一つにより成形しながら、同時に成形金型内で熱処理を施すことを特徴とするポリ乳酸系成形体の製造方法。
【0021】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明において用いられる結晶性ポリ乳酸樹脂(A)は、光学純度95%以上であることが必要である。
【0022】
ポリ乳酸のモノマーには2種の光学活性体、すなわちD−乳酸およびL−乳酸が存在する。現在、工業的に大量かつ安価に生産されているのはL−乳酸であり、ポリ乳酸においてもL−乳酸に由来するL−ポリ乳酸(PLLA)が一般的に用いられている。ポリ乳酸の結晶性はL−乳酸またはD−乳酸の含有率により変化し、例えば、乳酸モノマーの光学純度Lを下記の式1として規定した場合、Lが大きいほど、すなわち、光学純度が高くなるほど結晶性が増加する。
【0023】
光学純度=|M(L)−M(D)|…式1
ただし、M(L)はポリ乳酸樹脂を構成する全乳酸単位に対するL−乳酸単位のモル%、M(D)はポリ乳酸樹脂を構成する全乳酸単位に対するD−乳酸単位のモル%であって、M(L)+M(D)=100である。
【0024】
一般に、光学純度100%、例えば100%L−乳酸成分からなるモノマーよりPLLAを重合した場合でも、重合やその後の溶融成形における熱履歴により部分的にモノマーのラセミ化が起こるため、工業的に利用されるPLLAの光学純度は98%近辺が上限であるといわれている。したがって、これがポリ乳酸のなかで実用的には最も高結晶性の組成である。しかしながらこのような高純度のL−乳酸成分からなるPLLAにおいても、その結晶化速度は比較的遅く、冷却結晶化過程における過冷却性が非常に高い。
【0025】
特に実質的な強度や耐久性を得るためには、ポリ乳酸として、比較的高分子量の重合体、目安としては重量平均分子量が10万以上、好ましくは15万〜30万の重合体を用いることが良い。
【0026】
一方、最終的に得られるポリ乳酸系成形体に耐熱性を付与するには、ポリ乳酸自体の結晶化(結晶化速度)を促進させることに加え、成形後のポリ乳酸の結晶化度を向上させる必要がある。このためにはポリ乳酸自体が高結晶性と成り得る能力を有していることが必要であり、そのためには光学純度が95%以上のポリ乳酸樹脂であることが必要で、好ましくは96%以上である。光学純度が95%未満のポリ乳酸樹脂では、ポリ乳酸自体の結晶性が低下し、結晶核剤としてのタルクの添加を行ったり熱処理を施したりしても十分に結晶化せず所要の耐熱性が得られない。
【0027】
また、一般にポリ乳酸樹脂に存在するラクチドは、量が多すぎるとポリ乳酸の加水分解を促進する結果となることが知られているが、低分子量のラクチドは高分子量のポリ乳酸よりも結晶化しやすく、このラクチドの結晶化が起爆剤となってポリ乳酸の結晶化を促進する。そこで、ポリ乳酸に含まれるラクチドを適当量に規定することは、結晶化の促進と耐熱性付与という目的には有効な項目となる。つまり残留ラクチド量は樹脂の全体に対して0.1〜0.6質量%の範囲にあることが好ましく、0.1〜0.4質量%の範囲にあることがより好ましい。残留ラクチド量が0.1質量%未満では、ポリ乳酸の結晶化を促進する起爆剤としては量が少なすぎて用を足しにくくなる。また、0.6質量%を超えると、加水分解を促進する作用が強まり、好ましくない。
【0028】
本発明のポリ乳酸系成形体においては、0℃以下のガラス転移温度を有する、芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)が、構成成分として必須である。
【0029】
この(B)成分は、ガラス転移温度が0℃以下であるため、常温においても柔軟性を有している。このような成分がポリ乳酸樹脂中に分散することは、ゴムを分散させる場合と同様に外部衝撃を吸収する働きがある。すなわち、衝撃性の改善に寄与するものである。(B)成分の具体例としては、構成成分として少なくとも脂肪族ジカルボン酸、芳香族ジカルボン酸、および脂肪族ジオールを有する共重合ポリエステルである芳香族・脂肪族共重合ポリエステルが挙げられる。あるいは、少なくとも脂肪族ジカルボン酸、脂肪族ジオールからなる脂肪族ポリエステルが挙げられる。あるいは、環状モノマーであるε―カプロラクトンの開環重合により得られる脂肪族ポリエステルが挙げられる。
【0030】
脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸などが挙げられる。芳香族ジカルボン酸としては、テレフタール酸、イソフタール酸、ナフタレンジカルボン酸などが挙げられる。脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどが挙げられる。そして(B)成分は、上記各構成成分を少なくとも1種以上選択し、重縮合して得られる。必要に応じて、イソシアネートや酸無水物、エポキシ化合物、有機過酸化物などを用いて、構造上ジャンプアップおよび長鎖分岐をもたせることもできる。
【0031】
本発明では上記(A)成分と(B)成分の混合比が(A)/(B)=97/3〜80/20質量%であることが必要であり、好ましくは(A)/(B)=97/3〜85/15質量%であり、さらに好ましくは(A)/(B)=95/5〜85/15質量%である。(B)成分の混合比が3質量%未満であると、外部衝撃を吸収しきれず耐衝撃性に劣ったものとなる。一方、(B)成分の混合比が20質量%を超えると、耐衝撃性は著しく改善されるものの、ポリ乳酸自体の結晶化を妨げる結果となり、耐熱性に劣ることになる。かつ、同時に結晶化速度自体も遅くなるため、実生産における成形サイクルに時間を要し、生産性に劣ってしまうことになる。
【0032】
本発明においては、結晶化を促進させるため、上記のようにポリ乳酸樹脂自体を最適化することに加え、結晶核剤としてのタルクの存在が必須である。
本発明における結晶核剤としてのタルクは、平均粒径が1〜8μmであり、好ましくは1〜5μmである。数ある結晶核剤の内、タルクは、ポリ乳酸に対して最も結晶化効率の高い無機物質であることから結晶核剤として最適であるだけでなく、非常に安価で、また自然界に存在する無機物質であるため工業的にも有利であり、しかも地球環境に負荷を与えない。このタルクの平均粒径が1μm未満であると、分散不良や二次凝集を生じ結晶核剤としての効果を十分に発揮できず、このため得られる成形体の耐熱性が不十分となる。平均粒径が8μmを超えると、タルクは結晶核剤として作用する以外に成形体における欠点となり、このため得られる成形体の物性や表面状態に悪影響を及ぼす。
【0033】
タルクの含有量は組成物全量に対し、1〜30質量%であり、好ましくは5〜20質量%、さらに好ましくは10〜15質量%である。1質量%未満では、含有量が少なすぎて結晶核が少量しか生成せず、結晶核剤としての効果を十分発揮できず、したがって成形体の耐熱性が不十分となる。30質量%を超えると、含有量が多くなりすぎて、成形体が脆くなるなど物性に悪影響を及ぼす。
【0034】
この結晶核剤を効率よく分散させるために、分散剤を使用してもよい。分散剤としては、ポリ乳酸との相溶性に優れ、結晶核剤との濡れ性にも優れていることが好ましい。このような物質としては、エルカ酸アミド、ステアリン酸アミド、オレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリル酸アミドなどの脂肪酸アミドの中から少なくとも1種類を選択することが、ポリ乳酸系成形体の結晶性を効率よく高める上で重要である。
【0035】
(A)、(B)、(C)各成分を上記のような混合比としてシートを形成し、このシートに熱処理を施したうえで、本発明の成形体を得る。この成形体は、結晶化指標としての、20℃/minの昇温条件で示唆走査型熱量計にて測定した際の結晶融解熱量ΔHmと昇温結晶化熱量ΔHcとの絶対値の差が(|ΔHm|−|ΔHc|)≧25J/gとなることが必要である。好ましくは、(|ΔHm|−|ΔHc|)≧29J/gである。このように(|ΔHm|−|ΔHc|)≧25J/gとするためには、上述のように使用するポリ乳酸の光学純度、残留のラクチド量、タルクの平均粒径とその添加比を各々最適化するとともに、後述する熱処理を施すことが必要である。
【0036】
(|ΔHm|−|ΔHc|)が25J/g未満である場合は、十分に結晶化されておらず、例えば成形した容器に熱湯(90℃)を注いだ場合に通常のポリ乳酸から得られる容器では容器が熱変形してしまい耐熱性が不十分である。しかし、25J/g以上ではそのような現象は生じない。
【0037】
本発明においては、成形体の製造に際して、熱処理が必須条件となる。ところが、工業的には熱処理に長時間かけることは不可能である。一方、ポリ乳酸は結晶化速度の極めて遅い素材として知られている。したがって、工業的な成形サイクルに適応できるだけの結晶化速度を付与することが必要となる。本発明では、ポリ乳酸の組成や結晶核剤や熱処理条件を細部まで最適化したことにより、所要の成形体を工業的に生産が可能となる。本発明の成形体は、130℃での結晶化速度が0.010min−1以上であることが必要であり、0.015min−1以上であることが好ましい。130℃での結晶化速度が0.010min−1未満であると、結晶化速度が遅く通常の成形サイクルに不適な他、結晶化が不十分となって、耐熱性に劣ったものとなる。130℃での結晶化速度が0.010min−1以上であるようにするためには、上述のように、使用するポリ乳酸の光学純度の最適化と、タルクの平均粒径や混合比の最適化と、芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステルとポリ乳酸との混合比の最適化とを行ったうえで、後述のように処理温度110〜150℃、処理時間1〜30秒の熱処理を行うことが必要である。
【0038】
本発明においては、結晶核剤による結晶化速度をより促進するために、必要に応じて有機過酸化物などの架橋剤および架橋助剤を併用して、樹脂組成物に極軽度の架橋を施すことも可能である。
【0039】
架橋剤の具体例としては、n−ブチル−4,4−ビス−t−ブチルパーオキシバリレート、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t−ヘキシルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−t−ブチルパーオキシヘキシン−3などの有機過酸化物、無水フタル酸、無水マレイン酸、トリメチルアジピン酸、無水トリメリット酸、1,2,3,4−ブタンテトラカルボン酸などの多価カルボン酸、蟻酸リチウム、ナトリウムメトキシド、、プロピオン酸カリウム、マグネシウムエトキシドなどの金属錯体、ビスフェノールA型ジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、テレフタル酸ジグリシジルエステル、などのエポキシ化合物、ジイソシアネート、トリイソシアネート、ヘキサメチレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネートなどのイソシアネート化合物などが挙げられる。
【0040】
架橋助剤の具体例としては、トリメタクリレート、グリシジルメタクリレート、ノルマル−ブチルメタクリレート、ヒドロキシプロピルモノメタクリレート、ポリエチレングリコールモノメタクリレートなどが挙げられる。
【0041】
本発明の成形体においては、厚み500μmについての落球高さが20cm以上の落球衝撃性を有していることが必要である。ここで厚み500μmについての落球高さとは、厚み500μmのシートにて形成された箱状の成形体を伏せた状態とすることでその底部を上面にして水平に設置し、これに300gの鉄球を5cmごとの異なる高さから複数回落下させた場合に、[(2回に1回の割合で割れた高さ)−5]cmをいう。
【0042】
厚み500μmについての落球高さが20cm未満であると、成形体の運搬時に外部衝撃が加えられた場合などにおいて、割れが生じたりヒビが入ったりする可能性がある。よって、厚み500μmについての落球高さが30cm以上であるのが好ましい。
【0043】
厚み500μmについての落球高さが20cm以上の落球衝撃性を有するようにするためには、上述のように、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)を、光学純度95%以上の結晶性ポリ乳酸樹脂(A)に対し3質量%以上混合させることが必要である。
【0044】
次に本発明の成形体の分子量保持率について説明する。ここで、分子量保持率とは、成形体を50℃、90%RHの恒温恒湿機内に30日間放置する分解加速試験の後の重量平均分子量(Mw)を放置前の重量平均分子量で除した値の百分率値のことをいう。生分解性を有するポリ乳酸系樹脂製品は、通常、シートや成形品の保管あるいは使用中には分解が極力進行せず、これに対し使用後は速やかに分解することが好ましい。このため、上記の分解加速試験の条件下において分子量保持率が60%以上であることが好ましく、70パーセント以上であることがさらに好ましい。分子量保持率が60%未満であることは、分解速度が速いことを意味し、倉庫保管中等において分解が進んで、実使用に耐えられないおそれがあるため、好ましくない。
【0045】
本発明の成形体には、必要に応じて可塑剤、紫外線防止剤、光安定剤、防曇剤、防霧剤、帯電防止剤、難燃剤、着色防止剤、酸化防止剤、充填材、顔料などを添加できる。
【0046】
次に、本発明の成形体の製造方法の実施の形態の一例について説明する。
まず、光学純度95%以上のポリ乳酸樹脂(A)と、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)と、タルク(C)および必要に応じて分散剤とを、所定量にて配合する。この場合、予め2軸混練押し出し機にて全量コンパウンドしてもよく、(A)と(C)のみコンパウンドし(B)をドライブレンドしてもよい。また、全てドライブレンドしてもよい。その後、Tダイを装備した1軸押し出し機あるいは2軸押し出し機にて溶融混練してそのTダイより押し出し、30〜50℃の温度範囲に設定されたキャストロールにて未延伸シートを成形する。シートの厚みは、使用目的により適宜選択できるが、通常は200〜750μmが好ましい。
【0047】
次に、連続あるいは別工程にて上記未延伸シートを下記の条件で熱処理し、その後に、プレス成形、真空成形、圧空成形あるいは真空圧空成形のいずれかを選択して目的の成形物を得る。あるいは、未延伸シートを上記成形法のいずれかを選択して成形する際、金型内で熱処理しながら成形してもよい。
【0048】
本発明において、上述の如く樹脂、結晶核剤など細部にまで最適化を施したうえで熱処理を実施する場合の条件として、処理温度110〜150℃および処理時間1〜30秒にて実施することが必要である。上記の処理温度110〜150℃は、実質的に最もポリ乳酸が結晶化し易い温度である。また、処理時間1〜30秒は、実質的に生産サイクルに適用可能でしかも過不足無く結晶化できる時間である。処理温度が110℃未満では結晶化が十分に進行せず、反対に150℃を超えると結晶化速度が極端に遅くなり結果的に結晶化が不十分となってしまう。また処理時間が1秒未満では結晶化に要する時間が足りず、30秒を超えると実質的な成形サイクルに適応せず工業的な生産には不具合が生じる。
【0049】
【実施例】
次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、以下の実施例、比較例における各種物性値の測定は、以下の方法により実施した。
【0050】
(1)結晶融解熱量ΔHmと昇温結晶化熱量ΔHc
パーキンエルマー社製 Pyrisl DSC を用い、成形品のうちの10mgを試験試料とし、昇温速度20℃/minにて昇温した際、発熱側に現れるピークの合計熱量を昇温結晶化熱量ΔHcとし、吸熱側に現れるピークの合計熱量を結晶融解熱量ΔHmとした。
【0051】
(2)結晶化速度
パーキンエルマー社製 Pyrisl DSC を用い、20℃から200℃まで500℃/minで昇温後、5分間保持し、さらに130℃まで−500℃/minで急冷し、その後に結晶化が終了するまで測定した。その後、結晶化分率が0.5になるまでの時間の逆数に結晶化分率0.5を乗した値を結晶化速度とした。
【0052】
(3)耐熱性
単発間接加熱真空成型機および金型CTデリカン15−11(アルミ製)を用いて、シートから縦150mm、横110mm、深さ20mmの容器を成形し、この容器に90℃の熱湯を注ぎ、5分後に容器の変形を目視にて観察し、全く変形がない場合を耐熱性良好として○で評価し、少しでも変形が認められた場合を耐熱性やや不良として△で評価し、著しく変形した場合を耐熱性不良として×で評価した。
(4)分子量保持率
試料を50℃、90%RHの恒温恒湿機内に30日間放置した後の重量平均分子量(Mw)を、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレンを標準物質として、THF溶液中のポリ乳酸をStyragelHRカラムとUltrastyragelカラム、および検出器として屈折率計を用いて測定し、下記式により保持率を計算した。
【0053】
Mw保持率(%)=(30日後のMw/放置前のMw)×100
【0054】
(5)耐衝撃性
厚み500μmのシートにて形成された熱処理後の箱状の成形体を伏せた状態とすることでその底部を上面にして水平に設置し、これに300gの鉄球を5cmごとの異なる高さから垂直に落下させ、(2回に1回の割合で割れが生じたときの高さ−5)cmを落球高さとして、耐衝撃性の評価を行った。
【0055】
実施例1
結晶性ポリ乳酸(A)(光学純度97.2%、残留ラクチド量0.2質量%、重量平均分子量20万、カーギル・ダウ社製:ネイチャーワークス)と、ガラス転移温度0℃以下の芳香族・脂肪族共重合ポリエステル(B)(ガラス転移温度−30℃、BASF社製:エコフレックスF)とを、(A)/(B)=90/10質量%の割合で配合し、さらに、平均粒径2.75μmのタルク(林化成社製:MW HS−T)を組成物全体量に対し10質量%配合した。そして、2軸混練押出機(日本製鋼所社製、型番TEX44α)を用いて溶融混練し、押出温度230℃にてポリ乳酸コンパウンド原料を作製した。
【0056】
次いで、このポリ乳酸コンパウンド原料を、幅1000mmのTダイを装着したスクリュー径90mmの単軸押出機を用いて、押出温度215℃にて溶融押出し、40℃に設定されたキャストロールにて厚み500μmの未延伸シートを成形した。
【0057】
さらに、単発間接加熱真空成型機および金型CTデリカン15−11(アルミ製)を用いて、このシートを縦150mm、横110mm、深さ20mmに真空成形して、成形体としての容器を作製した。この真空成形の際に、金型内を140℃、保持時間5秒とすることで、熱処理を施した。
【0058】
得られた成形体の諸物性を表1に示す。
【0059】
実施例2
結晶性ポリ乳酸(A)としてポリ乳酸(光学純度96.0%、残留ラクチド量=0.4質量%、重量平均分子量19万、カーギル・ダウ社製:ネイチャーワークス)を用いた。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。この真空成形の際に、金型内を120℃、保持時間15秒にて熱処理した。
【0060】
得られた成形体の諸物性を表1に示す。
【0061】
実施例3
結晶性ポリ乳酸(A)/ガラス転移温度0℃以下の芳香族・脂肪族共重合ポリエステル(B)=85/15質量%にした。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0062】
得られた成形体の諸物性を表1に示す。
【0063】
実施例4
タルク(C)を組成物全体量に対して15質量%混合した。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0064】
得られた成形体の諸物性を表1に示す。
【0065】
実施例5
平均粒径4.1μmのタルク(C)(林化成社製MICRON WHITE #5000A)を用いた。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0066】
得られた成形体の諸物性を表1に示す。
【0067】
実施例6
ガラス転移温度が0℃以下の脂肪族ポリエステル(B)(ガラス転移温度−30℃、昭和高分子社製:ビオノーレ3001)を用いた。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0068】
得られた成形体の諸物性を表1に示す。
【0069】
実施例7
金型内での熱処理条件を、表1に示すように、温度150℃、保持時間3秒と変更した。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0070】
得られた成形体の諸物性を表1に示す。
【0071】
実施例8
結晶性ポリ乳酸(A)/ガラス転移温度0℃以下の芳香族・脂肪族共重合ポリエステル(B)=95/5質量%にした。また、金型内での熱処理温度条件を、表1に示すように、温度130℃、保持時間20秒と変更した。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0072】
得られた成形体の諸物性を表1に示す。
【0073】
実施例9
実施例1と同様にして得たシート状物に、140℃、10秒間の熱処理を施した。そして、その後に、単発間接加熱真空成型機および金型CTデリカン15−11(アルミ製)を用いて、縦150mm、横110mm、深さ20mmに真空成形して成形体としての容器を作製した。この真空成形の際、金型内を125℃、成形サイクルを1秒とした。
【0074】
得られた成形体の諸物性を表1に示す。
【0075】
比較例1
タルクを使用しなかった。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0076】
得られた成形体の諸物性を表1に示す。
【0077】
比較例2
タルクの含量を40質量%に変更した。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0078】
得られた成形体の諸物性を表1に示す。
【0079】
比較例3
ポリ乳酸(A)としてポリ乳酸(光学純度80.0%、残留ラクチド量=0.5質量%、重量平均分子量20万、カーギル・ダウ社製:ネイチャーワークス)を用いた。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0080】
得られた成形体の諸物性を表1に示す。
【0081】
比較例4
ガラス転移温度0℃以下のポリエステル(B)を使用せず、実施例1と同様の結晶性ポリ乳酸(A)とタルク(C)のみを用いた。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0082】
得られた成形体の諸物性を表1に示す。
【0083】
比較例5
結晶性ポリ乳酸(A)とガラス転移温度0℃以下の芳香族・脂肪族共重合ポリエステル(B)との混合比を(A)/(B)=70/30質量%にした。そして、それ以外は実施例1と同様にして、未延伸シートおよび真空成形した成形体としての容器を得た。
【0084】
得られた成形体の諸物性を表1に示す。
【0085】
比較例6
実施例1と同様にして作製した未延伸シートに実施例1と同様の成型機を適用したが、その熱処理条件を変更して、金型内で160℃、5秒間熱処理した。次いで、実施例1と同様にして成形体としての容器を得た。
【0086】
得られた成形体の諸物性を表1に示す。
【0087】
比較例7
実施例1と同様にして作製した未延伸シートに実施例1と同様の成型機を適用したが、その熱処理条件を変更して、金型内で100℃、1分間熱処理した。次いで、実施例1と同様にして成形体としての容器を得た。
【0088】
得られた成形体の諸物性を表1に示す。
【0089】
【表1】

Figure 2004269588
【0090】
実施例1〜8で得られた成形体としての容器は、熱湯を注いでも全く変形せず、耐熱性に優れたものであった。また耐衝撃性も優れていた。
【0091】
実施例9も、光学純度が本発明の範囲内であるポリ乳酸を用い、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルとタルクの混合割合が本発明の範囲内である樹脂組成物を用いてシートを成形し、そのシートを本発明の範囲内の温度および時間で熱処理を施した後に成形したものであるため、得られた成形体は結晶性が良く、耐熱性に優れたものであった。
【0092】
比較例1は、タルクを全く使用しなかったため、熱処理した容器の結晶化が不十分で、熱湯を注いだ際に一瞬で変形してしまった。
【0093】
比較例2は、タルクの添加量が多すぎたため、容器自体が脆く、成形中あるいは成形後における容器の割れが観察された。
【0094】
比較例3は、ポリ乳酸の光学純度が低かったため、熱処理や結晶核剤を添加することにより結晶化を促しても、ポリ乳酸の結晶化が不十分で、耐熱性に劣る容器であった。
【0095】
比較例4は、ガラス転移温度0℃以下のポリエステル(B)を使用しなかったため、落球高さが低く、耐衝撃性に劣った容器であった。
【0096】
比較例5は、ガラス転移温度0℃以下のポリエステル(B)の配合量が多過ぎたため、耐衝撃性に優れるものの、結晶化速度が著しく遅く、このため成型サイクル時間を要することになって工業的な生産の観点から問題であった。
【0097】
比較例6は、金型内での熱処理温度が160℃と高く、ポリ乳酸の融点付近であったため、結晶核が融解してしまい、このため得られた容器は十分結晶化しておらず、したがって耐熱性に劣ったものであった。
【0098】
比較例7は、金型内での熱処理時間が100℃とポリ乳酸分子が結晶化するに要する温度まで上がっておらず、処理時間を長くしても結晶化が不十分であり、このため|ΔHm|−|ΔHc|が9.0J/gにしかならず、耐熱性に劣る容器しか得られなかった。
【0099】
【発明の効果】
本発明によれば、光学純度を厳密に調整したポリ乳酸とガラス転移温度が0℃以下の芳香族・脂肪族ポリエステルあるいは脂肪族ポリエステルとタルクとを所定の混合範囲としてシート状物を形成し、このシート状物を真空成形に代表される一般的な成形法によって成形するに際し、たとえば成形前あるいは成形中の金型内で所定の条件にて熱処理すると、得られる生分解性の容器の熱的性質は、(|ΔHm|−|ΔHc|)≧25J/gとなり、結晶化速度が0.010min−1以上となり、かつ、厚み500μm当たりの落球高さが20cm以上となって、従来のポリ乳酸による成形体では不可能であった熱湯にも耐えうる耐熱性と耐衝撃性を兼ね備えたものとすることができる。
【0100】
このようにして得られるポリ乳酸系成形体は、耐熱性と耐衝撃性が必要とされる容器、例えば弁当用トレー、どんぶり、皿、コップなどに好適に使用できる他に、夏季の倉庫保管中や運搬中においても変形しないため、蓋材や建材、ボード、文具、ケース、キャリアテープ、プリペイドカード、ICカードなどのカード類、FRPなど様々な用途にも適用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polylactic acid-based molded article and a method for producing the same.
[0002]
[Prior art]
In recent years, biodegradable polymers that are decomposed by microorganisms and the like have attracted attention as social demands for environmental protection have increased. Specific examples of the biodegradable polymer include aliphatic polyesters such as polybutylene succinate, polycaprolactone, and polylactic acid; and aliphatic-aromatic copolymers such as a copolymer of terephthalic acid / 1,4-butanediol / adipic acid. Examples include melt-moldable polyesters such as polymerized polyesters.
[0003]
Among the above-mentioned aliphatic polyesters, polylactic acid, which is widely distributed in nature and is harmless to animals, plants and humans, has a melting point of 140 to 175 ° C and has sufficient heat resistance, and is relatively inexpensive. It is expected as a degradable resin.
[0004]
However, when the polylactic acid is simply formed into a sheet or a container, the crystal of the polylactic acid is almost completely melted due to the heat history at the time of forming, so that only a material having poor heat resistance is obtained.
[0005]
Therefore, many attempts to impart heat resistance to polylactic acid have been reported. For example, in Patent Document 1, injection molding was attempted by adding ordinary talc, silica, calcium lactate, etc. as a nucleating agent to a lactic acid-based polymer, but the crystallization rate was slow and the molded product was brittle, so that it could withstand practical use. Therefore, such a lactic acid-based polymer has a low crystallization rate even when used for general injection molding, blow molding, and compression molding using ordinary talc, silica, and the like. It is described that the practical heat resistance of the obtained molded product is as low as 100 ° C. or less, and there is a limitation in use.
[0006]
Patent Document 2 discloses that by adding polyglycolic acid and its derivative as a nucleating agent to poly-L-lactide and the like, the crystallization rate is increased, the injection molding cycle time is shortened, and excellent mechanical properties are obtained. It is stated that a product having the same can be obtained.
[0007]
However, in Patent Document 1, when injection molding was attempted without actually adding a nucleating agent to a lactic acid-based polymer, molding could not be performed at a mold temperature of Tg or higher as disclosed in Patent Document 2. It is stated that
[0008]
Patent Document 3 discloses a method in which a wax is used as a crystal nucleating agent and a crystallization accelerator, and a molded product is heat-treated at a crystallization temperature or held for a certain time in a mold set at the crystallization temperature. I have. However, in this method, although the heat resistance up to about 80 ° C. is improved, the heat resistance at a higher temperature, particularly at a temperature of 100 ° C. or higher for a microwave oven or the like, is insufficient.
[0009]
On the other hand, as a method for imparting heat resistance and impact resistance without using a crystal nucleating agent, Patent Document 4 discloses that a non-stretched sheet is stretched 1.5 to 5 times to obtain a crystal orientation degree and a crystallinity degree. There is disclosed a technique for improving the performance. However, in this method, since it becomes a stretched sheet, further stretching is necessary when processing into a container such as a tray, but a sheet stretched once is inferior in stretchability and is unsuitable for deep drawing etc. Therefore, the use is limited.
[0010]
[Patent Document 1]
JP-A-8-193165
[0011]
[Patent Document 2]
JP-A-4-220456
[0012]
[Patent Document 3]
JP-A-11-106628
[0013]
[Patent Document 4]
JP-A-9-25345
[0014]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to solve such a problem and to obtain a molded article obtained by heat-treating a sheet made of polylactic acid and a crystal nucleating agent and having excellent heat resistance and impact resistance.
[0015]
[Means for Solving the Problems]
The present inventors have conducted intensive studies for the purpose of improving the heat resistance and impact resistance of the conventional polylactic acid molded article as described above. As a result, the polylactic acid having a high crystallinity has a glass transition temperature of 0 ° C. or lower. The aromatic-aliphatic copolymerized polyester or aliphatic polyester and talc having an average particle size of 1 to 8 μm are blended in a certain range, extruded and formed into a sheet, and then subjected to a heat treatment under a certain condition. According to the present invention, it has been found that the heat resistance and the impact resistance are remarkably improved based on the improvement of the crystallinity of lactic acid and the presence of a soft component, and the crystallization rate is improved from the viewpoint of a molding cycle until industrial production is possible. Reached.
[0016]
That is, the present invention has the following gist.
(1) A crystalline polylactic acid resin (A) having an optical purity of 95% or more, an aromatic / aliphatic copolymer polyester or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less, and an average particle diameter of 1 to 8 μm (A) / (B) = 97/3 to 80/20% by mass, and the mixing ratio of (C) Is a sheet having a mass of 1 to 30% by mass with respect to the total amount of the composition, and the heat of crystal fusion ΔHm and the heat of crystallization ΔHc measured by a differential scanning calorimeter under a heating condition of 20 ° C./min. The crystallization index, which is the difference between the absolute value and the absolute value, is (| ΔHm | − | ΔHc |) ≧ 25 J / g, and the crystallization rate at 130 ° C. is 0.010 min. -1 A polylactic acid-based molded article having a falling ball impact strength of not less than 20 cm and a falling ball height of 500 μm.
[0017]
(2) In the above, a polylactic acid-based molded product obtained by subjecting the sheet to any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming.
[0018]
(3) a crystalline polylactic acid-based resin (A) having an optical purity of 95% or more, an aromatic / aliphatic copolymer or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less, 8 μm of talc (C) is mixed with (A) / (B) at a mixing ratio of (A) / (B) = 97/3 to 80/20% by mass, and (C) at a mixing ratio of the whole composition. The composition is characterized in that, after extruding a resin composition blended so as to be 1 to 30% by mass of the resin composition into a sheet, heat treatment is performed at a treatment temperature of 110 to 150 ° C. and a treatment time of 1 to 30 seconds, and at the same time, molding is performed. A method for producing a polylactic acid-based molded article.
[0019]
(4) The method for producing a polylactic acid-based molded article according to the above, wherein the sheet is heat-treated, and thereafter, the sheet is molded by any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming.
[0020]
(5) A polylactic acid-based molded article according to the above, wherein the sheet is subjected to a heat treatment in a molding die while forming the sheet by any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming. Production method.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The crystalline polylactic acid resin (A) used in the present invention needs to have an optical purity of 95% or more.
[0022]
There are two types of optically active isomers of polylactic acid, namely, D-lactic acid and L-lactic acid. At present, L-lactic acid is industrially produced in large quantities at low cost, and L-polylactic acid (PLLA) derived from L-lactic acid is generally used for polylactic acid. The crystallinity of polylactic acid changes depending on the content of L-lactic acid or D-lactic acid. For example, when the optical purity L of a lactic acid monomer is defined as the following formula 1, the larger the L, that is, the higher the optical purity, Crystallinity increases.
[0023]
Optical purity = | M (L) −M (D) | ... Formula 1
Here, M (L) is mol% of L-lactic acid unit to all lactic acid units constituting the polylactic acid resin, and M (D) is mol% of D-lactic acid unit to all lactic acid units constituting the polylactic acid resin. , M (L) + M (D) = 100.
[0024]
In general, even when PLLA is polymerized from a monomer having an optical purity of 100%, for example, a 100% L-lactic acid component, the monomer is partially racemized due to heat history in the polymerization and subsequent melt molding, so that it is industrially used. It is said that the upper limit of the optical purity of PLLA is around 98%. Therefore, this is the most highly crystalline composition practically among polylactic acids. However, even in PLLA comprising such a high-purity L-lactic acid component, the crystallization speed is relatively slow, and the supercooling property in the cooling crystallization process is very high.
[0025]
In particular, in order to obtain substantial strength and durability, a polymer having a relatively high molecular weight, and a polymer having a weight average molecular weight of 100,000 or more, preferably 150,000 to 300,000 are used as polylactic acid. Is good.
[0026]
On the other hand, in order to impart heat resistance to the finally obtained polylactic acid-based molded article, in addition to accelerating the crystallization (crystallization rate) of the polylactic acid itself, the crystallinity of the polylactic acid after molding is improved. Need to be done. For this purpose, it is necessary that polylactic acid itself has the ability to have high crystallinity, and for that purpose, it is necessary that the polylactic acid be a polylactic acid resin having an optical purity of 95% or more, preferably 96%. That is all. With a polylactic acid resin having an optical purity of less than 95%, the crystallinity of the polylactic acid itself is reduced, and talc as a crystal nucleating agent is not sufficiently crystallized even when subjected to heat treatment or required heat resistance. Can not be obtained.
[0027]
In addition, it is generally known that lactide present in polylactic acid resin, when the amount is too large, results in promoting hydrolysis of polylactic acid.However, low molecular weight lactide crystallizes more than high molecular weight polylactic acid. The crystallization of lactide acts as an initiator and promotes the crystallization of polylactic acid. Therefore, defining an appropriate amount of lactide contained in polylactic acid is an effective item for the purpose of promoting crystallization and imparting heat resistance. That is, the amount of residual lactide is preferably in the range of 0.1 to 0.6% by mass, more preferably in the range of 0.1 to 0.4% by mass, based on the whole resin. If the amount of residual lactide is less than 0.1% by mass, the amount of the initiator for promoting the crystallization of polylactic acid is too small to use. On the other hand, if the content exceeds 0.6% by mass, the effect of promoting hydrolysis is increased, which is not preferable.
[0028]
In the polylactic acid-based molded article of the present invention, an aromatic / aliphatic copolymerized polyester or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less is essential as a component.
[0029]
Since the component (B) has a glass transition temperature of 0 ° C. or lower, it has flexibility even at room temperature. Dispersion of such a component in the polylactic acid resin has a function of absorbing external impacts as in the case of dispersing rubber. That is, it contributes to the improvement of impact properties. Specific examples of the component (B) include aromatic / aliphatic copolymer polyesters which are copolymer polyesters having at least an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an aliphatic diol as constituent components. Alternatively, an aliphatic polyester comprising at least an aliphatic dicarboxylic acid and an aliphatic diol can be used. Alternatively, an aliphatic polyester obtained by ring-opening polymerization of a cyclic monomer, ε-caprolactone, may be mentioned.
[0030]
Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecandioic acid, and the like. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol. The component (B) is obtained by selecting at least one or more of the above-mentioned constituent components and subjecting them to polycondensation. If necessary, jump-up and long-chain branching can be imparted to the structure by using an isocyanate, an acid anhydride, an epoxy compound, an organic peroxide, or the like.
[0031]
In the present invention, the mixing ratio of the components (A) and (B) needs to be (A) / (B) = 97/3 to 80/20% by mass, and preferably (A) / (B). ) = 97/3 to 85/15% by mass, and more preferably (A) / (B) = 95/5 to 85/15% by mass. When the mixing ratio of the component (B) is less than 3% by mass, external impact cannot be completely absorbed, resulting in poor impact resistance. On the other hand, when the mixing ratio of the component (B) exceeds 20% by mass, the impact resistance is remarkably improved, but the crystallization of the polylactic acid itself is hindered, resulting in poor heat resistance. At the same time, the crystallization speed itself is slowed down, so that a molding cycle in actual production takes time, resulting in poor productivity.
[0032]
In the present invention, in order to promote crystallization, in addition to optimizing the polylactic acid resin itself as described above, the presence of talc as a crystal nucleating agent is essential.
Talc as a nucleating agent in the present invention has an average particle size of 1 to 8 μm, preferably 1 to 5 μm. Of the many nucleating agents, talc is the most suitable as a nucleating agent because it is the most highly crystallizable inorganic substance for polylactic acid. Since it is a substance, it is industrially advantageous and does not impose a burden on the global environment. If the average particle size of the talc is less than 1 μm, poor dispersion and secondary aggregation occur, and the effect as a crystal nucleating agent cannot be sufficiently exerted, so that the heat resistance of the obtained molded product becomes insufficient. If the average particle size exceeds 8 μm, talc acts as a crystal nucleating agent and becomes a drawback in the molded product, which adversely affects the physical properties and surface state of the obtained molded product.
[0033]
The content of talc is 1 to 30% by mass, preferably 5 to 20% by mass, more preferably 10 to 15% by mass based on the total amount of the composition. If the content is less than 1% by mass, the content is too small to generate only a small amount of crystal nuclei, and the effect as a crystal nucleating agent cannot be sufficiently exerted, so that the heat resistance of the molded product becomes insufficient. If it exceeds 30% by mass, the content becomes too large, and the physical properties are adversely affected, such as the molded article becoming brittle.
[0034]
In order to disperse the crystal nucleating agent efficiently, a dispersing agent may be used. The dispersant preferably has excellent compatibility with polylactic acid and excellent wettability with the crystal nucleating agent. As such a substance, at least one kind should be selected from fatty acid amides such as erucamide, stearamide, oleamide, ethylenebissteaamide, ethylenebisoleic amide, and ethylenebislauric amide. However, it is important for efficiently increasing the crystallinity of the polylactic acid-based molded article.
[0035]
A sheet is formed with each of the components (A), (B) and (C) in the above-mentioned mixing ratio, and the sheet is subjected to a heat treatment to obtain a molded article of the present invention. In this molded product, the difference between the absolute value of the heat of crystal fusion ΔHm and the absolute value of the heat of heat crystallization ΔHc as measured by a suggestive scanning calorimeter under a heating condition of 20 ° C./min as a crystallization index is ( | ΔHm | − | ΔHc |) ≧ 25 J / g. Preferably, (| ΔHm | − | ΔHc |) ≧ 29 J / g. In order to satisfy (| ΔHm | − | ΔHc |) ≧ 25 J / g, the optical purity of the polylactic acid used, the amount of residual lactide, the average particle size of talc, and the addition ratio thereof are each set as described above. It is necessary to perform the heat treatment described below while optimizing.
[0036]
When (| ΔHm | − | ΔHc |) is less than 25 J / g, it is not sufficiently crystallized, and can be obtained from ordinary polylactic acid when, for example, hot water (90 ° C.) is poured into a molded container. In a container, the container is thermally deformed and has insufficient heat resistance. However, such a phenomenon does not occur at 25 J / g or more.
[0037]
In the present invention, heat treatment is an essential condition in the production of a molded body. However, industrially, it is impossible to perform the heat treatment for a long time. On the other hand, polylactic acid is known as a material having a very low crystallization rate. Therefore, it is necessary to provide a crystallization rate that can be applied to an industrial molding cycle. In the present invention, the required compact can be industrially produced by optimizing the composition of polylactic acid, the nucleating agent and the heat treatment conditions in detail. The molded product of the present invention has a crystallization rate at 130 ° C. of 0.010 min. -1 Must be at least 0.015 min. -1 It is preferable that it is above. The crystallization rate at 130 ° C is 0.010 min -1 If it is less than 1, the crystallization rate is low, which is not suitable for a normal molding cycle, and the crystallization becomes insufficient, resulting in poor heat resistance. The crystallization rate at 130 ° C is 0.010 min -1 In order to achieve the above, as described above, optimization of the optical purity of the polylactic acid to be used, optimization of the average particle size and mixing ratio of talc, and aromatic / aliphatic copolyester or fatty acid After optimizing the mixing ratio between the group III polyester and the polylactic acid, it is necessary to perform a heat treatment at a treatment temperature of 110 to 150 ° C. and a treatment time of 1 to 30 seconds as described later.
[0038]
In the present invention, in order to further promote the crystallization rate by the nucleating agent, a crosslinking agent such as an organic peroxide and a crosslinking assistant are used in combination, if necessary, and the resin composition is subjected to extremely light crosslinking. It is also possible.
[0039]
Specific examples of the crosslinking agent include n-butyl-4,4-bis-t-butylperoxyvalerate, dicumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, 2,5 Organic peroxides such as -dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-t-butylperoxyhexyne-3, phthalic anhydride, and maleic anhydride Polycarboxylic acids such as trimethyladipic acid, trimellitic anhydride, 1,2,3,4-butanetetracarboxylic acid, metal complexes such as lithium formate, sodium methoxide, potassium propionate and magnesium ethoxide, bisphenol A-type diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether And epoxy compounds such as diglycidyl terephthalate, isocyanate compounds such as diisocyanate, triisocyanate, hexamethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, and diphenylmethane diisocyanate. Can be
[0040]
Specific examples of the crosslinking aid include trimethacrylate, glycidyl methacrylate, normal-butyl methacrylate, hydroxypropyl monomethacrylate, and polyethylene glycol monomethacrylate.
[0041]
The molded article of the present invention is required to have a falling ball impact of a falling ball height of 20 cm or more for a thickness of 500 μm. Here, the falling ball height for a thickness of 500 μm refers to a box-shaped molded body formed of a sheet having a thickness of 500 μm in a prone state, which is placed horizontally with its bottom portion facing upward, and a 300 g iron ball Is dropped [a plurality of times from different heights of 5 cm] a plurality of times, which means [(height broken once every two times) -5] cm.
[0042]
If the falling ball height for a thickness of 500 μm is less than 20 cm, cracks or cracks may occur when an external impact is applied during transportation of the molded article. Therefore, it is preferable that the falling ball height for a thickness of 500 μm is 30 cm or more.
[0043]
As described above, in order to have a falling ball impact strength with a falling ball height of 20 cm or more for a thickness of 500 μm, as described above, an aromatic / aliphatic copolymer polyester or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less. ) Must be mixed with the crystalline polylactic acid resin (A) having an optical purity of 95% or more in an amount of 3% by mass or more.
[0044]
Next, the molecular weight retention of the molded article of the present invention will be described. Here, the molecular weight retention is obtained by dividing a weight average molecular weight (Mw) after a decomposition acceleration test in which a molded body is left for 30 days in a constant temperature and humidity chamber at 50 ° C. and 90% RH by a weight average molecular weight before leaving. It refers to the percentage value of the value. Generally, the decomposition of a biodegradable polylactic acid-based resin product does not proceed as much as possible during storage or use of a sheet or molded article, whereas it is preferable to decompose immediately after use. Therefore, the molecular weight retention under the conditions of the accelerated decomposition test is preferably 60% or more, and more preferably 70% or more. When the molecular weight retention rate is less than 60%, it means that the decomposition rate is high, and decomposition may proceed during storage in a warehouse or the like, which is not preferable because it may not be able to withstand actual use.
[0045]
The molded article of the present invention may contain, if necessary, a plasticizer, an ultraviolet ray inhibitor, a light stabilizer, an antifogging agent, an antifog agent, an antistatic agent, a flame retardant, a coloring inhibitor, an antioxidant, a filler, and a pigment. Etc. can be added.
[0046]
Next, an example of an embodiment of a method for manufacturing a molded article of the present invention will be described.
First, a polylactic acid resin (A) having an optical purity of 95% or more, an aromatic / aliphatic copolymer or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less, talc (C), and if necessary The dispersant is blended in a predetermined amount. In this case, the whole amount may be previously compounded by a twin-screw kneading extruder, or only (A) and (C) may be compounded and (B) may be dry-blended. Alternatively, all may be dry blended. Thereafter, the mixture is melt-kneaded by a single-screw extruder or a twin-screw extruder equipped with a T-die, extruded from the T-die, and formed into an unstretched sheet by a cast roll set at a temperature range of 30 to 50 ° C. The thickness of the sheet can be appropriately selected depending on the purpose of use, but is usually preferably 200 to 750 μm.
[0047]
Next, the unstretched sheet is heat-treated continuously or in a separate step under the following conditions, and thereafter, any one of press molding, vacuum molding, air pressure molding or vacuum pressure molding is selected to obtain a desired molded product. Alternatively, when the unstretched sheet is formed by selecting any one of the above-described forming methods, the unstretched sheet may be formed while being heat-treated in a mold.
[0048]
In the present invention, the conditions for performing the heat treatment after optimizing the resin, crystal nucleating agent, and the like as described above are as follows: the treatment is performed at a treatment temperature of 110 to 150 ° C. and a treatment time of 1 to 30 seconds. is necessary. The processing temperature of 110 to 150 ° C. is a temperature at which polylactic acid is most easily crystallized substantially. The processing time of 1 to 30 seconds is a time that can be substantially applied to a production cycle and can be crystallized without excess or shortage. If the treatment temperature is lower than 110 ° C., crystallization does not proceed sufficiently. On the other hand, if it exceeds 150 ° C., the crystallization speed becomes extremely slow, resulting in insufficient crystallization. If the processing time is less than 1 second, the time required for crystallization is not enough, and if it exceeds 30 seconds, it is not suitable for a substantial molding cycle, and there is a problem in industrial production.
[0049]
【Example】
Next, the present invention will be specifically described based on examples. However, the present invention is not limited to only these examples. The measurement of various physical properties in the following Examples and Comparative Examples was performed by the following methods.
[0050]
(1) Heat of crystal melting ΔHm and heat of crystallization ΔHc at elevated temperature
Using Pyrisl DSC manufactured by PerkinElmer, 10 mg of the molded product was used as a test sample, and when the temperature was raised at a heating rate of 20 ° C./min, the total calorific value of the peak appearing on the exothermic side was defined as the heated crystallization heat ΔHc The total calorific value of the peak appearing on the endothermic side was defined as the heat of crystal fusion ΔHm.
[0051]
(2) Crystallization rate
Using Pyrisl DSC manufactured by Perkin-Elmer, the temperature was raised from 20 ° C. to 200 ° C. at 500 ° C./min, held for 5 minutes, further quenched at −500 ° C./min to 130 ° C., and thereafter until crystallization was completed. It was measured. Thereafter, a value obtained by multiplying the reciprocal of the time until the crystallization fraction reaches 0.5 by the crystallization fraction 0.5 was defined as the crystallization rate.
[0052]
(3) Heat resistance
Using a single-shot indirect heating vacuum forming machine and a mold CT Delican 15-11 (made of aluminum), a container having a length of 150 mm, a width of 110 mm and a depth of 20 mm is formed from the sheet, and hot water at 90 ° C. is poured into the container. After a minute, the deformation of the container is visually observed.If there is no deformation, the heat resistance is evaluated as good, and if any deformation is observed, the heat resistance is evaluated as slightly poor, and the heat resistance is evaluated as poor. Was evaluated as poor with poor heat resistance.
(4) Retention rate of molecular weight
The sample was left in a thermo-hygrostat at 50 ° C. and 90% RH for 30 days, and the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC) using polystyrene as a standard substance in a THF solution. Lactic acid was measured using a Styragel HR column and an Ultrastyragel column, and a refractometer as a detector, and the retention was calculated by the following equation.
[0053]
Mw retention rate (%) = (Mw after 30 days / Mw before standing) × 100
[0054]
(5) Impact resistance
The box-shaped body after heat treatment formed of a sheet having a thickness of 500 μm is placed horizontally with its bottom part facing upward by placing the box-shaped body after heat treatment, and 300 g of iron balls are placed on this body from different heights every 5 cm. The ball was dropped vertically, and the impact resistance was evaluated with the falling ball height being (height at which cracks were generated once every two times -5) cm.
[0055]
Example 1
Crystalline polylactic acid (A) (optical purity 97.2%, residual lactide content 0.2% by mass, weight average molecular weight 200,000, manufactured by Cargill Dow: Nature Works), and aromatic having a glass transition temperature of 0 ° C. or lower -Aliphatic copolymerized polyester (B) (Glass transition temperature -30 ° C, manufactured by BASF: Ecoflex F) was blended at a ratio of (A) / (B) = 90/10 mass%, and further averaged. Talc (MW HS-T, manufactured by Hayashi Kasei Co., Ltd.) having a particle size of 2.75 μm was blended in an amount of 10% by mass based on the total amount of the composition. Then, the mixture was melt-kneaded using a twin-screw kneading extruder (manufactured by Nippon Steel Works Co., Ltd., model number TEX44α) to prepare a polylactic acid compound raw material at an extrusion temperature of 230 ° C.
[0056]
Next, this polylactic acid compound raw material was melt-extruded at an extrusion temperature of 215 ° C. using a single-screw extruder having a screw diameter of 90 mm equipped with a T die having a width of 1000 mm, and was cast to a thickness of 500 μm with a cast roll set at 40 ° C. Was formed.
[0057]
Further, the sheet was vacuum-formed to a length of 150 mm, a width of 110 mm, and a depth of 20 mm using a single-shot indirect heating vacuum forming machine and a mold CT Delican 15-11 (aluminum) to prepare a container as a formed body. . At the time of this vacuum forming, heat treatment was performed by setting the inside of the mold to 140 ° C. and the holding time to 5 seconds.
[0058]
Table 1 shows various physical properties of the obtained molded body.
[0059]
Example 2
As the crystalline polylactic acid (A), polylactic acid (optical purity 96.0%, residual lactide amount = 0.4% by mass, weight average molecular weight 190,000, manufactured by Cargill Dow: Nature Works) was used. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained. During this vacuum forming, the inside of the mold was heat-treated at 120 ° C. for a holding time of 15 seconds.
[0060]
Table 1 shows various physical properties of the obtained molded body.
[0061]
Example 3
The ratio of crystalline polylactic acid (A) / aromatic / aliphatic copolymerized polyester (B) having a glass transition temperature of 0 ° C. or lower was 85/15% by mass. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0062]
Table 1 shows various physical properties of the obtained molded body.
[0063]
Example 4
Talc (C) was mixed at 15% by mass with respect to the total amount of the composition. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0064]
Table 1 shows various physical properties of the obtained molded body.
[0065]
Example 5
Talc (C) (MICRON WHITE # 5000A manufactured by Hayashi Kasei Co., Ltd.) having an average particle size of 4.1 μm was used. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0066]
Table 1 shows various physical properties of the obtained molded body.
[0067]
Example 6
An aliphatic polyester (B) having a glass transition temperature of 0 ° C. or lower (glass transition temperature −30 ° C., manufactured by Showa Polymer Co., Ltd .: Bionole 3001) was used. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0068]
Table 1 shows various physical properties of the obtained molded body.
[0069]
Example 7
As shown in Table 1, the heat treatment conditions in the mold were changed to a temperature of 150 ° C. and a holding time of 3 seconds. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0070]
Table 1 shows various physical properties of the obtained molded body.
[0071]
Example 8
The ratio of crystalline polylactic acid (A) / aromatic / aliphatic copolymerized polyester (B) having a glass transition temperature of 0 ° C. or lower was 95/5% by mass. Further, as shown in Table 1, the heat treatment temperature conditions in the mold were changed to a temperature of 130 ° C. and a holding time of 20 seconds. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0072]
Table 1 shows various physical properties of the obtained molded body.
[0073]
Example 9
The sheet obtained in the same manner as in Example 1 was subjected to a heat treatment at 140 ° C. for 10 seconds. Then, using a single-shot indirect heating vacuum molding machine and a mold CT Delican 15-11 (made of aluminum), vacuum molding was performed to 150 mm in length, 110 mm in width, and 20 mm in depth to produce a container as a molded body. In this vacuum forming, the inside of the mold was set at 125 ° C., and the forming cycle was set at 1 second.
[0074]
Table 1 shows various physical properties of the obtained molded body.
[0075]
Comparative Example 1
Did not use talc. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0076]
Table 1 shows various physical properties of the obtained molded body.
[0077]
Comparative Example 2
The talc content was changed to 40% by weight. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0078]
Table 1 shows various physical properties of the obtained molded body.
[0079]
Comparative Example 3
As the polylactic acid (A), polylactic acid (optical purity: 80.0%, residual lactide amount = 0.5% by mass, weight average molecular weight: 200,000, manufactured by Cargill Dow: NatureWorks) was used. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0080]
Table 1 shows various physical properties of the obtained molded body.
[0081]
Comparative Example 4
The same crystalline polylactic acid (A) and talc (C) as in Example 1 were used without using polyester (B) having a glass transition temperature of 0 ° C. or lower. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0082]
Table 1 shows various physical properties of the obtained molded body.
[0083]
Comparative Example 5
The mixing ratio of the crystalline polylactic acid (A) and the aromatic / aliphatic copolymer polyester (B) having a glass transition temperature of 0 ° C. or lower was (A) / (B) = 70/30% by mass. Otherwise, in the same manner as in Example 1, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
[0084]
Table 1 shows various physical properties of the obtained molded body.
[0085]
Comparative Example 6
The same molding machine as in Example 1 was applied to the unstretched sheet produced in the same manner as in Example 1, but the heat treatment conditions were changed, and the sheet was heat-treated at 160 ° C. for 5 seconds. Next, a container as a molded body was obtained in the same manner as in Example 1.
[0086]
Table 1 shows various physical properties of the obtained molded body.
[0087]
Comparative Example 7
The same molding machine as in Example 1 was applied to the unstretched sheet produced in the same manner as in Example 1, but the heat treatment conditions were changed and heat treatment was performed at 100 ° C. for 1 minute in a mold. Next, a container as a molded body was obtained in the same manner as in Example 1.
[0088]
Table 1 shows various physical properties of the obtained molded body.
[0089]
[Table 1]
Figure 2004269588
[0090]
The containers as molded bodies obtained in Examples 1 to 8 did not deform at all even when hot water was poured, and were excellent in heat resistance. Also, the impact resistance was excellent.
[0091]
Example 9 also uses a polylactic acid having an optical purity within the range of the present invention, and a resin having a glass transition temperature of 0 ° C. or less in which the mixing ratio of the aromatic / aliphatic copolymer polyester and talc is within the range of the present invention. Since the sheet is molded using the composition, and the sheet is subjected to a heat treatment at a temperature and time within the range of the present invention and then molded, the obtained molded body has good crystallinity and excellent heat resistance. It was.
[0092]
In Comparative Example 1, since talc was not used at all, the crystallization of the heat-treated container was insufficient, and the container was instantaneously deformed when hot water was poured.
[0093]
In Comparative Example 2, since the amount of talc added was too large, the container itself was brittle, and cracking of the container during or after molding was observed.
[0094]
Comparative Example 3 was a container having poor heat resistance because the polylactic acid had low optical purity, so that the crystallization of polylactic acid was insufficient even if crystallization was promoted by heat treatment or addition of a crystal nucleating agent.
[0095]
Comparative Example 4 was a container having a low falling ball height and poor impact resistance because the polyester (B) having a glass transition temperature of 0 ° C. or lower was not used.
[0096]
In Comparative Example 5, since the blending amount of the polyester (B) having a glass transition temperature of 0 ° C. or less was too large, the impact resistance was excellent, but the crystallization rate was extremely slow, and thus a molding cycle time was required. This was a problem from the perspective of global production.
[0097]
In Comparative Example 6, since the heat treatment temperature in the mold was as high as 160 ° C. and was near the melting point of polylactic acid, the crystal nuclei were melted, and thus the obtained container was not sufficiently crystallized. The heat resistance was poor.
[0098]
In Comparative Example 7, the heat treatment time in the mold did not rise to 100 ° C., the temperature required for the polylactic acid molecules to crystallize, and the crystallization was insufficient even if the treatment time was lengthened. ΔHm | − | ΔHc | was only 9.0 J / g, and only containers having poor heat resistance were obtained.
[0099]
【The invention's effect】
According to the present invention, a sheet-like material is formed with a predetermined mixing range of polylactic acid having strictly adjusted optical purity and an aromatic / aliphatic polyester or an aliphatic polyester and talc having a glass transition temperature of 0 ° C. or less, When the sheet is molded by a general molding method typified by vacuum molding, for example, if heat treatment is performed under predetermined conditions in a mold before or during molding, a thermal decomposition of the obtained biodegradable container is performed. The property is (| ΔHm | − | ΔHc |) ≧ 25 J / g, and the crystallization rate is 0.010 min. -1 In addition, the falling ball height per 500 μm thickness is 20 cm or more, and it has both heat resistance and impact resistance that can withstand hot water, which was impossible with a conventional molded article made of polylactic acid. Can be.
[0100]
The polylactic acid-based molded article thus obtained can be suitably used for containers where heat resistance and impact resistance are required, for example, lunch trays, bowls, dishes, cups, etc. Since it is not deformed during transportation or during transportation, it can be applied to various uses such as lids, building materials, boards, stationery, cases, carrier tapes, prepaid cards, cards such as IC cards, and FRP.

Claims (5)

光学純度95%以上の結晶性ポリ乳酸樹脂(A)と、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)と、平均粒径1〜8μmのタルク(C)とを構成成分とし、(A)と(B)との混合比が(A)/(B)=97/3〜80/20質量%であり、かつ(C)の混合比が組成物全体量に対して1〜30質量%であるシートからなり、20℃/minの昇温条件で示差走査型熱量計にて測定した際の結晶融解熱量ΔHmと昇温結晶化熱量ΔHcとの絶対値の差である結晶化指標が(|ΔHm|−|ΔHc|)≧25J/gであり、130℃での結晶化速度が0.010min−1以上であり、厚み500μmについての落球高さが20cm以上の落球衝撃性を有することを特徴とするポリ乳酸系成形体。A crystalline polylactic acid resin (A) having an optical purity of 95% or more, an aromatic / aliphatic copolymer or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less, and talc having an average particle size of 1 to 8 μm ( (A) / (B) = 97/3 to 80/20% by mass, and the mixing ratio of (C) is a composition. An absolute value of the heat of crystal fusion ΔHm and the heat of crystallization heat ΔHc when measured by a differential scanning calorimeter under a heating condition of 20 ° C./min. The crystallization index as the difference between the values is (| ΔHm | − | ΔHc |) ≧ 25 J / g, the crystallization rate at 130 ° C. is 0.010 min −1 or more, and the falling ball height for a thickness of 500 μm is A polylactic acid-based composition having a falling ball impact of 20 cm or more. Shape. シートに、真空成形、圧空成形、真空圧空成形、プレス成形のいずれかを施して得られたものであることを特徴とする請求項1記載のポリ乳酸系成形体。The polylactic acid-based molded product according to claim 1, wherein the molded product is obtained by subjecting the sheet to any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming. 光学純度95%以上の結晶性ポリ乳酸系樹脂(A)と、ガラス転移温度が0℃以下の芳香族・脂肪族共重合ポリエステルあるいは脂肪族ポリエステル(B)と、平均粒径1〜8μmのタルク(C)とを、(A)と(B)との混合比が(A)/(B)=97/3〜80/20質量%、(C)の混合比が組成物全体量に対して1〜30質量%となるよう配合した樹脂組成物を押し出し成形によりシート状にした後、処理温度110〜150℃および処理時間1〜30秒にて熱処理するとともに成形を行うことを特徴とするポリ乳酸系成形体の製造方法。A crystalline polylactic acid resin (A) having an optical purity of 95% or more, an aromatic / aliphatic copolymer polyester or an aliphatic polyester (B) having a glass transition temperature of 0 ° C. or less, and talc having an average particle size of 1 to 8 μm. (C), the mixing ratio of (A) and (B) is (A) / (B) = 97/3 to 80/20% by mass, and the mixing ratio of (C) is based on the total amount of the composition. After forming the resin composition blended to be 1 to 30% by mass into a sheet by extrusion molding, heat treatment is performed at a processing temperature of 110 to 150 ° C. and a processing time of 1 to 30 seconds, and molding is performed. A method for producing a lactic acid-based molded article. シートを熱処理し、その後に真空成形、圧空成形、真空圧空成形、プレス成形のいずれか一つにより成形することを特徴とする請求項3記載のポリ乳酸系成形体の製造方法。The method for producing a polylactic acid-based molded product according to claim 3, wherein the sheet is heat-treated, and then formed by any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming. シートを真空成形、圧空成形、真空圧空成形、プレス成形のいずれか一つにより成形しながら、同時に成形金型内で熱処理を施すことを特徴とする請求項3記載のポリ乳酸系成形体の製造方法。4. The polylactic acid-based molded article according to claim 3, wherein the sheet is subjected to heat treatment in a molding die while being formed by any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming. Method.
JP2003059257A 2003-03-06 2003-03-06 Method for producing polylactic acid-based molded body Expired - Fee Related JP4808367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059257A JP4808367B2 (en) 2003-03-06 2003-03-06 Method for producing polylactic acid-based molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059257A JP4808367B2 (en) 2003-03-06 2003-03-06 Method for producing polylactic acid-based molded body

Publications (2)

Publication Number Publication Date
JP2004269588A true JP2004269588A (en) 2004-09-30
JP4808367B2 JP4808367B2 (en) 2011-11-02

Family

ID=33122118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059257A Expired - Fee Related JP4808367B2 (en) 2003-03-06 2003-03-06 Method for producing polylactic acid-based molded body

Country Status (1)

Country Link
JP (1) JP4808367B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212897A (en) * 2005-02-03 2006-08-17 Unitika Ltd Manufacturing method of polylactic acid type molded product
JP2007051274A (en) * 2005-07-19 2007-03-01 Toray Ind Inc Polylactic acid resin composition and method for producing the same
JP2007145912A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Resin composition and resin molded product and method for producing the same
JP2007524751A (en) * 2004-02-27 2007-08-30 セレプラスト・インコーポレーテッド Biodegradable composition comprising polylactic acid polymer, adipic acid copolymer and magnesium silicate
WO2009060959A1 (en) 2007-11-08 2009-05-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Process for production of molded polyester resin article, crystallization inducer for use in the process, master batch, and molded polyester resin article
JP2009208264A (en) * 2008-02-29 2009-09-17 Yoshino Kogyosho Co Ltd Biodegradable molded article and container using the molded article
JP2009235172A (en) * 2008-03-26 2009-10-15 Mitsubishi Plastics Inc Resin composition for card and sheet for card
KR101099941B1 (en) 2010-01-13 2011-12-28 도레이첨단소재 주식회사 Biodegradable sheet retaining an improved heat and impact resistance and preparing process thereof
JP2012140633A (en) * 2005-07-08 2012-07-26 Toray Ind Inc Resin composition and molding made therefrom
JP2013067704A (en) * 2011-09-21 2013-04-18 Unitika Ltd Polylactic acid-based resin composition
US8829099B2 (en) 2005-07-08 2014-09-09 Toray Industries, Inc. Resin composition and molded article composed of the same
TWI560237B (en) * 2011-11-18 2016-12-01 Sk Chemicals Co Ltd Blend of polylactic acid resin and copolyester resin and articles using the same (3)
KR20210110685A (en) * 2019-01-09 2021-09-08 푸락 바이오켐 비.브이. Thermoforming of PLA-based products

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623828A (en) * 1992-03-27 1994-02-01 Mitsui Toatsu Chem Inc Decomposable container
JPH08193165A (en) * 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc Heat-resistant lactic acid polymer molding
JPH0912748A (en) * 1995-07-04 1997-01-14 Mitsubishi Plastics Ind Ltd Molding of polylactic acid polymer and polyactic acid molded product
JPH09157408A (en) * 1995-12-11 1997-06-17 Mitsubishi Plastics Ind Ltd Stretched polylactic acid film or sheet
JPH1087976A (en) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition, and molded and processed product thereof
JPH10120887A (en) * 1996-10-24 1998-05-12 Mitsui Chem Inc Resin composition and molded product thereof
JPH11124495A (en) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd Polylactic acid-based polymer composition and molded product
JP2000273207A (en) * 1999-03-19 2000-10-03 Unitika Ltd Polylactic acid-based film and its production
JP2003012834A (en) * 2001-07-03 2003-01-15 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
JP2004099703A (en) * 2002-09-06 2004-04-02 Mitsubishi Plastics Ind Ltd Flame-retardant resin composition and flame-retardant molded article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623828A (en) * 1992-03-27 1994-02-01 Mitsui Toatsu Chem Inc Decomposable container
JPH08193165A (en) * 1993-12-24 1996-07-30 Mitsui Toatsu Chem Inc Heat-resistant lactic acid polymer molding
JPH0912748A (en) * 1995-07-04 1997-01-14 Mitsubishi Plastics Ind Ltd Molding of polylactic acid polymer and polyactic acid molded product
JPH09157408A (en) * 1995-12-11 1997-06-17 Mitsubishi Plastics Ind Ltd Stretched polylactic acid film or sheet
JPH1087976A (en) * 1996-07-26 1998-04-07 Mitsui Petrochem Ind Ltd Resin composition, and molded and processed product thereof
JPH10120887A (en) * 1996-10-24 1998-05-12 Mitsui Chem Inc Resin composition and molded product thereof
JPH11124495A (en) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd Polylactic acid-based polymer composition and molded product
JP2000273207A (en) * 1999-03-19 2000-10-03 Unitika Ltd Polylactic acid-based film and its production
JP2003012834A (en) * 2001-07-03 2003-01-15 Mitsubishi Plastics Ind Ltd Biodegradable flexible film
JP2004099703A (en) * 2002-09-06 2004-04-02 Mitsubishi Plastics Ind Ltd Flame-retardant resin composition and flame-retardant molded article

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524751A (en) * 2004-02-27 2007-08-30 セレプラスト・インコーポレーテッド Biodegradable composition comprising polylactic acid polymer, adipic acid copolymer and magnesium silicate
JP2006212897A (en) * 2005-02-03 2006-08-17 Unitika Ltd Manufacturing method of polylactic acid type molded product
JP2012140633A (en) * 2005-07-08 2012-07-26 Toray Ind Inc Resin composition and molding made therefrom
US8829099B2 (en) 2005-07-08 2014-09-09 Toray Industries, Inc. Resin composition and molded article composed of the same
JP2007051274A (en) * 2005-07-19 2007-03-01 Toray Ind Inc Polylactic acid resin composition and method for producing the same
JP2007145912A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Resin composition and resin molded product and method for producing the same
WO2009060959A1 (en) 2007-11-08 2009-05-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Process for production of molded polyester resin article, crystallization inducer for use in the process, master batch, and molded polyester resin article
JP2009208264A (en) * 2008-02-29 2009-09-17 Yoshino Kogyosho Co Ltd Biodegradable molded article and container using the molded article
JP2009235172A (en) * 2008-03-26 2009-10-15 Mitsubishi Plastics Inc Resin composition for card and sheet for card
KR101099941B1 (en) 2010-01-13 2011-12-28 도레이첨단소재 주식회사 Biodegradable sheet retaining an improved heat and impact resistance and preparing process thereof
JP2013067704A (en) * 2011-09-21 2013-04-18 Unitika Ltd Polylactic acid-based resin composition
TWI560237B (en) * 2011-11-18 2016-12-01 Sk Chemicals Co Ltd Blend of polylactic acid resin and copolyester resin and articles using the same (3)
KR20210110685A (en) * 2019-01-09 2021-09-08 푸락 바이오켐 비.브이. Thermoforming of PLA-based products
JP2022516927A (en) * 2019-01-09 2022-03-03 ピュラック バイオケム ビー. ブイ. Thermoforming of PLA-based articles
JP7212787B2 (en) 2019-01-09 2023-01-25 ピュラック バイオケム ビー. ブイ. Thermoforming of PLA-based articles
KR102573987B1 (en) 2019-01-09 2023-09-07 푸락 바이오켐 비.브이. Thermoforming of PLA-based articles

Also Published As

Publication number Publication date
JP4808367B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
KR100942443B1 (en) Polylactic acid molding and process for producing the same
KR100981484B1 (en) Polylactic acid polymer composition for thermoforming, polylactic acid polymer sheet for thermoforming, and thermoformed object obtained therefrom
KR20090023336A (en) Polylactic acid heat-resistant sheet
JP4808367B2 (en) Method for producing polylactic acid-based molded body
JPWO2007139236A1 (en) Molded article made of polylactic acid-based composition
JPWO2007026489A1 (en) Polylactic acid-based resin laminate sheet and molded article thereof
JPH09111107A (en) Biodegradable film or sheet and biodegradable plastic molding
JP2006212897A (en) Manufacturing method of polylactic acid type molded product
TW200424260A (en) Biodegradable polyester resin composition, method for producing same, foam material and product made from same
JP2009107649A (en) Blister package
JP2011241347A (en) Polylactic acid-based resin composition, polylactic acid-based heat-resistant sheet and molded body
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JP4117147B2 (en) Injection molded body
JP2007069965A (en) Biodegradable resin vessel having gas barrier property
JP2006274254A (en) Aliphatic polyester having low branching degree and high molecular weight, method for producing the same, molded article and film
US20090054602A1 (en) Thermoformed articles and compositions of poly (hydroxyalkanoic acid) and polyoxymethylene
US8182734B1 (en) Thermoformed articles and compositions of poly(hydroxyalkanoic acid) and polyoxymethylene
JP2007284595A (en) Aliphatic polyester film
JP2009013352A (en) Biodegradable polyester composition
JP2004143400A (en) High molecular weight polyoxalate and method for producing the same
JP2004269606A (en) Lactic acid based resin composition
JP2005194415A (en) Polylactic acid sheet and formed article made of the same
JP3984492B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP4452293B2 (en) Polylactic acid multilayer sheet for thermoforming and molded product thereof
JP4326828B2 (en) Composition of glycolic acid copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080908

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees