JPH0623828A - Decomposable container - Google Patents

Decomposable container

Info

Publication number
JPH0623828A
JPH0623828A JP5177293A JP5177293A JPH0623828A JP H0623828 A JPH0623828 A JP H0623828A JP 5177293 A JP5177293 A JP 5177293A JP 5177293 A JP5177293 A JP 5177293A JP H0623828 A JPH0623828 A JP H0623828A
Authority
JP
Japan
Prior art keywords
lactic acid
container
molding
acid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5177293A
Other languages
Japanese (ja)
Other versions
JP3905562B2 (en
Inventor
Kazuhiko Suzuki
和彦 鈴木
Takayuki Watanabe
孝行 渡辺
Yasuhiro Kitahara
泰広 北原
Masanobu Ajioka
正伸 味岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5177293A priority Critical patent/JP3905562B2/en
Publication of JPH0623828A publication Critical patent/JPH0623828A/en
Application granted granted Critical
Publication of JP3905562B2 publication Critical patent/JP3905562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a container decomposable in the natural environment and improved in transparency and impact resistance by a method wherein a copolymer composition is previously formed and then given a shape in a predetermined range of the glass transition temperature of this composition to a certain temperature and at a predetermined draw ratio. CONSTITUTION:A decomposable container is made in any desired form by using the thermoplastic polymer composition formed from L-lactic acid, d-lactic acid, the mixture thereof or lactide, i.e., the cyclic dimer of lactic acid, and hydroxycarboxylic acids such as glycolic acid and 3-hydroxybutyric acid. In the formation of the container, after being previously made into a desired form, the aforesaid composition is uniaxially or biaxially stretched in the range of the glass transition temperature Tg of the composition Tg+60 deg.C and at a draw ratio if less than 6, preferably 2-3 times. If the draw ratio exceeds 6, the accuracy of the container thickness becomes worse and undesirable for practical usage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分解性容器に関する。さ
らに詳しくは、乳酸ポリマーを主体とする熱可塑性ポリ
マー組成物からなり自然環境下で分解性を有し、透明性
と衝撃強さが優れた容器に関する。
FIELD OF THE INVENTION This invention relates to degradable containers. More specifically, the present invention relates to a container made of a thermoplastic polymer composition mainly composed of a lactic acid polymer, which has degradability in a natural environment and is excellent in transparency and impact strength.

【0002】[0002]

【従来の技術】従来、プラスチック製の容器としてはポ
リエチレン、ポリエチレンテレフタレート、ポリ塩化ビ
ニル、ポリプロピレン樹脂が使用されている。しかしこ
のような樹脂から製造された容器は、透明性の優れてい
るものもあるが、従来の物は自然環境下での分解速度が
きわめて遅いため、ゴミとして廃棄され、埋設処理され
た場合、半永久的に地中に残留する。また投棄されたプ
ラスチック類により、景観が損なわれ海洋生物の生活環
境が破壊されるなどの問題も起こっている。又、分解性
に効果があるポリヒドルキシブチレートとポリヒドロキ
シバレレートの共重合体で成形した容器も開発されてい
る。しかし、該容器は透明性が不充分な為、充填されて
いる内容物が確認できないという欠点がある。一方、熱
可塑性樹脂で生分解性のあるポリマーとして、ポリ乳酸
または乳酸類とその他のヒドロキシカルボン酸のコポリ
マー(以下ポリ乳酸とコポリマーを総称して乳酸系ポリ
マーと略称する。)が開発されている。これらのポリマ
ーは、動物の体内で数ケ月から1年以内に100%生分
解し、また、土壌や海水中に置かれた場合、湿った環境
下では数週間で分解を始め、約1年から数年で消滅す
る。さらに分解生成物は、人体に無害な乳酸と二酸化炭
素と水になるという特性を有している。乳酸系ポリマー
を用いて透明な分解性容器を製造する例は知られていな
い。すなわち、乳酸系ポリマーを通常の成形方法、例え
ば圧縮成形や射出成型等で成形しても、透明な容器を得
ようとすると実用に耐える衝撃強さを有した容器をえる
ことができず、また衝撃強さを改良しようとすると透明
性が阻害される等の問題があり、透明性と実用に耐える
衝撃強さを有する容器は、現状では皆無である。
2. Description of the Related Art Conventionally, polyethylene, polyethylene terephthalate, polyvinyl chloride and polypropylene resins have been used as plastic containers. However, some containers made from such resins have excellent transparency, but conventional products have a very slow decomposition rate in the natural environment, so when discarded as garbage and buried, It remains in the ground semipermanently. In addition, the discarded plastics have caused problems such as damage to the landscape and the living environment of marine life. Also, a container formed of a copolymer of polyhydroxybutyrate and polyhydroxyvalerate, which has an effect on degradability, has been developed. However, the transparency of the container is insufficient, so that the filled contents cannot be confirmed. On the other hand, as a biodegradable polymer of a thermoplastic resin, polylactic acid or a copolymer of lactic acid and other hydroxycarboxylic acid (hereinafter, polylactic acid and the copolymer are collectively referred to as lactic acid-based polymer) has been developed. . These polymers are 100% biodegradable within a few months to a year in the animal body, and when placed in soil or seawater, they begin to degrade in a few weeks in a moist environment, starting from about 1 year. Will disappear in a few years. Furthermore, the decomposition products have the property that they become lactic acid, carbon dioxide, and water that are harmless to the human body. There is no known example of producing a transparent degradable container using a lactic acid-based polymer. That is, even if a lactic acid-based polymer is molded by an ordinary molding method such as compression molding or injection molding, it is not possible to obtain a container having an impact strength that can withstand practical use when trying to obtain a transparent container. Attempts to improve impact strength have problems such as transparency being impaired, and at present there is no container having transparency and impact strength that can withstand practical use.

【0003】[0003]

【発明が解決しようとする課題】本発明は、自然環境下
で分解可能であり、且つ透明性と実用に耐える衝撃強さ
を有する分解性容器を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a decomposable container which can be decomposed in a natural environment and which has transparency and impact strength that can withstand practical use.

【0004】[0004]

【課題を解決するための手段】本発明者らは、乳酸系ポ
リマーを主成分とする熱可塑性ポリマー組成物の成形方
法について種々検討した結果、透明性が光線透過率で8
5%以上、衝撃強さが従来のものに比べて約10倍以上
も優れ、更に分解性を損なうことのない容器が得られる
ことを見い出し本発明を完成したものである。即ち、本
発明は、乳酸類を原料とするポリ乳酸または乳酸類と乳
酸類以外のヒドロキシカルボン酸類を原料とするコポリ
マーを主成分とする熱可塑性ポリマー組成物を用いて、
任意の形状を有する分解性容器を成形する際、予め該組
成物を予備成形した後、該組成物のガラス転移温度Tg
を基準とし、TgからTg+60℃の温度範囲で、且つ
延伸倍率が6倍未満の条件で成形することを特徴とする
分解性容器である。本発明に用いられる乳酸系ポリマー
は、ポリ乳酸または乳酸類とその他のヒドロキシカルボ
ン酸のコポリマーである。原料の乳酸類としては、L−
乳酸、D−乳酸,それらの混合物または乳酸の環状2量
体であるラクタイドのいずれでも使用できる。他の原料
であるヒドロキシカルボン酸類としては、グリコール
酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、4−ヒ
ドロキシ吉草酸、5−ヒドロキシ吉草酸、6−ヒドロキ
シカプロン酸のようなヒドロキシカルボン酸または、ヒ
ドロキシカルボン酸の環状エステル中間体、例えば、グ
リコール酸の2量体であるグリコライドや6−−ヒドロ
キシカプロン酸の環状エステルであるε−カプロラクト
ンのいずれでも使用できる。
As a result of various studies on the molding method of a thermoplastic polymer composition containing a lactic acid-based polymer as a main component, the present inventors found that the transparency was 8 in terms of light transmittance.
The present invention has been completed by finding that a container having an impact strength of 5% or more, about 10 times or more superior to that of the conventional one, and having no deterioration in decomposability can be obtained. That is, the present invention uses a thermoplastic polymer composition containing polylactic acid from lactic acid as a raw material or a copolymer from lactic acid and hydroxycarboxylic acid other than lactic acid as a raw material as a main component,
When molding a degradable container having an arbitrary shape, after preliminarily molding the composition, the glass transition temperature Tg of the composition
Based on the above, the degradable container is characterized in that it is molded in a temperature range of Tg to Tg + 60 ° C. and a stretching ratio of less than 6 times. The lactic acid-based polymer used in the present invention is polylactic acid or a copolymer of lactic acid and other hydroxycarboxylic acid. As the raw material lactic acid, L-
Any of lactic acid, D-lactic acid, a mixture thereof or lactide which is a cyclic dimer of lactic acid can be used. Hydroxycarboxylic acids which are other raw materials include hydroxycarboxylic acids such as glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid and 6-hydroxycaproic acid, or hydroxycarboxylic acids. Any cyclic ester intermediate of carboxylic acid, for example, glycolide which is a dimer of glycolic acid or ε-caprolactone which is a cyclic ester of 6-hydroxycaproic acid can be used.

【0005】本発明に使用できる乳酸系ポリマーは、乳
酸または乳酸とその他のヒドロキシカルボン酸を直接脱
水重縮合してえられたもの、または、乳酸の環状2量体
であるラクタイドまたはヒドロキシカルボン酸の環状エ
ステル中間体、例えば、グリコール酸の2量体であるグ
リコライドや6−ヒドロキシカプロン酸の環状エステル
であるε−カプロラクトン等を用いて開環重合させたも
の、いずれも使用できる。直接脱水重縮合して製造する
場合のポリマーは、原料である乳酸または乳酸とその他
のヒドロキシカルボン酸に有機溶媒、特にフェニルエー
テル系溶媒の存在下で共沸脱水縮合したもの、特に共沸
により留出した溶媒から水を除き実質的に無水の状態に
した溶媒を反応系に戻す方法によってえられる高分子量
のポリ乳酸系ポリマーが、本発明の分解性容器の製造に
適している。乳酸系ポリマーの分子量は、1万以上で成
形性が可能な範囲で高分子量のものが使用できる。分子
量が1万以下のものでは容器の強度が小さくなり実用に
適さない。また、分子量は100万以上でも成形性に工
夫すれば本発明の分解性容器の製造に使用できる。乳酸
系ポリマーには、通常公知の可塑剤、さらに各種の改質
剤を用いて、熱可塑性ポリマー組成物とする。熱可塑性
ポリマー組成物中の乳酸系ポリマーの占める割合は、目
的とする分解性より任意の割合のものが用いられるが、
一般的には50%以上が好ましい。また熱可塑性ポリマ
ー組成物の製造は、公知の混練技術は全て適用できる
が、組成物の形状はペレット、棒状、粉状等で用いられ
る。
The lactic acid-based polymer that can be used in the present invention is obtained by direct dehydration polycondensation of lactic acid or lactic acid and other hydroxycarboxylic acid, or lactide or hydroxycarboxylic acid which is a cyclic dimer of lactic acid. Any cyclic ester intermediate, for example, one obtained by ring-opening polymerization using glycolide, which is a dimer of glycolic acid, or ε-caprolactone, which is a cyclic ester of 6-hydroxycaproic acid, can be used. The polymer to be produced by direct dehydration polycondensation is lactic acid as a raw material or lactic acid and other hydroxycarboxylic acids which are azeotropically dehydrated and condensed in the presence of an organic solvent, particularly a phenyl ether-based solvent. A high-molecular-weight polylactic acid-based polymer obtained by a method of removing water from the discharged solvent and returning the substantially anhydrous solvent to the reaction system is suitable for producing the degradable container of the present invention. The lactic acid-based polymer has a molecular weight of 10,000 or more, and a high molecular weight polymer can be used within the range where moldability is possible. If the molecular weight is less than 10,000, the strength of the container becomes small and it is not suitable for practical use. Further, even if the molecular weight is 1,000,000 or more, it can be used for producing the degradable container of the present invention by devising the moldability. A generally known plasticizer and various modifiers are used for the lactic acid-based polymer to prepare a thermoplastic polymer composition. The ratio of the lactic acid-based polymer in the thermoplastic polymer composition is an arbitrary ratio from the target degradability,
Generally, 50% or more is preferable. In addition, all known kneading techniques can be applied to the production of the thermoplastic polymer composition, but the composition is used in the form of pellets, rods, powders, or the like.

【0006】次に、本発明による熱可塑性ポリマー組成
物を用いて分解性容器を製造する方法を詳細に説明す
る。容器の製造は、予め、該組成物を目的物である分解
性容器を成形するのに好ましい形状に予備成形する。こ
の場合の形状はシート状、中空状または目的物である容
器に近いもの、いずれでもよい。要は、次の延伸工程に
より容器がえられる程度に成形したものであればよい。
予備成形は射出成型、押出成形、圧縮成形等の通常の成
形方法により、容易に目的とする予備成形品を得ること
ができる。例えば、射出成型の場合は、180〜300
℃、好ましくは190〜250℃の温度範囲で溶融さ
せ、金型温度を10〜50℃、好ましくは20〜40℃
に設定して射出し、予備成形品をえる。他の成形方法を
用いる場合も同様である。
Next, a method for producing a degradable container using the thermoplastic polymer composition of the present invention will be described in detail. In the production of the container, the composition is preliminarily formed into a shape preferable for forming the target degradable container. In this case, the shape may be a sheet shape, a hollow shape, or a shape close to the target container. The point is that it may be molded to the extent that a container can be obtained by the next stretching step.
Preliminary molding can be carried out by a usual molding method such as injection molding, extrusion molding, compression molding, etc., to easily obtain the desired preformed product. For example, 180-300 for injection molding
C., preferably in the temperature range of 190 to 250.degree. C., and the mold temperature is 10 to 50.degree. C., preferably 20 to 40.degree.
Set to and inject to obtain a preform. The same applies when other molding methods are used.

【0007】次いで該予備成形品を用いて、熱可塑性ポ
リマー組成物のガラス転移温度Tgを基準とし、Tgか
らTg+60℃の温度範囲で、且つ延伸倍率が6倍未満
の条件で成形する。熱可塑性ポリマー組成物が可塑剤、
改質剤を含まない場合には乳酸系ポリマーのガラス転移
温度Tgを基準とし、TgからTg+60℃の温度範囲
で、且つ延伸倍率が6倍未満の条件で成形する。ガラス
転移温度Tgは、通常の測定方法により容易に測定でき
る。乳酸系ポリマーのガラス転移温度Tgはポリ乳酸が
58〜64℃であるが乳酸とその他のヒドロキシカルボ
ン酸のコポリマーを用いる場合、さらに可塑剤を併用す
る場合等によりガラス転移温度Tgは変動するが、大体
20〜65℃の範囲にある。以上よりTgが20〜65
℃の範囲にあるから、成形温度範囲は、20〜125℃
である。125℃を越えると、成形物の透明性が悪くな
り、20℃以下では成形ができない。また延伸倍率は6
倍未満、好ましくは2〜4倍で一軸または二軸延伸され
る。延伸倍率は6倍を越えると目的物である容器の厚み
精度が悪くなり実用上好ましくない。以上の条件を満足
すれば成形方法はいずれでもよいが、延伸ブロー成形が
好ましく、予備成形体をヒーターで20〜125℃、好
ましくは60〜90℃の温度で加熱し、該予備成形体の
内部に空気を吹き込んで容器を成形する方法で、射出延
伸プロー成形または押出延伸プロー成形いずれも用いる
ことができる。予備成形をしないで成形する本発明以外
の方法では、例えば、ダイレクトブロー成形等がある
が、乳酸系ポリマーは溶融時の張力が小さいため成形が
困難であったり、また射出成型で製造した容器は透明性
に優れているが衝撃強さが弱く実用に適しない等の問題
がある。本発明は、乳酸系ポリマーが比較的低い温度で
も延伸プローできることを見出し上記の成形方法を発明
するに至ったものであり、本発明により得られた容器
は、透明性に優れている上、低温延伸効果として落下衝
撃強度が優れたものが得られるところに特徴がある。
尚、乳酸系ポリマーの射出延伸プロー成形法に適した成
型機としては、例えば日精ASB機械株式会社製、商品
名ASB−50、ASB−250等、押出延伸プロー成
形法に適した成形機としては、例えばドイツ国ベクム社
製、商品名BMO−2等がある。
Then, the preform is molded under the condition that the glass transition temperature Tg of the thermoplastic polymer composition is used as a reference, in the temperature range of Tg to Tg + 60 ° C., and the draw ratio is less than 6 times. The thermoplastic polymer composition is a plasticizer,
When the modifier is not included, the glass transition temperature Tg of the lactic acid-based polymer is used as a reference, and the molding is performed in a temperature range of Tg to Tg + 60 ° C. and a stretching ratio of less than 6 times. The glass transition temperature Tg can be easily measured by an ordinary measuring method. Polylactic acid has a glass transition temperature Tg of 58 to 64 ° C., but the glass transition temperature Tg varies depending on whether a copolymer of lactic acid and another hydroxycarboxylic acid is used, or when a plasticizer is used in combination. It is in the range of about 20 to 65 ° C. From the above, Tg is 20 to 65
Since it is in the range of 20 ° C, the molding temperature range is 20 to 125 ° C.
Is. If the temperature exceeds 125 ° C, the transparency of the molded product deteriorates, and if the temperature is 20 ° C or lower, molding cannot be performed. The draw ratio is 6
It is uniaxially or biaxially stretched less than twice, preferably 2 to 4 times. When the stretching ratio exceeds 6 times, the thickness accuracy of the target container is deteriorated, which is not preferable in practice. Any molding method may be used as long as the above conditions are satisfied, but stretch blow molding is preferable, and the preform is heated with a heater at a temperature of 20 to 125 ° C., preferably 60 to 90 ° C. A method of molding a container by blowing air into the container may be either injection stretch plow molding or extrusion stretch plow molding. In a method other than the present invention in which molding is performed without preforming, for example, there is direct blow molding, but the lactic acid-based polymer is difficult to mold because the tension at the time of melting is small, and the container manufactured by injection molding is Although it has excellent transparency, it has a problem that it is not suitable for practical use due to its low impact strength. The present invention has found that a lactic acid-based polymer can be stretch-probed even at a relatively low temperature, and has invented the above molding method. The container obtained by the present invention has excellent transparency and low temperature. It is characterized in that it is possible to obtain a film having excellent drop impact strength as a stretching effect.
Incidentally, as a molding machine suitable for the injection stretching pro-molding method of the lactic acid-based polymer, for example, as a molding machine suitable for the extrusion stretching pro-molding method, such as Nissei ASB Machine Co., Ltd., trade name ASB-50, ASB-250 For example, there is a product name BMO-2 manufactured by Bekm, Germany.

【0008】本発明の透明性と衝撃強さが優れた乳酸系
ポリマーの延伸プロー成形容器の成形条件は成形機、用
いる乳酸系ポリマーの種類によって適宜決定されるが、
代表的な製造例を示す。例えば、射出延伸ブロ−成形の
場合は、 予備成形条件、射出成型温度 ; 190〜250℃ 金型温度 ; 20〜40℃ 成型サイクル ; 55秒 成形条件、 成形温度 ; 50〜 80℃ 二軸延伸倍率 たて; 1.2〜3.5倍 よこ; 1.2〜6.0倍 ブローエアー圧力; 4 〜20Kg/cm2 また、押出延伸ブロー成形の場合は、 予備成形条件、 押出成形温度 ; 190〜250
℃ 成形条件、 成形温度 ; 50〜80℃ 二軸延伸倍率 たて; 1.2〜3.5倍 よこ ; 1.2〜6.0倍 ブローエアー圧力; 4 〜20Kg/cm2 の諸条件下で成形を行うのが好ましい。
The molding conditions of the stretched plow molding container of a lactic acid-based polymer having excellent transparency and impact strength of the present invention are appropriately determined depending on the molding machine and the type of the lactic acid-based polymer used.
A representative manufacturing example is shown. For example, in the case of injection stretch blow molding, preforming conditions, injection molding temperature; 190 to 250 ° C mold temperature; 20 to 40 ° C molding cycle; 55 seconds molding condition, molding temperature; 50 to 80 ° C biaxial stretching ratio Vertical; 1.2 to 3.5 times Horizontal; 1.2 to 6.0 times Blow air pressure; 4 to 20 Kg / cm 2 In the case of extrusion stretch blow molding, preforming conditions, extrusion molding temperature; ~ 250
° C. molding conditions, molding temperature; various conditions of 4 ~20Kg / cm 2; 50~80 ℃ biaxially stretch ratio freshly; 1.2 to 3.5 times the horizontal; 1.2 to 6.0 times Blow air pressure It is preferable to carry out the molding.

【0009】[0009]

【実施例】次に実施例をあげて本発明を具体的に説明す
る。尚、文中に部とあるのはいずれも重量基準である。 製造例 1 Dien−Starkトラツプを設置した500L反応
器に、90%L−乳酸100kgを150℃/50mm
Hgで3時間攪拌しながら水を留出させた後、錫末62
gを加え、150℃/30mmHgでさらに2時間攪拌
してオリゴマー化した。このオリゴマーに錫末288g
とジフェニルエーテル211kgを加え、150℃/3
5mmHgで共沸脱水反応を行い留出した水と溶媒を水
分離器で分離して溶媒のみを反応機に戻した。2時間
後、反応機に戻す有機溶媒を46kgのモレキュラシー
ブ3Aを充填したカラムに通してから反応機に戻るよう
にして、150℃/35mmHgで40時間反応を行い
平均分子量Mw=110,000のポリ乳酸溶液を得
た。この溶液に脱水したジフェニルエーテル44kgを
加え希釈した後40℃まで冷却して、析出した結晶を濾
過し、10kgのn−ヘキサンで3回洗浄して60℃/
50mmHgで乾燥した。この粉末を05N−HC11
2.kgとエタノール120kgを加え、35℃で1時
間攪拌した後濾過し、60℃/50mmHgで乾燥し
て、ポリ乳酸粉末61kg(収率85%)を得た。この
粉末を押出機で溶融しペレット化し、L−乳酸ポリマー
を得た。このポリマーの平均分子量はMw=110,0
00、Tgは59℃であった。
EXAMPLES Next, the present invention will be specifically described with reference to examples. All parts in the text are based on weight. Production Example 1 100 kg of 90% L-lactic acid was added to a 500 L reactor equipped with a Dien-Stark trap at 150 ° C / 50 mm.
Water was distilled off with stirring at Hg for 3 hours, and then tin powder 62 was added.
g was added and the mixture was stirred at 150 ° C./30 mmHg for 2 hours for oligomerization. 288g of tin powder on this oligomer
And 211 kg of diphenyl ether are added, 150 ° C / 3
The azeotropic dehydration reaction was carried out at 5 mmHg, and the distilled water and the solvent were separated by a water separator, and only the solvent was returned to the reactor. After 2 hours, the organic solvent to be returned to the reactor was passed through a column packed with 46 kg of molecular sieve 3A and then returned to the reactor to carry out a reaction at 150 ° C./35 mmHg for 40 hours to carry out a reaction of poly (average molecular weight Mw = 110,000). A lactic acid solution was obtained. After adding 44 kg of dehydrated diphenyl ether to this solution and diluting, it was cooled to 40 ° C., and the precipitated crystals were filtered, washed with 10 kg of n-hexane three times, and 60 ° C. /
It was dried at 50 mmHg. This powder is 05N-HC11
2. kg and 120 kg of ethanol were added, the mixture was stirred at 35 ° C. for 1 hour, filtered, and dried at 60 ° C./50 mmHg to obtain 61 kg of polylactic acid powder (yield 85%). This powder was melted and pelletized by an extruder to obtain L-lactic acid polymer. The average molecular weight of this polymer is Mw = 110,0
00 and Tg were 59 ° C.

【0010】製造例 2 L−乳酸を100部をDL−乳酸100部に変えた他は
製造例1と同様にしてペレット化し、DL−乳酸ポリマ
ーをえた。このポリマーの分子量は10万、Tgは51
℃であった。
Production Example 2 A DL-lactic acid polymer was obtained by pelletizing in the same manner as in Production Example 1 except that 100 parts of L-lactic acid was changed to 100 parts of DL-lactic acid. The polymer has a molecular weight of 100,000 and a Tg of 51.
It was ℃.

【0011】製造例 3 L−乳酸100部をL−乳酸80部とD−乳酸20部に
変えた他は製造例1と同様にしてポリ乳酸をえた。得ら
れたポリマーの平均分子量とTgを表−2に示す。
Production Example 3 Polylactic acid was obtained in the same manner as in Production Example 1 except that 100 parts of L-lactic acid was changed to 80 parts of L-lactic acid and 20 parts of D-lactic acid. Table 2 shows the average molecular weight and Tg of the obtained polymer.

【0012】製造例 4 L−乳酸100部をL−乳酸80部とグリコライド20
部に変えた他は製造例1と同様にして、乳酸とヒドロキ
シカルボン酸共重合体のペレットを得た。得られた共重
合体の平均分子量とTgを表−2に示す。以下、製造例
1〜5によるポリマーを用いて、実施例に示す容器を得
た。
Production Example 4 100 parts of L-lactic acid, 80 parts of L-lactic acid and 20 parts of glycolide
Pellets of lactic acid and hydroxycarboxylic acid copolymer were obtained in the same manner as in Production Example 1 except that parts were changed. Table 2 shows the average molecular weight and Tg of the obtained copolymer. Hereinafter, the polymers according to Production Examples 1 to 5 were used to obtain containers shown in Examples.

【0013】実施例1〜3 製造例1で得られたL−乳酸ポリマーと、製造例2で得
られたDL−乳酸ポリマーを、表−1に示す割合で混合
した熱可塑性ポリマー組成物をえた。該ポリマー組成物
のTgはそれぞれ54、53、53℃であった。該ポリ
マー組成物を用い、射出成型機により、成形温度190
〜220℃、金型温度35℃の条件で予備成形体(有底
パリソン)を得た。この予備成形体を用い、射出延伸ブ
ロー成形によって延伸温度を、該ポリマー組成物のTg
からTg+60℃の範囲の温度である80℃に設定し、
たて延伸倍率2倍、よこ延伸倍率2倍の条件で、内容積
500ml、重量30gの容器を得た。
Examples 1 to 3 The L-lactic acid polymer obtained in Production Example 1 and the DL-lactic acid polymer obtained in Production Example 2 were mixed in the proportions shown in Table 1 to obtain thermoplastic polymer compositions. . The Tg of the polymer composition was 54, 53 and 53 ° C., respectively. A molding temperature of 190 is obtained by using the polymer composition by an injection molding machine.
A preform (bottom parison) was obtained under the conditions of ˜220 ° C. and mold temperature 35 ° C. Using this preform, the stretching temperature was adjusted by injection stretch blow molding to determine the Tg of the polymer composition.
To Tg + 60 ° C, the temperature is set to 80 ° C,
A container having an internal volume of 500 ml and a weight of 30 g was obtained under the conditions of a vertical draw ratio of 2 and a horizontal draw ratio of 2.

【0014】実施例4 製造例1で得られたL−乳酸ポリマー76部と、製造例
2で得られたDL−乳酸ポリマー19部に、可塑剤グリ
セリントリアセテート5部を混合した熱可塑性ポリマー
組成物をえた。該ポリマー組成物のTgは30℃であっ
た。該ポリマー組成物を用い、射出成型機により、成形
温度180〜210℃、金型温度25℃の条件で予備成
形体(有底パリソン)を得た。この予備成形体を用い、
射出延伸ブロー成形によって延伸温度を、該ポリマー組
成物のTgからTg+60℃の範囲の温度である70℃
に設定し、たて延伸倍率2倍、よこ延伸倍率2倍の条件
で、内容積500ml、重量30gの容器を得た。
Example 4 A thermoplastic polymer composition in which 76 parts of the L-lactic acid polymer obtained in Production Example 1 and 19 parts of the DL-lactic acid polymer obtained in Production Example 2 were mixed with 5 parts of the plasticizer glycerin triacetate. I got it. The Tg of the polymer composition was 30 ° C. Using the polymer composition, a preform (bottomed parison) was obtained with an injection molding machine under the conditions of a molding temperature of 180 to 210 ° C and a mold temperature of 25 ° C. Using this preform,
The stretching temperature by injection stretch blow molding is 70 ° C. which is a temperature in the range of Tg to Tg + 60 ° C. of the polymer composition.
And a vertical draw ratio of 2 and a horizontal draw ratio of 2 were used to obtain a container having an internal volume of 500 ml and a weight of 30 g.

【0015】比較例1 実施例1で得られた予備成形体を用いて、射出延伸ブロ
ー成形により、延伸温度をTg+60℃を越えた温度で
ある130℃に変えた他は実施例1と同様にして内容積
500ml、重量30gの容器を得た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the preform obtained in Example 1 was used to change the stretching temperature to 130 ° C., which is a temperature exceeding Tg + 60 ° C., by injection stretch blow molding. A container having an inner volume of 500 ml and a weight of 30 g was obtained.

【0016】比較例2 同じく実施例1で得られた予備成形体を用いて、射出延
伸ブロー成形により、延伸倍率をたて延伸倍率2倍、よ
こ延伸倍率を7倍に変えた他は実施例1と同様にして内
容積500ml、重量30gの容器を得た。
Comparative Example 2 Using the preform similarly obtained in Example 1, injection stretching blow molding was carried out, except that the draw ratio was changed to 2 times the horizontal draw ratio and 7 times the horizontal draw ratio. A container having an internal volume of 500 ml and a weight of 30 g was obtained in the same manner as in 1.

【0017】比較例3〜4 実施例1で用いた熱可塑性ポリマー組成物を、予備成形
しないで直接容器を成形した。成形温度190〜220
℃、金型温度35℃の条件で、ブロー成形による場合を
比較例3に、射出成型による場合を比較例4とした。
Comparative Examples 3 to 4 The thermoplastic polymer composition used in Example 1 was directly molded into a container without preforming. Molding temperature 190-220
C., mold temperature 35.degree. C., blow molding was used as Comparative Example 3, and injection molding was used as Comparative Example 4.

【0018】比較例5〜6 実施例1で用いた熱可塑性ポリマー組成物をヒドロキシ
ブチレートとヒドロキシバレレートとの共重合体に変え
た場合を比較例5、ポリプロピレンに変えた場合を比較
例6にした他は実施例1と同様にして、内容積500m
l、重量30gの容器を得た。以上実施例1〜4及び比
較例1〜6の容器について、それぞれ次に示す測定を行
ない結果を表1に纏めて示す。 光線透過率;JIS K−6714に準じる。 落下衝撃テスト;各内容積500ml、重量30g
の容器に水を400ml充填し、雰囲気温度20℃の条
件で1.2メートルの高さよりコンリート床面にくり返
し落下させ容器が破損する迄の回数を求めた。最大10
回まで繰り返し、破損しない場合を◎で示した。 土壌分解性試験;該容器を温度35℃、水分30%
の土壌中に埋設して容器の分解試験を行った。分解性の
評価は、外観変化と重量の減少率により判定した。表1
より本発明によりえられた容器は光線透過率と落下衝撃
性に優れ、また土壌分解性も良好である。
Comparative Examples 5 to 6 Comparative Example 5 was the case where the thermoplastic polymer composition used in Example 1 was changed to the copolymer of hydroxybutyrate and hydroxyvalerate, and Comparative Example 6 was the case where it was changed to polypropylene. The same as Example 1 except that the internal volume was 500 m.
A container having a weight of 1 and a weight of 30 g was obtained. The following measurements were performed on the containers of Examples 1 to 4 and Comparative Examples 1 to 6 and the results are summarized in Table 1. Light transmittance: according to JIS K-6714. Drop impact test; each internal volume 500ml, weight 30g
The container was filled with 400 ml of water, and the number of times until the container was broken by repeatedly dropping it from a height of 1.2 meters to the floor of the concrete under an atmospheric temperature of 20 ° C. was obtained. Up to 10
Repeated up to twice and not damaged is indicated by ⊚. Soil degradability test; temperature of the container is 35 ° C, water content is 30%
It was buried in the soil and the decomposition test of the container was performed. The degradability was evaluated by the change in appearance and the rate of weight reduction. Table 1
Further, the container obtained according to the present invention has excellent light transmittance and drop impact resistance, and also has good soil degradability.

【0019】実施例5〜6 製造例3〜4でえたL−乳酸とヒドロキシカルボン酸の
コポリマーを用いた他は、実施例1と同様にして、容器
を成形し、その物性を前記測定方法により、各測定結果
を求め、これを表−2に示した。
Examples 5-6 A container was molded in the same manner as in Example 1 except that the copolymer of L-lactic acid and hydroxycarboxylic acid obtained in Production Examples 3-4 was used, and its physical properties were measured by the above-mentioned measuring methods. , Each measurement result was obtained and shown in Table 2.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明による乳酸系ポリマーを主体とす
る容器は透明性に優れ、また落下衝撃強度も極めて強
く、更に、廃棄物として地中に埋設されたり海や川に投
棄された場合、紙や木等の天然物と同じように自然環境
中で比較的短い期間の内に無害な水と炭酸ガスに分解す
る為、環境公害の心配がない。
EFFECTS OF THE INVENTION The container based on the lactic acid polymer according to the present invention has excellent transparency and extremely high drop impact strength, and when it is buried in the ground as waste or dumped in the sea or river, Like natural products such as paper and wood, it decomposes into harmless water and carbon dioxide within a relatively short period of time in the natural environment, so there is no concern about environmental pollution.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月25日[Submission date] June 25, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】次いで該予備成形品を用いて、熱可塑性ポ
リマー組成物のガラス転移温度Tgを基準とし、Tgか
らTg+60℃の温度範囲で、且つ延伸倍率が6倍未満
の条件で成形する。熱可塑性ポリマー組成物が可塑剤、
改質剤を含まない場合には乳酸系ポリマーのガラス転移
温度Tgを基準とし、TgからTg+60℃の温度範囲
で、且つ延伸倍率が6倍未満の条件で成形する。ガラス
転移温度Tgは、通常の測定方法により容易に測定でき
る。乳酸系ポリマーのガラス転移温度Tgはポリ乳酸が
58〜64℃であるが乳酸とその他のヒドロキシカルボ
ン酸のコポリマーを用いる場合、さらに可塑剤を併用す
る場合等によりガラス転移温度Tgは変動するが、大体
20〜65℃の範囲にある。以上よりTgが20〜65
℃の範囲にあるから、成形温度範囲は、20〜125℃
である。125℃を越えると、成形物の透明性が悪くな
り、20℃以下では成形ができない。また延伸倍率は6
倍未満、好ましくは2〜4倍で一軸または二軸延伸され
る。延伸倍率は6倍を越えると目的物である容器の厚み
精度が悪くなり実用上好ましくない。以上の条件を満足
すれば成形方法はいずれでもよいが、延伸ブロー成形が
好ましく、予備成形体をヒーターで20〜125℃、好
ましくは60〜90℃の温度で加熱し、該予備成形体の
内部に空気を吹き込んで容器を成形する方法で、射出延
ロー成形または押出延伸ロー成形いずれも用いる
ことができる。予備成形をしないで成形する本発明以外
の方法では、例えば、ダイレクトブロー成形等がある
が、乳酸系ポリマーは溶融時の張力が小さいため成形が
困難であったり、また射出成型で製造した容器は透明性
に優れているが衝撃強さが弱く実用に適しない等の問題
がある。本発明は、乳酸系ポリマーが比較的低い温度で
も延伸ローできることを見出し上記の成形方法を発明
するに至ったものであり、本発明により得られた容器
は、透明性に優れている上、低温延伸効果として落下衝
撃強度が優れたものが得られるところに特徴がある。
尚、乳酸系ポリマーの射出延伸ロー成形法に適した成
型機としては、例えば日精ASB機械株式会社製、商品
名ASB−50、ASB−250等、押出延伸ロー成
形法に適した成形機としては、例えばドイツ国ベクム社
製、商品名BMO−2等がある。
Then, the preform is molded under the condition that the glass transition temperature Tg of the thermoplastic polymer composition is used as a reference, in the temperature range of Tg to Tg + 60 ° C., and the draw ratio is less than 6 times. The thermoplastic polymer composition is a plasticizer,
When the modifier is not included, the glass transition temperature Tg of the lactic acid-based polymer is used as a reference, and the molding is performed in a temperature range of Tg to Tg + 60 ° C. and a stretching ratio of less than 6 times. The glass transition temperature Tg can be easily measured by an ordinary measuring method. Polylactic acid has a glass transition temperature Tg of 58 to 64 ° C., but the glass transition temperature Tg varies depending on whether a copolymer of lactic acid and another hydroxycarboxylic acid is used, or when a plasticizer is used in combination. It is in the range of about 20 to 65 ° C. From the above, Tg is 20 to 65
Since it is in the range of 20 ° C, the molding temperature range is 20 to 125 ° C.
Is. If the temperature exceeds 125 ° C, the transparency of the molded product deteriorates, and if the temperature is 20 ° C or lower, molding cannot be performed. The draw ratio is 6
It is uniaxially or biaxially stretched less than twice, preferably 2 to 4 times. When the stretching ratio exceeds 6 times, the thickness accuracy of the target container is deteriorated, which is not preferable in practice. Any molding method may be used as long as the above conditions are satisfied, but stretch blow molding is preferable, and the preform is heated with a heater at a temperature of 20 to 125 ° C., preferably 60 to 90 ° C. by blowing air in a manner of forming the container may be either injection stretch Bed low molding or extrusion stretch Bed low molding. In a method other than the present invention in which molding is carried out without preforming, for example, there is direct blow molding, but it is difficult to mold the lactic acid-based polymer because the tension at the time of melting is small, and the container manufactured by injection molding is Although it has excellent transparency, it has a problem that it is not suitable for practical use due to its low impact strength. The present invention has been led to the invention of the above molding methods found that it is also stretched blanking rows in the lactic acid-based polymer is relatively low temperature, the vessel obtained according to the present invention, on being excellent in transparency, It is characterized in that it is possible to obtain a material having excellent drop impact strength as a low temperature stretching effect.
As the molding machine suitable for injection stretch Bed row molding of lactic acid-based polymer, for example, Nissei ASB Machine Co., Ltd., trade name ASB-50, ASB-250, etc., the molding machine suitable for extrusion stretch Bed low molding For example, there is BMO-2 manufactured by Bekum GmbH in Germany.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】本発明の透明性と衝撃強さが優れた乳酸系
ポリマーの延伸ロー成形容器の成形条件は成形機、用
いる乳酸系ポリマーの種類によって適宜決定されるが、
代表的な製造例を示す。例えば、射出延伸ブロ−成形の
場合は、 予備成形条件、射出成型温度 ; 190〜250℃ 金型温度 ; 20〜40℃ 成型サイクル ; 55秒 成形条件、 成形温度 ; 50〜 80℃ 二軸延伸倍率 たて; 1.2〜3.5倍 よこ; 1.2〜6.0倍 ブローエアー圧力; 4 〜20Kg/cm また、押出延伸ブロー成形の場合は、 予備成形条件、 押出成形温度 ; 190〜250
℃ 成形条件、 成形温度 ; 50〜80℃ 二軸延伸倍率 たて; 1.2〜3.5倍 よこ; 1.2〜6.0倍 ブローエアー圧力; 4 〜20Kg/cm の諸条件下で成形を行うのが好ましい。
[0008] The molding conditions of the stretch blanking rows molded container of transparency and impact strength is excellent lactic acid-based polymer of the present invention is a molding machine, is suitably determined by the type of lactic acid-based polymer used,
A representative manufacturing example is shown. For example, in the case of injection stretch blow molding, preforming conditions, injection molding temperature; 190 to 250 ° C mold temperature; 20 to 40 ° C molding cycle; 55 seconds molding condition, molding temperature; 50 to 80 ° C biaxial stretching ratio Vertical; 1.2 to 3.5 times Horizontal; 1.2 to 6.0 times Blow air pressure; 4 to 20 Kg / cm 2 In the case of extrusion stretch blow molding, preforming conditions, extrusion molding temperature; ~ 250
° C. molding conditions, molding temperature; various conditions of 4 ~20Kg / cm 2; 50~80 ℃ biaxially stretch ratio freshly; 1.2 to 3.5 times the horizontal; 1.2 to 6.0 times Blow air pressure It is preferable to carry out the molding.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】[0009]

【実施例】次に実施例をあげて本発明を具体的に説明す
る。尚、文中に部とあるのはいずれも重量基準である。 製造例 1 Dien−Starkトラツプを設置した100L反応
器に、90%L−乳酸10.0kgを150℃/50m
mHgで3時間攪拌しながら水を留出させた後、錫末
6.2gを加え、150℃/30mmHgでさらに2時
間攪拌してオリゴマー化した。このオリゴマーに錫末
8.8gとジフェニルエーテル21.1kgを加え、1
50℃/35mmHgで共沸脱水反応を行い留出した水
と溶媒を水分離器で分離して溶媒のみを反応機に戻し
た。2時間後、反応機に戻す有機溶媒を4.6kgのモ
レキュラシーブ3Aを充填したカラムに通してから反応
機に戻るようにして、150℃/35mmHgで40時
間反応を行い平均分子量Mw=110,000のポリ乳
酸溶液を得た。この溶液に脱水したジフェニルエーテル
44kgを加え希釈した後40℃まで冷却して、析出し
た結晶を濾過し、10kgのn−ヘキサンで3回洗浄し
て60℃/50mmHgで乾燥した。この粉末を0
N−HC112.kgとエタノール12.0kgを加
え、35℃で1時間攪拌した後濾過し、60℃/50m
mHgで乾燥して、ポリ乳酸粉末6.1kg(収率85
%)を得た。この粉末を押出機で溶融しペレット化し、
L−乳酸ポリマーを得た。このポリマーの平均分子量は
Mw=110,000、Tgは59℃であった。
EXAMPLES Next, the present invention will be specifically described with reference to examples. All parts in the text are based on weight. Production Example 1 Into a 100 L reactor equipped with a Dien-Stark trap, 10.0 kg of 90% L-lactic acid was added at 150 ° C./50 m.
After distilling water while stirring at mHg for 3 hours, tin powder was added.
6.2 g was added, and the mixture was stirred at 150 ° C./30 mmHg for 2 hours for oligomerization. Tin powder 2 in this oligomer
Add 8.8 g and 21.1 kg of diphenyl ether and add 1
An azeotropic dehydration reaction was carried out at 50 ° C./35 mmHg, and the distilled water and the solvent were separated by a water separator, and only the solvent was returned to the reactor. After 2 hours, the organic solvent returned to the reactor was passed through a column packed with 4.6 kg of molecular sieve 3A and then returned to the reactor to carry out a reaction at 150 ° C./35 mmHg for 40 hours to give an average molecular weight Mw = 110, 000 polylactic acid solutions were obtained. To this solution, 44 kg of dehydrated diphenyl ether was added and diluted, then cooled to 40 ° C., the precipitated crystals were filtered, washed 3 times with 10 kg of n-hexane and dried at 60 ° C./50 mmHg. This powder 0. 5
N-HC112. 0 kg and 12.0 kg of ethanol were added, and the mixture was stirred at 35 ° C. for 1 hour and then filtered, 60 ° C./50 m
After being dried at mHg, 6.1 kg of polylactic acid powder (yield 85
%) Was obtained. This powder is melted by an extruder and pelletized,
An L-lactic acid polymer was obtained. The average molecular weight of this polymer was Mw = 110,000 and Tg was 59 ° C.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】製造例 3 L−乳酸100部をL−乳酸50部とD−乳酸50部
変えた他は製造例1と同様にして、ポリ乳酸を得た。得
られたポリマーの平均分子量とTgを表−1に示す。
Production Example 3 Polylactic acid was obtained in the same manner as in Production Example 1 except that 100 parts of L-lactic acid was changed to 50 parts of L-lactic acid and 50 parts of D-lactic acid. Table 1 shows the average molecular weight and Tg of the obtained polymer.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】製造例 4 L−乳酸100部をL−乳酸50部グリコール酸50
に変えた他は製造例1と同様にして、乳酸とヒドロキ
シカルボン酸共重合体のペレットを得た。得られた共重
合体の平均分子量とTgを表−2に示す。以下、製造例
1〜4によるポリマーを用いて、実施例に示す容器を得
た。
Production Example 4 100 parts of L-lactic acid was mixed with 50 parts of L-lactic acid and 50 parts of glycolic acid.
Pellets of lactic acid and hydroxycarboxylic acid copolymer were obtained in the same manner as in Production Example 1 except that parts were changed. Table 2 shows the average molecular weight and Tg of the obtained copolymer. Below, production examples
The polymers according to 1-4 were used to obtain the containers shown in the examples.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【表2】 [Table 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 味岡 正伸 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanobu Amioka 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】乳酸類を原料とするポリ乳酸または乳酸類
と乳酸類以外のヒドロキシカルボン酸類を原料とするコ
ポリマーを主成分とする熱可塑性ポリマー組成物を用い
て、任意の形状を有する分解性容器を成形する際、予め
該組成物を予備成形した後、該組成物のガラス転移温度
Tgを基準とし、TgからTg+60℃の温度範囲で、
且つ延伸倍率が6倍未満の条件で成形することを特徴と
する分解性容器。
1. A degradable resin having an arbitrary shape, using a thermoplastic polymer composition containing as a main component a polylactic acid derived from lactic acid or a copolymer derived from lactic acid and hydroxycarboxylic acid other than lactic acid as a raw material. When molding a container, after preforming the composition in advance, based on the glass transition temperature Tg of the composition, in a temperature range of Tg to Tg + 60 ° C.,
A degradable container characterized by being formed under the condition that the draw ratio is less than 6 times.
【請求項2】乳酸類が乳酸、又は該乳酸の二量体である
ラクタイドである請求項1記載の分解性容器。
2. The degradable container according to claim 1, wherein the lactic acid is lactic acid or lactide which is a dimer of the lactic acid.
【請求項3】乳酸がL−乳酸、D−乳酸またはそれらの
混合物である請求項1記載の分解性容器。
3. The degradable container according to claim 1, wherein the lactic acid is L-lactic acid, D-lactic acid or a mixture thereof.
【請求項4】ヒドロキシカルボン酸がグリコール酸また
はグリコライドである請求項1項記載の分解性容器。
4. The degradable container according to claim 1, wherein the hydroxycarboxylic acid is glycolic acid or glycolide.
【請求項5】延伸倍率が2〜4倍である請求項1項記載
の分解性容器。
5. The degradable container according to claim 1, wherein the draw ratio is 2 to 4 times.
JP5177293A 1992-03-27 1993-03-12 Degradable container Expired - Lifetime JP3905562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177293A JP3905562B2 (en) 1992-03-27 1993-03-12 Degradable container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7086892 1992-03-27
JP4-70868 1992-03-27
JP5177293A JP3905562B2 (en) 1992-03-27 1993-03-12 Degradable container

Publications (2)

Publication Number Publication Date
JPH0623828A true JPH0623828A (en) 1994-02-01
JP3905562B2 JP3905562B2 (en) 2007-04-18

Family

ID=26392334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177293A Expired - Lifetime JP3905562B2 (en) 1992-03-27 1993-03-12 Degradable container

Country Status (1)

Country Link
JP (1) JP3905562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001439A (en) * 1996-05-09 1999-12-14 Kureha Kagaku Kogyo K.K. Stretch blow molded container and production process thereof
JP2004269588A (en) * 2003-03-06 2004-09-30 Unitika Ltd Polylactic acid based molded article and its manufacturing method
WO2009107730A1 (en) * 2008-02-29 2009-09-03 株式会社吉野工業所 Biodegradable molded article and container using the molded article
US7854880B2 (en) 2002-03-06 2010-12-21 Unitika Ltd. Polylactic acid molding and process for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001439A (en) * 1996-05-09 1999-12-14 Kureha Kagaku Kogyo K.K. Stretch blow molded container and production process thereof
US6159416A (en) * 1996-05-09 2000-12-12 Kureha Kagaku Kogyo, K.K. Stretch blow molded container and production process thereof
US7854880B2 (en) 2002-03-06 2010-12-21 Unitika Ltd. Polylactic acid molding and process for producing the same
JP2004269588A (en) * 2003-03-06 2004-09-30 Unitika Ltd Polylactic acid based molded article and its manufacturing method
WO2009107730A1 (en) * 2008-02-29 2009-09-03 株式会社吉野工業所 Biodegradable molded article and container using the molded article
US8273428B2 (en) 2008-02-29 2012-09-25 Yoshino Kogyosho Co., Ltd. Biodegradable molded article and container using the molded article

Also Published As

Publication number Publication date
JP3905562B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
US5409751A (en) Degradable container
EP0683207B1 (en) L-lactic acid polymer composition, molded product and film
EP1302509B1 (en) Lactic acid-base resin compositions and molded articles made thereof
US5691424A (en) Heat-resistant molded article of lactic acid-base polymer
JP3359764B2 (en) Heat-resistant lactic acid-based polymer molding
TW200402448A (en) Biodegradable sheet, molded object obtained from the sheet, and process for producing the molded object
JPH11116788A (en) Polylactic acid resin composition
JP3852958B2 (en) Lactic acid polymer composition
JP3789217B2 (en) Molded body and manufacturing method thereof
JPH11302424A (en) Biodegradable foamed sheet
JP3308335B2 (en) Lactic acid-based polymer composition, pellets thereof, molded body thereof and molding method thereof
US6462105B1 (en) Aliphatic polyester composition for masterbatch and process for producing aliphatic polyester film with the composition
EP0585747B2 (en) Formed product of L-lactic acid base polymer and preparation process of the product
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
JP3290496B2 (en) Thermoplastic polymer composition
JP3905562B2 (en) Degradable container
JPH06122148A (en) L-lactic acid based polymer molded form and manufacture thereof
JPH11241009A (en) Polylactate resin composition
JP3592799B2 (en)   Method for molding polylactic acid-based polymer, polylactic acid-based molded article, and polylactic acid-based molded article
JP3430125B2 (en) Aliphatic polyester composition for masterbatch and method for producing aliphatic polyester film using the composition
JPH05212790A (en) Shrink film for label
JP3375369B2 (en) Disposable food containers
JPH06304253A (en) Injection cylinder
JP2003039428A (en) Pellet of thermoplastic polymer composition having improved heat resistance
JP3121685B2 (en) Degradable aerosol container

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20120119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

EXPY Cancellation because of completion of term