JP3789217B2 - Molded body and manufacturing method thereof - Google Patents

Molded body and manufacturing method thereof Download PDF

Info

Publication number
JP3789217B2
JP3789217B2 JP27763897A JP27763897A JP3789217B2 JP 3789217 B2 JP3789217 B2 JP 3789217B2 JP 27763897 A JP27763897 A JP 27763897A JP 27763897 A JP27763897 A JP 27763897A JP 3789217 B2 JP3789217 B2 JP 3789217B2
Authority
JP
Japan
Prior art keywords
polylactic acid
heat resistance
acid resin
impact resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27763897A
Other languages
Japanese (ja)
Other versions
JPH11116785A (en
Inventor
省二 大淵
孝行 渡辺
智之 中田
久 相原
泰広 北原
和彦 鈴木
正伸 味岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP27763897A priority Critical patent/JP3789217B2/en
Publication of JPH11116785A publication Critical patent/JPH11116785A/en
Application granted granted Critical
Publication of JP3789217B2 publication Critical patent/JP3789217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリ乳酸系樹脂と動植物油の合計重量を基準として、ポリ乳酸系樹脂を75〜98重量%、及び、動植物油を25〜2%含有するポリ乳酸系樹脂組成物からなる、アイゾット衝撃強度が4〜30kgfcm/cm 2 であることと等価である耐衝撃性とビカット軟化温度が100〜160℃であることと等価である耐熱性を併有するポリ乳酸系樹脂成形体、及び、その製造方法に関する。
【0002】
【従来の技術】
最近、汎用プラスチックは使用後廃棄する際、ゴミの量を増すうえに、自然環境下で殆ど分解されないために、埋設処理しても、半永久的に地中に残留し、また投棄されたプラスチック類により、景観が損なわれ海洋生物の生活環境が破壊されるなどの問題が起こっている。
【0003】
これに対し、熱可塑性で分解性を有するポリマーとして、ポリ乳酸、ポリグリコール酸、ポリカプロン酸、3−ヒドロキシ酪酸と4−ヒドロキシ吉草酸とのコポリマー、ポリエチレンサクシネート、ポリブチレンサクシネート等のような脂肪族ポリエステルが開発されている。これらのポリマーの中には、動物の体内で数カ月からl年以内に100%分解し、また、土壌や海水中に置かれた場合、湿った環境下では数週間で分解を始め、約1年から数年で消滅し、さらに分解生成物は、人体に無害な乳酸と二酸化炭素と水になるという特性を有していることから、医療用材料や汎用樹脂の代替物として注目をあびつつある。
【0004】
このような背景の中、生分解性ポリマーは、汎用樹脂の代替樹脂として期待されている。しかし、一般に汎用樹脂が使用されている用途には、例えば、ボトル、耐衝撃性フィルムやシート、杭、食器、トレー等が挙げられるが、特に耐熱性や耐衝撃性が要求され、上記に示した生分解性ポリマーの中には、これらの物性を併有するものは無く、用途が制限されているのが実情である。
【0005】
本発明者らは、生分解性を有する脂肪族ポリエステルに耐衝撃性と耐熱性を併有せしめることは、極めて有意義な解決課題であると想到し、特にポリ乳酸系樹脂について、耐熱性と耐衝撃性を付与する技術の開発に着目した。
【0006】
【発明が解決しようとする課題】
本発明は、耐衝撃性と耐熱性とを同時に有する、ポリ乳酸系樹脂成形体の製造方法の開発を課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため鋭意検討した結果、ある特定の化合物をポリ乳酸系樹脂に添加し、成形時又は成形後に、成形体を結晶化させることにより、耐衝撃性と耐熱性を併有する成形体が得られることを見い出だし、本発明を完成するに至った。本発明は、以下の[1]〜[10]に記載した事項により特定される。
【0008】
[1] ポリ乳酸系樹脂と動植物油の合計重量を基準として、ポリ乳酸系樹脂を75〜98重量%、及び、動植物油を25〜2%含有するポリ乳酸系樹脂組成物からなる、アイゾット衝撃強度が4〜30kgfcm/cm 2 であることと等価である耐衝撃性とビカット軟化温度が100〜160℃であることと等価である耐熱性を併有するポリ乳酸系樹脂成形体。
[2] ポリ乳酸系樹脂が、ポリ乳酸、ポリ乳酸ブロックとポリブチレンサクシネートブロックを有する共重合体、ポリ乳酸ブロックとポリカプロン酸ブロックを有する共重合体からなる群から選択された少なくとも一種である、[1]に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。
[3] 動植物油が、エポキシ化大豆油である、[1]又は[2]に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。
【0009】
[ ] ポリ乳酸系樹脂と動植物油の合計重量を基準として、ポリ乳酸系樹脂を75〜98重量%、及び、動植物油を25〜2%含有するポリ乳酸系樹脂組成物を成形するに際し、
成形時又は成形後に熱処理することを特徴とする、アイゾット衝撃強度が4〜30kgfcm/cm 2 であることと等価である耐衝撃性とビカット軟化温度が100〜160℃であることと等価である耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
[ ] 熱処理方法が、ポリ乳酸系樹脂組成物を一旦溶融した後、ポリ乳酸系樹脂組成物の結晶化開始温度から結晶化終了温度迄の温度範囲に保温された金型内に充填し結晶化させることを特徴とする、[4]に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
【0010】
[6] 熱処理方法が、ポリ乳酸系樹脂組成物の溶融物を、金型内で冷却固化して非晶性成形体を得た後、その成形体をポリ乳酸系樹脂組成物のガラス転移温度から融点迄の温度範囲で結晶化することを特徴とする、[4]に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
[7] 熱処理方法が、ポリ乳酸系樹脂組成物の非晶性成形体を得た後、その成形体をポリ乳酸系樹脂組成物のガラス転移温度から融点迄の温度範囲で結晶化することを特徴とする、[4]に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
[8] ポリ乳酸系樹脂が、ポリ乳酸、ポリ乳酸ブロックとポリブチレンサクシネートブロックを有する共重合体、ポリ乳酸ブロックとポリカプロン酸ブロックを有する共重合体からなる群から選択された少なくとも一種である、[4]乃至[7]の何れかに記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
【0011】
[9] 動植物油が、エポキシ化大豆油である、[4]乃至[8]の何れかに記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
[10] [4]乃至[9]の何れかに記載した製造方法により得られた、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
[ポリ乳酸系樹脂]
本発明において、ポリ乳酸系樹脂とは、ポリ乳酸、乳酸とヒドロキシカルボン酸のコポリマー(例えば、乳酸とグリコール酸のコポリマー、乳酸とカプロン酸のコポリマー、ポリ乳酸とポリカプロン酸のブロックコポリマー等)、乳酸及び脂肪族多価アルコールと脂肪族多価カルボン酸のコポリマー(例えば、乳酸とブタンジオールとコハク酸及びアジピン酸のコポリマー、乳酸とエチレングリコール及びブタンジオールとコハク酸のコポリマー、ポリ乳酸とポリブチレンサクシネートのブロックコポリマー等)、及びそれらの混合物を包含する。又、混合物の場合、相溶化剤を含有してもよい。ポリ乳酸系樹脂がコポリマーの場合、コポリマーの配列の様式は、ランダム共重合体、交替共重合体、ブロック共重合体、グラフト共重合体等のいずれの様式でもよい。
さらに、これらは少なくとも一部が、キシリレンジイソシアネート、2,4−トリレンジイソシアネート等のような多価イソシアネートやセルロース、アセチルセルロースやエチルセルロース等のような多糖類等の架橋剤で架橋されたものでもよく、少なくとも一部が、線状、環状、分岐状、星形、三次元網目構造、等のいずれの構造をとってもよく、何ら制限はない。
【0013】
本発明のポリ乳酸系樹脂において、ポリ乳酸、特にポリ−L−乳酸、ポリカプロン酸、特にポリ−ε−カプロン酸、ポリ乳酸とポリ−6−ヒドロキシカプロン酸のブロックコポリマー、特にポリ−L−乳酸とポリ−6−ヒドロキシカプ口ン酸のブロックコポリマー、ポリ乳酸とポリブチレンサクシネートのブロックコポリマー、特にポリ−L−乳酸とポリブチレンサクシネートのブロックコポリマーが好ましい。
【0014】
[脂肪族ヒドロキシカルボン酸]
本発明においてポリ乳酸系樹脂を構成する脂肪族ヒドロキシカルボン酸の具体例としては、例えば、グリコール酸、乳酸、3−ヒドロキシ酩酸、4−ヒドロキシ酩酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酪、6−ヒドロキシカプロン酸等が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。また脂肪族ヒドロキシカルボン酸が不斉炭素を有する場合、L体、D体、及びその混合物、すなわち、ラセミ体であってもよい。
【0015】
[脂肪族多価カルボン酸及びその無水物]
本発明においてポリ乳酸系樹脂を構成する脂肪族多価カルボン酸の具体例としては、例えば、シュウ酸、コハク酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸等及びその無水物等が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。
【0016】
[脂肪族多価アルコール]
本発明においてポリ乳酸系樹脂を構成する脂肪族多価アルコールの具体例としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、l,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4−シクロヘキサンジメタノール等が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。
【0017】
[多糖類]
多糖類の具体例としては、例えば、セルロース、硝酸セルロース、酢酸セルロース、メチルセルロース、エチルセルロース、セルロイド、ビスコースレーヨン、再生セルロース、セロハン、キュプラ、銅アンモニアレーヨン、キュプロファン、ベンベルグ、ヘミセルロース、デンプン、アミロペクチン、デキストリン、デキストラン、グリコーゲン、ペクチン、キチン、キトサン、アラビアガム、グァーガム、ローカストビーンガム、アカシアガム、等、及びこれらの誘導体が挙げられるが、特にアセチルセルロース、エチルセルロースが好的に用いられる。
これらは、一種類又は二種類以上の混合物であってもよい。
【0018】
[ポリ乳酸系樹脂の分子量]
本発明において使用する脂肪族ポリエステル、ポリ乳酸系樹脂の分子量は、目的とする用途、例えば包装材及び容器などの成形体にした場合に、実質的に充分な機械物性を示すものであれば、その分子量は、特に制限されない。
ポリ乳酸系樹脂の分子量としては、一般的には、重量平均分子量として、1〜500万が好ましく、3〜300万がより好ましく、5〜200万がより好ましく、7〜100万がさらに好ましく、9〜50万が最も好ましい。
一般的には、重量平均分子量がl万より小さい場合、機械物性が充分でなかったり、逆に分子量が500万より大きい場合、取扱いが困難となったり不経済となったりする場合がある。
本発明において使用するポリ乳酸系樹脂の重量平均分子量及び分子量分布は、その製造方法において、溶媒の種類、触媒の種類及び量、反応温度、反応時間、共沸により留出した溶媒の処埋方法、反応系の溶媒の脱水の程度等の反応条件を適宜選択することにより所望のものに制御することができる。
【0019】
[ポリ乳酸系樹脂の製造方法]
本発明の脂肪族ポリエステルの製造方法は、特に制限されない。
例えば、ポリ乳酸及び構造単位に乳酸を有するポリ乳酸系樹脂の製造方法の具体例としては、特開平6−65360号に開示されている方法を参考した、後述の製造例2に示すような方法が挙げられる。
すなわち、乳酸及び/又は乳酸以外のヒドロキシカルボン酸を、あるいは脂肪族ジオールと脂肪族ジカルボン酸を、有機溶媒及び触媒の存在下、そのまま脱水縮合する直接脱水縮合法である。
構造単位に乳酸を有するポリ乳酸系樹脂の製造方法の他の参考例としては、例えば、特開平7−173266号に開示されている方法を参考した、後述の製造例3〜6に示すような方法が挙げられる。
すなわち、少なくとも2種類のポリ乳酸系樹脂のホモポリマーを重合触媒の存在下、共重合並びにエステル交換反応させる方法である。
ポリ乳酸の製造方法の他の具体例としては、例えば、米国特許第2,703,316号に開示されている方法を参考にした、後述の製造例1に示すような方法が挙げられる。
すなわち、乳酸及び/又は乳酸以外のヒドロキシカルボン酸を、一旦、脱水し環状二量体とした後に、開環重合する間接重合法である。
【0020】
[動植物油]
本発明で用いられる動植物油としては、例えば、ヤシ油、パーム油、アマニ油、エポキシ化アマニ油、大豆油、エポキシ化大豆油、綿実油、ナタネ油、キリ油、ヒマシ油、牛脂、スクワラン、ラノリン、硬化油等が挙げられ、特に、エポキシ化大豆油が好ましい。これらは、一種又は二種以上の混合物であってもよい。
【0021】
[動植物油の添加量]
本発明方法における動植物油の添加量は、ポリ乳酸系樹脂に対し1〜30重量%になるように添加でき、好ましくは、2〜25重量%、さらに好ましくは3〜20重量%、最も好ましくは4〜15重量%である。
1重量%未満だと、耐衝撃性の改善効果が不十分となる場合があり、逆に30重量%を超えると、耐熱温度が低下したり軟らかくなったりする等、外観や物性(剛性)に著しい変化を来す場合がある。
【0022】
[無機添加剤]
本発明の製造方法により製造する成形体には、成形体の耐衝撃性を損なわない限り、結晶化速度の向上、耐熱性の向上、機械物性の向上、耐ブロッキング性の向上等の諸物性を改善するために無機添加剤を添加することもできる。
無機添加剤の具体例としては、例えば、タルク、カオリナイト、SiO2、クレー、炭酸カルシウム、酸化チタン、酸化亜鉛、硫酸バリウム等が挙げられるが、成形体の耐衝撃性を損なわないように適宜、条件(添加量、粒子サイズ)を選択する必要がある。
【0023】
本発明の製造方法において、成形時の金型内での結晶化や生成した成形体の熱処理による結晶化などの成形加工時の結晶化速度をさらに向上させることを目的とした場合、SiO2成分を10重量%以上含む結晶性の無機物が好ましく、具体的には、タルクTM−30(富士タルク社製)、カオリンJP−100(土屋カオリン社製)、NNカオリンクレー(土屋カオリン社製)、カオリナイトASP一170(富士タルク社製)、カオリンUW(エンゲルハード社製)、タルクRF(富士タルク社製)等が挙げられる。この場合、粒径が小さく、樹脂と溶融混練した場合に凝集することなく良好に分散するものが好適に用いられる。
【0024】
[無機添加剤の添加量]
無機添加剤の添加量は、添加剤の種類にもよるが、一般に成形体の耐熱性と耐衝撃性を極端に損なわない量を添加する事ができる。
本発明の製造方法により製造する成形体には、さらに、成形体の耐衝撃性を損なわない限り、各種エラストマー(SBR、NBR、SBS型3元ブロック共重合体熱可塑性エラストマー等)や添加剤(可塑剤、顔料、安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、難燃剤、離型剤、滑剤、染料、抗菌剤)、フィラー(耐衝撃性コア/シェル型粒子、インパクトモディフアイアー等)、顔料(メタリック顔料、パール顔料)を目的や用途に応じて適宜使用することができる。
【0025】
[成形加工法]
< 混合・混練・捏和>
本発明において、ポリ乳酸系樹脂と動植物油を、混合・混練・捏和してポリ乳酸系樹脂組成物を製造する方法は、公知公用の混練技術、例えば、ヘンシェルミキサー、リボンブレンダー等で各原料を混合させたり、又、さらに押出機等を用いて溶融したポリマーに液注入させながら混練させる方法を採用することができる。
< 成形 >
以下に、本発明の目的とする耐衝撃性と耐熱性を併有する成形体を製造する方法について説明する。
本発明は、前述したポリ乳酸系樹脂樹脂組成物を成形時、又は成形後に結晶化させる事で、耐衝撃性と耐熱性を併有する成形体を製造する方法である。
成形方法としては、一般に射出成形、押出成形、ブロー成形、インフレーション成形、異形押出成形、射出ブロー成形、真空圧空成形、紡糸等の通常の方法が挙げられるが、本発明で示す樹脂組成物においては、いずれの成形方法にも適応でき、何ら制限はない。
本発明では、ポリ乳酸系樹脂組成物を、成形時、又は成形後において、成形体を何らかの方法(例えば、熱処理)で結晶化させる必要がある。その具体例としては、例えば、成形時に該組成物の溶融物を金型内に充填し、金型内でそのまま結晶化させる方法(以下、金型内結晶化法という)、及び該組成物の非晶性の成形体を熱処理する方法(以下、後結晶化法という)を挙げることができる。この金型内結晶化法及び後結晶化法では、成形体を結晶化する際の最適の温度条件は異なる。
【0026】
▲1▼ 金型内結晶化法における結晶化の温度条件
金型内結晶化法の場合、金型の設定温度条件は、該組成物の示差走査熱量分析における降温時の結晶化開始温度から、結晶化終了温度までの温度範囲が好ましく、結晶化ピークの頂点付近の温度がより好ましい。結晶化開始温度より高い温度では、結晶化速度が著しく小さくなり、生産性、操作性が悪くなったり、さらには結晶化しなくなり、目的とする成形体が得られない場合があり、逆に結晶化終了温度より低い温度では結晶化速度が著しく小さく、目的とする成形体が得られない場合がある。この方法では、金型内の保持時間は、該組成物によっても異なるが、金型内で、成形体が十分に結晶化するにたる時間以上であれば、特に制限はない。
【0027】
▲2▼ 後結晶化法における結晶化の温度条件
一方、後結晶化法の場合、金型の設定温度条件は、該組成物のガラス転移温度(Tg)から融点(Tm)までの温度範囲、より好ましくは(Tg+5℃)から(Tm−20℃)、さらに好ましくは(Tg+l0℃)から(Tm−30℃)最も好ましくは(Tg+15℃)から(Tm−40℃)までの温度範囲がよい。設定温度がTmより高い場合は、短時間で結晶化させても耐衝撃性を損ねたり、形状が歪んだりする場合があり、さらに長時間加熱すると融解する場合がある。逆にTgより低い温度では、結晶化速度が著しく小さく、目的とする耐熱性の成形体が得られない場合がある。この方法では成形体を熱処理する時間は、組成物により異なるが、成形体が十分に結晶化するに足る時間以上であれば、特に制限されない。
< 耐衝撃性と耐熱性を併有する成形体を製造する方法の態様 >
以下に、本発明に係る、成形体に耐衝撃性と耐熱性を同時に付与することができる成形体の成形方法の態様を説明する。
【0028】
▲1▼ 射出成形 (金型内結晶化法)
射出成形(金型内結晶化法)においては、例えば、後述する製造例2で得られたポリ乳酸に動植物油を添加した組成物のペレットの溶融物を、結晶化開始温度から結晶化終了温度の温度範囲内に保持された金型内に充填し保持することにより、本発明で目的とする耐衝撃性と耐熱性を併有する成形体を成形することができる。
【0029】
▲2▼ 射出成形 (後結晶化法)
射出成形(後結晶化法)においては、例えば、上記▲1▼に示したペレットを用いて金型温度20℃で成形して得られた非晶性な成形体を、Tg(58℃)からTm(165℃)の温度範囲内の雰囲気下に保持したり、又は適当な熱媒体と接触させることにより、本発明で目的とする耐衝撃性と耐熱性を併有する射出成形体を成形することができる。
【0030】
▲3▼ 押出成形 (後結晶化法)
押出成形(後結晶化法)においては、例えば、上記▲1▼に示したペレットを、一般的なTダイ押出成形機で成形した非晶性のフィルムやシートを、Tg(58℃)からTm(165℃)の範囲内に保持されたオーブン(加熱炉)中や温水中に連続的に通過させ熱処理したり、あるいはバッチ的に熱処理したりすることにより、本発明で目的とする耐衝撃性と耐熱性を併有するシートやフィルムを成形することができる。
【0031】
▲4▼ ブロー成形(後結晶化法)
ブロー成形(後結晶化法)においては、上記▲1▼に示したペレットを、一般的なブロー成形機で溶融して金型に充填することにより非晶性な予備成形体を得た後、得られた予備成形体をオーブン(加熱炉)中で加熱した後に、Tg(58℃)からTm(165℃)の範囲内に保持された金型内に入れて、圧力空気を送出してブローすることにより、本発明で目的とする耐衝撃性と耐熱性を併有するブローボトルを成形することができる。
ここで、圧力空気として、高温[例えば、室温(25℃)以上からTm(165℃以下の温度]のものを用いると、成形体の結晶化に要する時間を短縮することができる。
【0032】
▲5▼ 真空成形・真空圧空成形(金型内結晶化法)
上記▲3▼と同様な方法により成形した非晶性なフイルムを、一般的な真空成形機により、結晶化開始温度から結晶化終了温度の範囲内に保持された金型内で真空成形又は真空圧空成形することにより、本発明で目的とする耐衝撃性と耐衝撃を併有する成形体を成形することができる。
ここで、圧力空気として、高温[例えば、室温(25℃)以上からTm(165℃以下の温度]のものを用いると、成形体の結晶化に要する時間を短縮することができる。
【0033】
▲6▼ 真空成形・真空圧空成形(耐熱性フィルムの真空成形)
上記▲3▼と同様な方法により成形した耐熱性のフィルムを、真空圧空成形することにより、本発明で目的とする耐衝撃性と耐熱性を併有する成形体を成形することができる。
以上のような成形方法により成形して得られた本発明のポリ乳酸系樹脂成形体は、耐衝撃性と耐熱性を併有する。
【0034】
本発明において、ポリ乳酸系樹脂成形体が耐衝撃性であるということは、アイゾット衝撃試験(ASTM D256)における測定値が、4〜30kgfcm/cm2であることを意味する。
本発明において、ポリ乳酸系樹脂成形体が耐熱性であるということは、ビカット軟化点測定(ASTM D1525)において、測定温度が100〜160℃であることを意味する。
本発明の製造方法により、アイゾット衝撃強度撃度が4〜30kgfcm/cm2、且つビカット軟化点が100〜160℃である、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体が得られる。
【0035】
本発明の耐衝撃性と耐熱性及び分解性を有する脂肪族ポリエステル、特にポリ乳酸やポリ乳酸系樹脂成形体は、公知、公用の成形法で得られる射出成形品、フィルム、袋、チューブ、シート、カップ、ボトル、トレー、糸等を包含し、その形状、大きさ、厚み、意匠等に関して何ら制限はない。
具体的には、本発明の成形体は、食品包装用袋、食器やフォーク及びスプーン等の食品用の容器やトレイ、乳製品や清涼飲料水及び酒類等用のボトル、ラップフィルム、化粧品容器、ゴミ袋、かさ、テント、防水シート、(粘着)テープ、エアーマット、漂白剤用の容器、液体洗剤類用のボトル、医療器具や医療材料用の容器や包装材、医薬品用容器や包装材、つり糸、魚網、農業用品の容器や包装材及びカプセル、肥料用の容器や包装材及びカプセル、種苗用の容器や包装材及びカプセル、農園芸用フィルム、製品包装用フィルム、等に用いることができる。
【0036】
【実施例】
以下に製造例、実施例及び比較例等を示し、本発明を詳述する。
なお、本出願の明細書における合成例、実施例、比較例、態様等の記載は、本発明の内容の理解を支援するための説明であって、その記載は本発明の技術的範囲を狭く解釈する根拠となる性格のものではない。
【0037】
A.製造例
実施例及び比較例において使用するポリ乳酸系樹脂の製造方法を以下に示す。なお、文中に部とあるのはいずれも重量基準である。
また、重合体の平均分子量(重量平均分子量Mw)はポリスチレンを標準としてゲルパーミエーションクロマトグラフィーにより以下の条件で測定した。
▲1▼ 装置 :島津LC−IOAD
▲2▼ 検出器:島津RID−6A
▲3▼ カラム:日立化成GL−S350DT−5、GL−S370DT−5
▲4▼ 溶 媒:クロロホルム
▲5▼ 濃 度:l%
▲6▼ 注入量:20μl
[製造例1] < ポリマーA(ポリL−ラクタイド)の製造>
L−ラタタイド100重量部及びオクタン酸第一錫0.01部と、ラウリルアルコール0.03部を、攪拌機を備えた肉厚の円筒型ステンレス製重合容器へ封入し、真空で2時間脱気した後窒素ガスで置換した。この混合物を窒素雰囲気下で攪拌しつつ200℃で3時間加熱した。温度をそのまま保ちながら、排気管及びガラス製受器を介して真空ポンプにより徐々に脱気し反応容器内を3mmHgまで減圧にした。脱気開始からl時間後、モノマーや低分子量揮発分の留出がなくなったので、容器内を窒素置換し、容器下部からポリマーをストランド状に抜き出してペレット化し、L−ラクタイドのホモポリマー(ポリマーA)を得た。収率は78%、重量平均分子量Mwは、13.6万であった。
【0038】
[製造例2] < ポリマーB(ポリL−乳酸)の製造>
Dien−Starkトラップを設置した100リットルの反応器に、90%Lー乳酸10kgを150℃/50mmHgで3時間攪拌しながら水を留出させた後、錫末6.2gを加え、150℃/30mmHgでさらに2時間攪拌してオリゴマー化した。このオリゴマーに錫末28.8gとジフェニルエーテル21.1kgを加え、150℃/35mmHg共沸脱水反応を行い、留出した水と溶媒を水分離器で分離して溶媒のみを反応器に戻した。2時間後、反応器に戻す有機溶媒を46kgのモレキュラシーブ3Aを充填したカラムに通してから反応器に戻るようにして、150℃/35mmHgで40時間反応を行い、重量平均分子量14.6万のポリ乳酸の溶液を得た。この溶液に脱水したジフェニルエーテル44kgを加え、希釈した後40℃まで冷却して、析出した結晶を瀘過し、l0kg(7) n−ヘキサンで3回洗浄して60℃/50mmHgで乾燥した。この粉末を0.5N−HCl12kgとエタノール12kgを加え、35℃でl時間攪拌した後瀘過し、60℃/50mmHgで乾燥して、白色粉末のポリ乳酸6.lkg(収率85%)を得た。このポリ乳酸(ポリマーB)の重量平均分子量Mwは、14.5万であった。
【0039】
[製造例3]< コポリマーC(ポリブチレンサクシネート/ポリ乳酸共重合体)の製造>
1,4−ブタンジオール50.5gとコハク酸66.5gにジフェニルエーテル293.0g)金属錫2.02gを加え、130℃/140mmHgで7時間系外に水を留出しながら加熱攪拌しオリゴマー化した。これに、Dean−Stark trapを取り付け、140℃/30mmHgで8時間共沸脱水を行いその後、モレキュラーシーブ3Aを40g充填した管を取り付け、留出した溶媒がモレキュラーシーブ管中を通って反応器に戻るようにし、130℃/17mmHgで49時間攪拌した。その反応マスを600mlのクロロホルムに溶かし、4リットルのアセトンに加え再沈した後、HCIのイソプロピルアルコール(以下IPAと略す)溶液(HCl濃度0.7wt%)で0.5時間スラッジングし(3回)、IPAで洗浄してから減圧下60℃で6時間乾燥し、ポリブチレンサクシネート(以下PSBと略す)を得た。このポリマーの重量平均分子量Mwは、11.8万であった。
得られたポリブチレンサクシネート80.0gに、製造例2と同様な方法で得られたポリ乳酸120.0g(重量平均分子量Mwは2.0万)、ジフェニルエーテル800g)金属錫0.7gを混合し、再び130℃/17mmHgで20時間脱水縮合反応を行った。反応終了後、製造例2と同様に後処理を行い、ポリブチレンサクシネートとポリ乳酸とのコポリマー188g(収率94%)を得た。このポリブチレンサクシネートとポリ乳酸とのコポリマー(コポリマーC)の重量平均分子量Mwは14.0万であった。
【0040】
[製造例4] < コポリマーD(ポリブチレンサクシネート/ポリ乳酸共重合体)の製造>
ポリブチレンサクシネート20.0g(重量平均分子量Mwは11.8万)、ポリ乳酸160.0g(重量平均分子量Mwは10.0万)を用いた他は、製造例3と同様な方法で行った結果、ポリブチレンサクシネートとポリ乳酸とのコポリマー(コポリマーD)を得た。収率は94%、重量平均分子量Mwは14.2万であった。
【0041】
[製造例5]<コポリマーE(ポリカプロン酸/ポリ乳酸共重合体)の製造> 乳酸のかわりに、6−ヒドロキシカプロン酸を用いた他は製造例2と同様な方法で反応を行った結果、ポリカプロン酸(重量平均分子量Mwは15.0万)を得た。次に得られたポリカプロン酸20.0gとポリ乳酸180.0g(重量平均分子量Mwは10.0万)を用い製造例4と同様な方法で行い、ポリカプロン酸とポリ乳酸とのコポリマー(コポリマーE)を得た。収率は92%、重量平均分子量Mwは15.3万であった。
【0042】
B.評価方法
[物性の評価]
製造例1〜5で得たポリ乳酸系樹脂組成物を用いて製造した成形体の物性の評価条件は、以下のとおりである。
▲1▼ 耐衝撃性
ASTM D−256に従い、衝撃強度を測定した。
▲2▼ ボトルの実用耐衝撃試験
容器の80容量%迄水を入れたボトルを、床上に置いた厚さ1cmの鉄板に、1.2mの高さから垂直に落下させた時の、ボトルの破損状態を観察した。
▲3▼ 落球衝撃強度
JIS K−7124に従い、鉄球をフィルムに落下させ、フィルムの破壊する確率が50%になった時の衝撃エネルギー値[鉄球の重さ(kg)*高さ(cm)]を求めた。
【0043】
▲4▼ 結晶化度
X線回折装置(理学電機製、Rint1500型)にて成形後の試験片を測定し、得られたチャートの結晶ピーク面積の総面積に対する比率を求めた。
▲5▼ 耐熱性 [ビカット軟化温度(ASTM−D1525)]
荷重1kgfの条件で成形後の試験片を測定。
▲6▼ 結晶化開始温度、結晶化終了温度
示差走査熱量分析装置(島津製作所製、DSC−50)にて成形体を一旦溶融した後、10℃/minの条件下で降温した時の結晶化ピークが認められた温度を結晶化開始温度、結晶化ピークが認められなくなった温度を結晶化終了温度とした。
▲7▼ ガラス転移温度(Tg)、融点(Tm)
示差走査熱量分析装置(島津製作所製、DSC−50)にて成形体を10℃/minの条件下で昇温した時のゴム状に変わる点をガラス転移点(Tg)、融解ピークの頂点を融点(Tm)とした。
【0044】
C.実施例及び比較例
以下の実施例において、成形体を熱処理している場合、金型内結晶化操作で降温時に結晶化している場合は、降温時の結晶化開始温度以下から結晶化終了温度以上である範囲内に設定し、又成形後熱処理操作で昇温時に結晶化している場合は、ガラス転移温度以上から融点以下である温度範囲内に設定した。
【0045】
[実施例1〔射出成形〕]
製造例2で得られたポリ乳酸93重量部、耐衝撃性改良剤としてエポキシ化大豆油7重量部をヘンシェルミキサーで充分に混合した後、押出機シリンダー設定温度170〜210℃の条件にてペレット化した。該ペレットを日本製鋼所製JSW−75射出成形機、シリンダー設定温度180〜200℃の条件にて溶融し、設定温度30℃の金型に充填し、冷却時間は30秒としてl.0mm厚の透明なASTMの試験片を得た。得られた試験片の耐衝撃性(アイゾット衝撃強度)は3kgfcm/cm2、結晶化度は0%、耐熱性(ビカット軟化点)は58℃であった。又、この試験片のガラス転移温度(Tg)は58℃、降温時の結晶化開始温度は120℃、降温時の結晶化終了温度は65℃、融点(Tm)は165℃であった。この試験片を乾燥機中で120℃/10minで熱処理した。得られた試験片の耐衝撃性(アイゾット衝撃強度)は23kgfcm/cm2、結晶化度42%、耐熱性は150℃であった。結果を表−1[表1]に示す。
【0046】
[実施例1−2〜1−5〔射出成形〕]
ポリマーの種類、耐衝撃性改良剤の種類と添加量を表−1[表1]に示すように変更した以外は、実施例1−1と同様にして行い、それぞれ得られた試験片の耐衝撃性、結晶化度、耐熱性を測定した。結果を表−1[表1]に示す。
【0047】
[比較例1−1〜1−5〔射出成形〕]
ポリマーの種類、耐衝撃性改良剤の添加量を変更した他は、実施例1と同様な方法で行った。得られた試験片の耐衝撃性は3kgfcm/cm2、結晶化度は0%、耐熱性は59℃であった。
この試験片を乾燥機中で120℃/10minで熱処理した時の耐衝撃性は3kgfcm/cm2、結晶化度は43%、ビカット軟化点は150℃であった。
結果を表−2[表2]に示す。
【0048】
[実施例2−1〔ブロー成形〕]
ポリマーとして製造例2で得られたポリ乳酸、耐衝撃性改良剤としてエポキシ化大豆油7重量%をヘンシェルミキサーで充分に混合した後、押出機シリンダー設定温度170〜210℃の条件にてペレット化した。該ペレットを射出ブロー成形機(日精ASB機械製、ASB−50)、シリンダー設定温度180〜200℃の条件にて溶融し、設定温度20℃の金型(A)に充填、冷却時間は30秒、2.0mm肉厚の予備成形体(有底パリソン)を得た。得られたパリソンを加熱炉中にてパリソン温度を120℃に加熱し、さらに温度を120℃に保持した金型(B) に入れ、圧力空気の圧力4kgf/cm2の条件下で、たて倍率2倍、よこ倍率2倍にし、内容積500mlの容器を得た。結晶化度は45%、耐熱性は150℃であった。また、得られた容器(厚み0.5mm)の実用耐衝撃試験を行ったが、割れることなく何の変化もなかった。
【0049】
[比較例2−1〔ブロー成形〕]
耐衝撃性改良剤(エポキシ化大豆油)を除いた以外は、実施例2と同様な方法で行った。結晶化度は43%、耐熱性は150℃であった。また、得られた容器(厚み0.5mm)の実用耐衝撃試験を行った結果、破損した。
【0050】
[実施例3−1〔押出成形〕]
ポリマーとして製造例1で得られたポリ乳酸、耐衝撃性改良剤としてエポキシ化大豆油5重量%をヘンシェルミキサーで充分に混合した後、押出機シリンダー設定温度170〜210℃の条件にてペレット化した。該ペレットをTダイ50mmΦ押出機(フロンティア製、ダイ幅400mm)シリンダー設定温度180〜200℃の条件にて溶融し、ダイ温度185℃にて透明な0.1mm厚のフィルムを得た。このフィルムの落球衝撃強度は2cm・kg、結晶化度は0%であった。さらに、このフィルムを熱風乾燥機(温度100℃、滞留時間2min)に連続して通過させて熱処埋した。結晶化度は40%であった。得られたシートの落球撃性強度は、27cm・kgであった。
【0051】
[比較例3−1〔押出成形〕]
耐衝撃性改良剤のエポキシ化大豆油を除いた他は、実施例3−1と同様な方法で行った。結晶化度は38%であった。また、得られたシートの落球衝撃強度は2cm・kgであった。
【0052】
【表1】

Figure 0003789217
【0053】
【表2】
Figure 0003789217
【0054】
【発明の効果】
本発明により、耐衝撃性と結晶性(耐熱性)とを同時に有する、ポリ乳酸系樹脂成形体を提供することができる。[0001]
BACKGROUND OF THE INVENTION
  The present inventionBased on the total weight of polylactic acid resin and animal and vegetable oil, 75 to 98% by weight of polylactic acid resin and 25 to 2% of animal and vegetable oil are contained.Comprising a polylactic acid-based resin composition, Izod impact strength is 4-30kgfcm / cm 2 It is equivalent to the impact resistance and Vicat softening temperature equivalent to being 100 to 160 ° C.The present invention also relates to a polylactic acid-based resin molded body having the same and a method for producing the same.
[0002]
[Prior art]
Recently, when general-purpose plastics are disposed of after use, they increase the amount of garbage and are hardly decomposed in the natural environment, so even if they are buried, they remain in the ground semi-permanently and are discarded. As a result, the landscape is damaged and the living environment of marine life is destroyed.
[0003]
In contrast, thermoplastic and degradable polymers such as polylactic acid, polyglycolic acid, polycaproic acid, copolymers of 3-hydroxybutyric acid and 4-hydroxyvaleric acid, polyethylene succinate, polybutylene succinate, etc. Aliphatic polyesters have been developed. Some of these polymers degrade 100% within a few months to 1 year in the animal's body, and when placed in soil or seawater, they begin to degrade in a few weeks in a moist environment. It has disappeared in a few years, and the decomposition product has the property of becoming lactic acid, carbon dioxide and water that are harmless to the human body, and is attracting attention as an alternative to medical materials and general-purpose resins. .
[0004]
In such a background, biodegradable polymers are expected as substitute resins for general-purpose resins. However, applications where general-purpose resins are generally used include, for example, bottles, impact-resistant films and sheets, piles, tableware, trays, etc. In addition, there are no biodegradable polymers that have both of these physical properties, and the use is limited.
[0005]
The inventors of the present invention have considered that it is an extremely meaningful solution to have both impact resistance and heat resistance in an aliphatic polyester having biodegradability, and in particular, for polylactic acid-based resins, heat resistance and resistance. We paid attention to the development of technology that gives impact.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to develop a method for producing a polylactic acid-based resin molded article having both impact resistance and heat resistance.
[0007]
[Means for Solving the Problems]
  As a result of intensive studies to achieve the above object, the present inventors have added a specific compound to a polylactic acid-based resin, and crystallized the molded body at the time of molding or after molding. It has been found that a molded article having both properties can be obtained, and the present invention has been completed. The present invention provides the following [1] to[10]It is specified by the matters described in.
[0008]
[1]Based on the total weight of polylactic acid resin and animal and vegetable oil, 75 to 98% by weight of polylactic acid resin and 25 to 2% of animal and vegetable oil are contained.Comprising a polylactic acid-based resin composition, Izod impact strength is 4-30kgfcm / cm 2 It is equivalent to the impact resistance and Vicat softening temperature equivalent to being 100 to 160 ° C.A polylactic acid-based resin molded article having both.
[2] The polylactic acid resin is at least one selected from the group consisting of polylactic acid, a copolymer having a polylactic acid block and a polybutylene succinate block, and a copolymer having a polylactic acid block and a polycaproic acid block. A polylactic acid resin molded article having both impact resistance and heat resistance as described in [1].
[3] The polylactic acid resin molded article having both impact resistance and heat resistance according to [1] or [2], wherein the animal and vegetable oil is epoxidized soybean oil.
[0009]
[ 4 ] When molding a polylactic acid resin composition containing 75 to 98% by weight of a polylactic acid resin and 25 to 2% of an animal or vegetable oil, based on the total weight of the polylactic acid resin and the animal and vegetable oil,
Izod impact strength is 4-30 kgfcm / cm, characterized by heat treatment during or after molding 2 The manufacturing method of the polylactic acid-type resin molding which has both the impact resistance equivalent to being and the heat resistance equivalent to that Vicat softening temperature is 100-160 degreeC.
[ 5 ] The heat treatment method is to melt the polylactic acid resin composition once, and then fill and crystallize the mold in a temperature range from the crystallization start temperature to the crystallization end temperature of the polylactic acid resin composition. The method for producing a polylactic acid-based resin molded article having both impact resistance and heat resistance as described in [4].
[0010]
[6] The heat treatment method is to cool and solidify the melt of the polylactic acid resin composition in a mold to obtain an amorphous molded body, and then the molded body is heated from the glass transition temperature to the melting point of the polylactic acid resin composition. The method for producing a polylactic acid-based resin molded article having both impact resistance and heat resistance as described in [4], characterized by crystallization in a temperature range of
[7] A heat treatment method is characterized in that after obtaining an amorphous molded body of a polylactic acid-based resin composition, the molded body is crystallized in a temperature range from the glass transition temperature to the melting point of the polylactic acid-based resin composition. [4] A process for producing a polylactic acid resin molded article having both impact resistance and heat resistance.
[8] The polylactic acid-based resin is at least one selected from the group consisting of polylactic acid, a copolymer having a polylactic acid block and a polybutylene succinate block, and a copolymer having a polylactic acid block and a polycaproic acid block, [4 ] The manufacturing method of the polylactic acid-type resin molded object which has both impact resistance and heat resistance as described in any one of [7].
[0011]
[9] The method for producing a polylactic acid resin molded article having both impact resistance and heat resistance, according to any one of [4] to [8], wherein the animal and vegetable oil is epoxidized soybean oil.
[10] A polylactic acid resin molded article having both impact resistance and heat resistance, obtained by the production method described in any one of [4] to [9].
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[Polylactic acid resin]
In the present invention, the polylactic acid-based resin means polylactic acid, a copolymer of lactic acid and hydroxycarboxylic acid (for example, a copolymer of lactic acid and glycolic acid, a copolymer of lactic acid and caproic acid, a block copolymer of polylactic acid and polycaproic acid, etc.), lactic acid And copolymers of aliphatic polyhydric alcohols and aliphatic polycarboxylic acids (for example, copolymers of lactic acid and butanediol and succinic acid and adipic acid, copolymers of lactic acid and ethylene glycol and butanediol and succinic acid, polylactic acid and polybutylene succin Nate block copolymers, etc.), and mixtures thereof. Moreover, in the case of a mixture, you may contain a compatibilizing agent. When the polylactic acid resin is a copolymer, the copolymer may be arranged in any manner such as a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer.
Furthermore, these may be at least partially crosslinked with a polyvalent isocyanate such as xylylene diisocyanate or 2,4-tolylene diisocyanate or a crosslinking agent such as cellulose, polysaccharides such as acetyl cellulose or ethyl cellulose. At least a part may take any structure such as a linear shape, a circular shape, a branched shape, a star shape, or a three-dimensional network structure, and there is no limitation.
[0013]
In the polylactic acid-based resin of the present invention, polylactic acid, particularly poly-L-lactic acid, polycaproic acid, particularly poly-ε-caproic acid, block copolymer of polylactic acid and poly-6-hydroxycaproic acid, particularly poly-L-lactic acid And block copolymers of poly-6-hydroxycapuccinic acid, block copolymers of polylactic acid and polybutylene succinate, especially block copolymers of poly-L-lactic acid and polybutylene succinate.
[0014]
[Aliphatic hydroxycarboxylic acid]
Specific examples of the aliphatic hydroxycarboxylic acid constituting the polylactic acid-based resin in the present invention include, for example, glycolic acid, lactic acid, 3-hydroxysuccinic acid, 4-hydroxysuccinic acid, 4-hydroxyvaleric acid, and 5-hydroxyvaleric acid. Examples include grass dairy and 6-hydroxycaproic acid. These may be one kind or a mixture of two or more kinds. When the aliphatic hydroxycarboxylic acid has an asymmetric carbon, it may be L-form, D-form, and a mixture thereof, that is, a racemate.
[0015]
[Aliphatic polycarboxylic acid and its anhydride]
Specific examples of the aliphatic polyvalent carboxylic acid constituting the polylactic acid-based resin in the present invention include, for example, oxalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid. And aliphatic dicarboxylic acids such as undecanedioic acid and dodecanedioic acid, and anhydrides thereof. These may be one kind or a mixture of two or more kinds.
[0016]
[Aliphatic polyhydric alcohol]
Specific examples of the aliphatic polyhydric alcohol constituting the polylactic acid resin in the present invention include, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, l, 4- Examples include butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, tetramethylene glycol, 1,4-cyclohexanedimethanol and the like. These may be one kind or a mixture of two or more kinds.
[0017]
[Polysaccharides]
Specific examples of polysaccharides include, for example, cellulose, cellulose nitrate, cellulose acetate, methyl cellulose, ethyl cellulose, celluloid, viscose rayon, regenerated cellulose, cellophane, cupra, copper ammonia rayon, cuprophane, bemberg, hemicellulose, starch, amylopectin, Examples thereof include dextrin, dextran, glycogen, pectin, chitin, chitosan, gum arabic, guar gum, locust bean gum, acacia gum, and the like, and acetylcellulose and ethylcellulose are particularly preferably used.
These may be one kind or a mixture of two or more kinds.
[0018]
[Molecular weight of polylactic acid resin]
The molecular weight of the aliphatic polyester and polylactic acid-based resin used in the present invention is such that when the molded article such as a packaging material and a container exhibits substantially sufficient mechanical properties, The molecular weight is not particularly limited.
The molecular weight of the polylactic acid-based resin is generally preferably 1 to 5 million, more preferably 3 to 3 million, more preferably 5 to 2 million, still more preferably 7 to 1 million, as the weight average molecular weight. 90 to 500,000 is the most preferable.
In general, when the weight average molecular weight is less than 10,000, mechanical properties may be insufficient, and conversely, when the molecular weight is greater than 5,000,000, handling may be difficult or uneconomical.
The weight average molecular weight and molecular weight distribution of the polylactic acid-based resin used in the present invention are the kind of the solvent, the kind and amount of the catalyst, the reaction temperature, the reaction time, and the method for treating the solvent distilled by azeotropic distillation in the production method. The reaction conditions such as the degree of dehydration of the solvent in the reaction system can be appropriately controlled by appropriately selecting the reaction conditions.
[0019]
[Production method of polylactic acid resin]
The method for producing the aliphatic polyester of the present invention is not particularly limited.
For example, as a specific example of a method for producing polylactic acid and a polylactic acid-based resin having lactic acid in a structural unit, a method as shown in Production Example 2 described below with reference to the method disclosed in JP-A-6-65360 Is mentioned.
That is, it is a direct dehydration condensation method in which lactic acid and / or a hydroxycarboxylic acid other than lactic acid, or an aliphatic diol and an aliphatic dicarboxylic acid are dehydrated and condensed as they are in the presence of an organic solvent and a catalyst.
As other reference examples of the method for producing a polylactic acid-based resin having lactic acid as a structural unit, for example, as shown in Production Examples 3 to 6 described later with reference to the method disclosed in JP-A-7-173266 A method is mentioned.
That is, it is a method in which at least two types of polylactic acid resin homopolymers are copolymerized and transesterified in the presence of a polymerization catalyst.
As another specific example of the method for producing polylactic acid, for example, a method as shown in Production Example 1 described later with reference to the method disclosed in US Pat. No. 2,703,316 may be mentioned.
That is, an indirect polymerization method in which lactic acid and / or a hydroxycarboxylic acid other than lactic acid is once dehydrated to form a cyclic dimer and then subjected to ring-opening polymerization.
[0020]
[Animal and vegetable oil]
Examples of animal and plant oils used in the present invention include palm oil, palm oil, linseed oil, epoxidized linseed oil, soybean oil, epoxidized soybean oil, cottonseed oil, rapeseed oil, tung oil, castor oil, beef tallow, squalane, lanolin. , Epoxidized soybean oil is particularly preferable. These may be one kind or a mixture of two or more kinds.
[0021]
[Amount of animal and vegetable oil added]
In the method of the present invention, the amount of animal and vegetable oil added can be 1 to 30% by weight with respect to the polylactic acid resin, preferably 2 to 25% by weight, more preferably 3 to 20% by weight, most preferably 4 to 15% by weight.
If it is less than 1% by weight, the impact resistance improvement effect may be insufficient. Conversely, if it exceeds 30% by weight, the heat resistant temperature may be lowered or softened. There may be significant changes.
[0022]
[Inorganic additives]
The molded product produced by the production method of the present invention has various physical properties such as improved crystallization speed, improved heat resistance, improved mechanical properties, improved blocking resistance, as long as the impact resistance of the molded product is not impaired. Inorganic additives can also be added to improve.
Specific examples of the inorganic additive include talc, kaolinite, and SiO.2, Clay, calcium carbonate, titanium oxide, zinc oxide, barium sulfate, and the like. Conditions (addition amount, particle size) must be appropriately selected so as not to impair the impact resistance of the molded body.
[0023]
In the production method of the present invention, when the purpose is to further improve the crystallization rate during molding such as crystallization in a mold during molding or crystallization by heat treatment of the formed molded body,2A crystalline inorganic substance containing 10% by weight or more of the components is preferable. Specifically, talc TM-30 (manufactured by Fuji Talc), kaolin JP-100 (manufactured by Tsuchiya Kaolin), NN kaolin clay (manufactured by Tsuchiya Kaolin) Kaolinite ASP-1170 (manufactured by Fuji Talc), Kaolin UW (manufactured by Engelhard), Talc RF (manufactured by Fuji Talc), and the like. In this case, those having a small particle size and being well dispersed without being aggregated when melt-kneaded with a resin are preferably used.
[0024]
[Amount of inorganic additive]
The amount of the inorganic additive added depends on the type of the additive, but generally an amount that does not extremely impair the heat resistance and impact resistance of the molded product can be added.
In the molded product produced by the production method of the present invention, various elastomers (SBR, NBR, SBS type ternary block copolymer thermoplastic elastomer, etc.) and additives (such as thermoplastic elastomers) can be used unless the impact resistance of the molded product is impaired. Plasticizers, pigments, stabilizers, antistatic agents, UV absorbers, antioxidants, flame retardants, mold release agents, lubricants, dyes, antibacterial agents), fillers (impact core / shell particles, impact modifiers) Etc.) and pigments (metallic pigments, pearl pigments) can be appropriately used according to the purpose and application.
[0025]
[Molding method]
<Mixing / Kneading / Kneading>
In the present invention, a method for producing a polylactic acid resin composition by mixing, kneading, and kneading a polylactic acid resin and animal and vegetable oils is performed using a publicly known kneading technique such as a Henschel mixer and a ribbon blender. In addition, it is possible to employ a method of mixing these materials or kneading them while injecting the molten polymer into a molten polymer using an extruder or the like.
<Molding>
Below, the method to manufacture the molded object which has the impact resistance and heat resistance which are the objectives of this invention is demonstrated.
The present invention is a method for producing a molded article having both impact resistance and heat resistance by crystallizing the above-described polylactic acid resin resin composition at the time of molding or after molding.
Examples of the molding method generally include ordinary methods such as injection molding, extrusion molding, blow molding, inflation molding, profile extrusion molding, injection blow molding, vacuum pressure molding, spinning, etc. In the resin composition shown in the present invention, Any molding method can be applied and there is no limitation.
In the present invention, it is necessary to crystallize the molded body by some method (for example, heat treatment) at the time of molding or after molding the polylactic acid resin composition. Specific examples thereof include, for example, a method in which a melt of the composition is filled in a mold at the time of molding and crystallized as it is in the mold (hereinafter referred to as in-mold crystallization method), and Examples thereof include a method of heat-treating an amorphous molded body (hereinafter referred to as a post-crystallization method). In the in-mold crystallization method and the post-crystallization method, optimum temperature conditions for crystallization of the molded product are different.
[0026]
(1) Temperature conditions for crystallization in the in-mold crystallization method
In the case of the in-mold crystallization method, the set temperature condition of the mold is preferably a temperature range from the crystallization start temperature at the time of temperature drop to the crystallization end temperature in the differential scanning calorimetry of the composition, A temperature near the apex is more preferable. If the temperature is higher than the crystallization start temperature, the crystallization speed is remarkably reduced, the productivity and operability are deteriorated, and further, crystallization may not occur, and the target molded product may not be obtained. At a temperature lower than the end temperature, the crystallization rate is remarkably small, and the desired molded article may not be obtained. In this method, the holding time in the mold varies depending on the composition, but there is no particular limitation as long as it is longer than the time required for the molded body to crystallize sufficiently in the mold.
[0027]
(2) Temperature conditions for crystallization in post-crystallization method
On the other hand, in the case of the post-crystallization method, the temperature setting condition of the mold is the temperature range from the glass transition temperature (Tg) to the melting point (Tm) of the composition, more preferably from (Tg + 5 ° C.) to (Tm-20 ° C.). ), More preferably (Tg + 10 ° C.) to (Tm−30 ° C.), most preferably (Tg + 15 ° C.) to (Tm−40 ° C.). When the set temperature is higher than Tm, the impact resistance may be impaired or the shape may be distorted even if crystallization is performed in a short time, and further melting may occur when heated for a long time. On the other hand, at a temperature lower than Tg, the crystallization rate is remarkably small, and the desired heat-resistant molded article may not be obtained. In this method, the time for heat-treating the molded body varies depending on the composition, but is not particularly limited as long as it is sufficient for the molded body to be sufficiently crystallized.
<Aspects of a method for producing a molded article having both impact resistance and heat resistance>
Below, the aspect of the shaping | molding method of the molded object which can provide impact resistance and heat resistance simultaneously to a molded object based on this invention is demonstrated.
[0028]
(1) Injection molding (In-mold crystallization method)
In the injection molding (in-mold crystallization method), for example, a pellet melt of a composition obtained by adding animal and vegetable oils to polylactic acid obtained in Production Example 2 to be described later, from the crystallization start temperature to the crystallization end temperature. By filling and holding in a mold held within the temperature range, a molded body having both impact resistance and heat resistance, which is the object of the present invention, can be molded.
[0029]
(2) Injection molding (post crystallization method)
In injection molding (post-crystallization method), for example, an amorphous molded body obtained by molding at a mold temperature of 20 ° C. using the pellets shown in (1) above is obtained from Tg (58 ° C.). Molding an injection-molded article having both impact resistance and heat resistance, which is the object of the present invention, by maintaining it in an atmosphere within a temperature range of Tm (165 ° C.) or by bringing it into contact with an appropriate heat medium. Can do.
[0030]
(3) Extrusion molding (post crystallization method)
In extrusion molding (post-crystallization method), for example, an amorphous film or sheet obtained by molding the pellet shown in (1) above with a general T-die extrusion molding machine is used from Tg (58 ° C.) to Tm. Impact resistance that is the object of the present invention by heat treatment by continuously passing in an oven (heating furnace) held in a range of (165 ° C.) or warm water, or by heat treatment in a batch. And a sheet or film having both heat resistance.
[0031]
(4) Blow molding (post crystallization method)
In blow molding (post-crystallization method), after obtaining the amorphous preform by melting the pellet shown in (1) above with a general blow molding machine and filling the mold, The obtained preform is heated in an oven (heating furnace), then placed in a mold held within a range of Tg (58 ° C.) to Tm (165 ° C.), and pressurized air is sent out and blown. By doing so, it is possible to mold a blow bottle having both the impact resistance and the heat resistance aimed at in the present invention.
Here, when high-pressure [for example, room temperature (25 ° C.) or higher to Tm (165 ° C. or lower)] is used as the pressure air, the time required for crystallization of the molded body can be shortened.
[0032]
(5) Vacuum forming / vacuum / pressure forming (in-mold crystallization method)
The amorphous film formed by the same method as in the above (3) is vacuum formed or vacuumed in a mold held within the range of the crystallization start temperature to the crystallization end temperature by a general vacuum forming machine. By performing pressure forming, it is possible to form a molded article having both impact resistance and impact resistance which are the object of the present invention.
Here, when high-pressure [for example, room temperature (25 ° C.) or higher to Tm (165 ° C. or lower)] is used as the pressure air, the time required for crystallization of the molded body can be shortened.
[0033]
(6) Vacuum forming / vacuum / pressure forming (heat forming film vacuum forming)
By forming the heat resistant film formed by the same method as in the above (3) by vacuum / pressure forming, it is possible to form a molded article having both the impact resistance and the heat resistance aimed at in the present invention.
The polylactic acid resin molded body of the present invention obtained by molding by the molding method as described above has both impact resistance and heat resistance.
[0034]
In the present invention, the fact that the polylactic acid-based resin molded product has impact resistance means that a measured value in an Izod impact test (ASTM D256) is 4 to 30 kgfcm / cm.2It means that.
In the present invention, the fact that the polylactic acid-based resin molded product is heat resistant means that the measurement temperature is 100 to 160 ° C. in Vicat softening point measurement (ASTM D1525).
According to the production method of the present invention, the Izod impact strength shot is 4 to 30 kgfcm / cm.2And the polylactic acid-type resin molding which has both impact resistance and heat resistance whose Vicat softening point is 100-160 degreeC is obtained.
[0035]
The aliphatic polyester having impact resistance, heat resistance and decomposability of the present invention, in particular, polylactic acid and polylactic acid-based resin moldings are injection-molded articles, films, bags, tubes, and sheets obtained by publicly known and publicly used molding methods. , Cups, bottles, trays, threads, etc., and there are no restrictions on the shape, size, thickness, design, etc.
Specifically, the molded article of the present invention includes food packaging bags, containers and trays for food such as tableware, forks and spoons, bottles for dairy products, soft drinks and alcoholic beverages, wrap films, cosmetic containers, Garbage bags, umbrellas, tents, tarpaulins, (adhesive) tapes, air mats, bleach containers, liquid detergent bottles, containers and packaging materials for medical instruments and materials, pharmaceutical containers and packaging materials, Used for fishing nets, fish nets, containers and packaging materials and capsules for agricultural products, containers and packaging materials and capsules for fertilizers, containers and packaging materials and capsules for seedlings, agricultural and horticultural films, product packaging films, etc. it can.
[0036]
【Example】
The present invention is described in detail below with reference to production examples, examples and comparative examples.
It should be noted that the descriptions of synthesis examples, examples, comparative examples, aspects, etc. in the specification of the present application are explanations for supporting the understanding of the contents of the present invention, and the description narrows the technical scope of the present invention. It is not of a character that is the basis for interpretation.
[0037]
A. Production example
The manufacturing method of the polylactic acid-type resin used in an Example and a comparative example is shown below. In the text, all parts are based on weight.
The average molecular weight (weight average molecular weight Mw) of the polymer was measured by gel permeation chromatography using polystyrene as a standard under the following conditions.
(1) Equipment: Shimadzu LC-IOAD
(2) Detector: Shimadzu RID-6A
(3) Column: Hitachi Chemical GL-S350DT-5, GL-S370DT-5
(4) Solvent: Chloroform
▲ 5 ▼ Concentration: 1%
(6) Injection volume: 20 μl
[Production Example 1] <Production of polymer A (poly L-lactide)>
100 parts by weight of L-latatide, 0.01 part of stannous octoate and 0.03 part of lauryl alcohol were sealed in a thick cylindrical stainless steel polymerization vessel equipped with a stirrer and degassed by vacuum for 2 hours. Thereafter, it was replaced with nitrogen gas. The mixture was heated at 200 ° C. for 3 hours with stirring under a nitrogen atmosphere. While maintaining the temperature as it is, the inside of the reaction vessel was gradually depressurized to 3 mmHg by gradually deaeration with a vacuum pump through an exhaust pipe and a glass receiver. After 1 hour from the start of degassing, since the distillation of monomers and low molecular weight volatile components was stopped, the inside of the container was purged with nitrogen, the polymer was extracted from the lower part of the container into a strand shape, pelletized, and an L-lactide homopolymer A) was obtained. The yield was 78%, and the weight average molecular weight Mw was 130,000.
[0038]
[Production Example 2] <Production of polymer B (poly L-lactic acid)>
In a 100 liter reactor equipped with a Dien-Stark trap, 10 kg of 90% L-lactic acid was distilled at 150 ° C./50 mmHg for 3 hours while stirring for 3 hours, and then 6.2 g of tin powder was added. The mixture was further oligomerized by stirring at 30 mmHg for 2 hours. To this oligomer, 28.8 g of tin powder and 21.1 kg of diphenyl ether were added, and 150 ° C./35 mmHg azeotropic dehydration reaction was performed. The distilled water and the solvent were separated by a water separator, and only the solvent was returned to the reactor. After 2 hours, the organic solvent to be returned to the reactor was passed through a column packed with 46 kg of molecular sieve 3A and then returned to the reactor, and the reaction was carried out at 150 ° C./35 mmHg for 40 hours to obtain a weight average molecular weight of 1460,000. A solution of polylactic acid was obtained. To this solution, 44 kg of dehydrated diphenyl ether was added, diluted and then cooled to 40 ° C., and the precipitated crystals were filtered, washed 3 times with 10 kg (7) n-hexane, and dried at 60 ° C./50 mmHg. To this powder, 12 kg of 0.5N HCl and 12 kg of ethanol were added, stirred at 35 ° C. for 1 hour, filtered, dried at 60 ° C./50 mmHg, and white powder of polylactic acid 6. 1 kg (yield 85%) was obtained. The weight average molecular weight Mw of this polylactic acid (Polymer B) was 145,000.
[0039]
[Production Example 3] <Production of Copolymer C (Polybutylene Succinate / Polylactic Acid Copolymer)>
Diphenyl ether (293.0 g) was added to 50.5 g of 1,4-butanediol and 66.5 g of succinic acid, and 2.02 g of metal tin was added, and the mixture was oligomerized by heating and stirring while distilling water outside the system at 130 ° C./140 mmHg for 7 hours. . A Dean-Stark trap was attached to this, and azeotropic dehydration was carried out at 140 ° C./30 mmHg for 8 hours. Then, a tube filled with 40 g of molecular sieve 3A was attached, and the distilled solvent passed through the molecular sieve tube into the reactor. Then, the mixture was stirred at 130 ° C./17 mmHg for 49 hours. The reaction mass was dissolved in 600 ml of chloroform, added to 4 liters of acetone and reprecipitated, and then sludged with an HCI isopropyl alcohol (hereinafter abbreviated as IPA) solution (HCl concentration 0.7 wt%) for 3 hours (3 Times) and washed with IPA and then dried under reduced pressure at 60 ° C. for 6 hours to obtain polybutylene succinate (hereinafter abbreviated as PSB). The weight average molecular weight Mw of this polymer was 118,000.
80.0 g of the obtained polybutylene succinate was mixed with 120.0 g of polylactic acid obtained by the same method as in Production Example 2 (weight average molecular weight Mw is 20,000), diphenyl ether 800 g) and 0.7 g of metallic tin. Then, dehydration condensation reaction was performed again at 130 ° C./17 mmHg for 20 hours. After completion of the reaction, post-treatment was performed in the same manner as in Production Example 2 to obtain 188 g (yield 94%) of a copolymer of polybutylene succinate and polylactic acid. The weight average molecular weight Mw of the copolymer of polybutylene succinate and polylactic acid (copolymer C) was 14,000,000.
[0040]
[Production Example 4] <Production of copolymer D (polybutylene succinate / polylactic acid copolymer)>
The same procedure as in Production Example 3 was performed, except that 20.0 g of polybutylene succinate (weight average molecular weight Mw was 118,000) and polylactic acid 160.0 g (weight average molecular weight Mw was 10.0 million). As a result, a copolymer of polybutylene succinate and polylactic acid (copolymer D) was obtained. The yield was 94%, and the weight average molecular weight Mw was 142,000.
[0041]
[Production Example 5] <Production of copolymer E (polycaproic acid / polylactic acid copolymer)> As a result of carrying out the reaction in the same manner as in Production Example 2 except that 6-hydroxycaproic acid was used instead of lactic acid, Polycaproic acid (weight average molecular weight Mw was 15 million) was obtained. Next, 20.0 g of the obtained polycaproic acid and 180.0 g of polylactic acid (weight average molecular weight Mw is 10.0 million) were used in the same manner as in Production Example 4, and a copolymer of polycaproic acid and polylactic acid (copolymer E) ) The yield was 92% and the weight average molecular weight Mw was 153,000.
[0042]
B. Evaluation methods
[Evaluation of physical properties]
The evaluation conditions of the physical properties of the molded bodies produced using the polylactic acid resin compositions obtained in Production Examples 1 to 5 are as follows.
▲ 1 ▼ Impact resistance
The impact strength was measured according to ASTM D-256.
(2) Practical impact resistance test for bottles
When a bottle filled with water up to 80% by volume of the container was dropped vertically from a height of 1.2 m onto a 1 cm thick iron plate placed on the floor, the bottle was observed to be broken.
▲ 3 ▼ Falling ball impact strength
In accordance with JIS K-7124, an iron ball was dropped on the film, and the impact energy value [iron ball weight (kg) * height (cm)] when the probability of the film breaking was 50% was determined.
[0043]
(4) Crystallinity
The molded specimen was measured with an X-ray diffractometer (manufactured by Rigaku Corporation, Rint 1500 type), and the ratio of the crystal peak area of the obtained chart to the total area was determined.
(5) Heat resistance [Vicat softening temperature (ASTM-D1525)]
Measure the test piece after molding under the condition of 1 kgf load.
(6) Crystallization start temperature, crystallization end temperature
The temperature at which the crystallization peak was observed when the shaped body was once melted with a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation) and the temperature was lowered at 10 ° C./min was the crystallization start temperature, The temperature at which no crystallization peak was observed was defined as the crystallization end temperature.
(7) Glass transition temperature (Tg), melting point (Tm)
The point at which the molded body changes to a rubbery shape when heated by a differential scanning calorimeter (DSC-50, manufactured by Shimadzu Corporation) under the condition of 10 ° C./min is the glass transition point (Tg) and the peak of the melting peak. The melting point (Tm) was used.
[0044]
C. Examples and Comparative Examples
In the following examples, when the molded body is heat-treated, when it is crystallized at the time of temperature drop in the in-mold crystallization operation, it is within the range from the crystallization start temperature at the temperature drop to the crystallization end temperature or more. In the case where crystallization is performed at the time of temperature rise by a heat treatment operation after molding, the temperature is set within the temperature range from the glass transition temperature to the melting point.
[0045]
[Example 1 [Injection molding]]
After thoroughly mixing 93 parts by weight of polylactic acid obtained in Production Example 2 and 7 parts by weight of epoxidized soybean oil as an impact modifier with a Henschel mixer, the pellets are set at an extruder cylinder set temperature of 170 to 210 ° C. Turned into. The pellets were melted under the conditions of a JSW-75 injection molding machine manufactured by Nippon Steel Works under a cylinder setting temperature of 180 to 200 ° C., filled in a mold with a setting temperature of 30 ° C., and the cooling time was 30 seconds. A transparent ASTM specimen having a thickness of 0 mm was obtained. The obtained test piece has an impact resistance (Izod impact strength) of 3 kgfcm / cm.2The crystallinity was 0%, and the heat resistance (Vicat softening point) was 58 ° C. Further, the glass transition temperature (Tg) of this test piece was 58 ° C., the crystallization start temperature when the temperature was lowered was 120 ° C., the crystallization end temperature when the temperature was lowered was 65 ° C., and the melting point (Tm) was 165 ° C. This test piece was heat-treated in a dryer at 120 ° C./10 min. The obtained test piece has an impact resistance (Izod impact strength) of 23 kgfcm / cm.2The crystallinity was 42% and the heat resistance was 150 ° C. The results are shown in Table 1 [Table 1].
[0046]
[Examples 1-2 to 1-5 [injection molding]]
Except having changed the kind of polymer, the kind of impact modifier, and the addition amount as shown in Table-1 [Table 1], it carried out like Example 1-1, and each obtained test piece resistance Impact properties, crystallinity, and heat resistance were measured. The results are shown in Table 1 [Table 1].
[0047]
[Comparative Examples 1-1 to 1-5 [Injection Molding]]
The procedure was the same as in Example 1, except that the type of polymer and the amount of impact modifier added were changed. The impact resistance of the obtained specimen is 3 kgfcm / cm2The crystallinity was 0% and the heat resistance was 59 ° C.
The impact resistance when this test piece was heat-treated in a dryer at 120 ° C./10 min was 3 kgfcm / cm.2The crystallinity was 43% and the Vicat softening point was 150 ° C.
The results are shown in Table-2 [Table 2].
[0048]
[Example 2-1 [Blow molding]]
Polylactic acid obtained in Production Example 2 as a polymer and 7% by weight of epoxidized soybean oil as an impact modifier are thoroughly mixed with a Henschel mixer, and then pelletized under conditions of an extruder cylinder set temperature of 170 to 210 ° C. did. The pellets are melted under the conditions of an injection blow molding machine (manufactured by Nissei ASB Machine, ASB-50) and a cylinder set temperature of 180 to 200 ° C., filled in a mold (A) with a set temperature of 20 ° C., and cooling time is 30 seconds. A 2.0 mm thick preform (bottomed parison) was obtained. The obtained parison was heated in a heating furnace to a parison temperature of 120 ° C. and placed in a mold (B) maintained at 120 ° C., and the pressure air pressure was 4 kgf / cm.2Under these conditions, the vertical magnification was doubled and the horizontal magnification was doubled to obtain a container having an internal volume of 500 ml. The degree of crystallinity was 45%, and the heat resistance was 150 ° C. Moreover, although the practical impact resistance test of the obtained container (thickness 0.5mm) was done, there was no change without cracking.
[0049]
[Comparative Example 2-1 [Blow Molding]]
The same procedure as in Example 2 was performed except that the impact modifier (epoxidized soybean oil) was removed. The crystallinity was 43% and the heat resistance was 150 ° C. Moreover, as a result of conducting the practical impact resistance test of the obtained container (thickness 0.5 mm), it was damaged.
[0050]
[Example 3-1 [extrusion molding]]
Polylactic acid obtained in Production Example 1 as a polymer and 5% by weight of epoxidized soybean oil as an impact modifier are thoroughly mixed with a Henschel mixer, and then pelletized under conditions of an extruder cylinder set temperature of 170 to 210 ° C. did. The pellet was melted under the conditions of a T die 50 mmΦ extruder (manufactured by Frontier, die width 400 mm) and a cylinder set temperature of 180 to 200 ° C. to obtain a transparent 0.1 mm thick film at a die temperature of 185 ° C. The falling ball impact strength of this film was 2 cm · kg, and the crystallinity was 0%. Further, the film was subjected to heat treatment by continuously passing it through a hot air dryer (temperature 100 ° C., residence time 2 min). The degree of crystallinity was 40%. The resulting ball had a falling ball strength of 27 cm · kg.
[0051]
[Comparative Example 3-1 [Extrusion Molding]]
Except for the impact modifier, epoxidized soybean oil, the same procedure as in Example 3-1 was performed. The crystallinity was 38%. Moreover, the ball drop impact strength of the obtained sheet was 2 cm · kg.
[0052]
[Table 1]
Figure 0003789217
[0053]
[Table 2]
Figure 0003789217
[0054]
【The invention's effect】
According to the present invention, it is possible to provide a polylactic acid-based resin molded article having impact resistance and crystallinity (heat resistance) at the same time.

Claims (10)

ポリ乳酸系樹脂と動植物油の合計重量を基準として、ポリ乳酸系樹脂を75〜98重量%、及び、動植物油を25〜2%含有するポリ乳酸系樹脂組成物からなる、アイゾット衝撃強度が4〜30kgfcm/cm 2 であることと等価である耐衝撃性とビカット軟化温度が100〜160℃であることと等価である耐熱性を併有するポリ乳酸系樹脂成形体。 Based on the total weight of the polylactic acid resin and animal or vegetable oil, a polylactic acid resin 75 to 98 wt%, and consists of a polylactic acid resin composition and containing not animal or vegetable oil 25 to 2%, the Izod impact strength 4 A polylactic acid resin molded article having both impact resistance equivalent to ˜30 kgfcm / cm 2 and heat resistance equivalent to Vicat softening temperature of 100 to 160 ° C. ポリ乳酸系樹脂が、ポリ乳酸、ポリ乳酸ブロックとポリブチレンサクシネートブロックを有する共重合体、ポリ乳酸ブロックとポリカプロン酸ブロックを有する共重合体からなる群から選択された少なくとも一種である、請求項1に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。 The polylactic acid-based resin is at least one selected from the group consisting of polylactic acid, a copolymer having a polylactic acid block and a polybutylene succinate block, and a copolymer having a polylactic acid block and a polycaproic acid block. 1. A polylactic acid resin molded article having both impact resistance and heat resistance as described in 1. 動植物油が、エポキシ化大豆油である、請求項1又は2に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。 The polylactic acid resin molded article having both impact resistance and heat resistance according to claim 1 or 2, wherein the animal and vegetable oil is epoxidized soybean oil. ポリ乳酸系樹脂と動植物油の合計重量を基準として、ポリ乳酸系樹脂を5〜98重量%、及び、動植物油を25〜2%含有するポリ乳酸系樹脂組成物を成形するに際し、成形時又は成形後に熱処理することを特徴とする、アイゾット衝撃強度が4〜30kgfcm/cm 2 であることと等価である耐衝撃性とビカット軟化温度が100〜160℃であることと等価である耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。 Based on the total weight of the polylactic acid resin and animal or vegetable oil, a polylactic acid resin 5 to 98 wt%, and, upon molding the polylactic acid resin composition and containing not animal or vegetable oil 25 to 2%, during molding or Both heat resistance equivalent to an Izod impact strength of 4 to 30 kgfcm / cm 2 and heat resistance equivalent to a Vicat softening temperature of 100 to 160 ° C., characterized by heat treatment after molding. The manufacturing method of the polylactic acid-type resin molding which has. 熱処理方法が、ポリ乳酸系樹脂組成物を一旦溶融した後、ポリ乳酸系樹脂組成物の結晶化開始温度から結晶化終了温度迄の温度範囲に保温された金型内に充填し結晶化させることを特徴とする、請求項4に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。The heat treatment method is to melt the polylactic acid resin composition once, and then fill and crystallize the mold in a temperature range from the crystallization start temperature to the crystallization end temperature of the polylactic acid resin composition. The method for producing a polylactic acid-based resin molded article having both impact resistance and heat resistance according to claim 4 . 熱処理方法が、ポリ乳酸系樹脂組成物の溶融物を、金型内で冷却固化して非晶性成形体を得た後、その成形体をポリ乳酸系樹脂組成物のガラス転移温度から融点迄の温度範囲で結晶化することを特徴とする、請求項4に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。The heat treatment method is to cool and solidify the melt of the polylactic acid resin composition in a mold to obtain an amorphous molded body, and then the molded body is heated from the glass transition temperature to the melting point of the polylactic acid resin composition. The method for producing a polylactic acid-based resin molded article having both impact resistance and heat resistance according to claim 4 , wherein the crystallization is performed within a temperature range of 熱処理方法が、ポリ乳酸系樹脂組成物の非晶性成形体を得た後、その成形体をポリ乳酸系樹脂組成物のガラス転移温度から融点迄の温度範囲で結晶化することを特徴とする、請求項4に記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。A heat treatment method is characterized in that after obtaining an amorphous molded body of a polylactic acid-based resin composition, the molded body is crystallized in a temperature range from the glass transition temperature to the melting point of the polylactic acid-based resin composition. The manufacturing method of the polylactic acid-type resin molded object which has both impact resistance and heat resistance described in Claim 4. ポリ乳酸系樹脂が、ポリ乳酸、ポリ乳酸ブロックとポリブチレンサクシネートブロックを有する共重合体、ポリ乳酸ブロックとポリカプロン酸ブロックを有する共重合体からなる群から選択された少なくとも一種である、請求項4乃至7の何れかに記載した、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。Polylactic acid resin is polylactic acid, a copolymer having a polylactic acid block and polybutylene succinate block is at least one selected from the group consisting of a copolymer having a polylactic acid block and Porikapuron acid block, claim 4. A method for producing a polylactic acid resin molded article having both impact resistance and heat resistance, according to any one of 4 to 7 . 動植物油が、エポキシ化大豆油である、請求項4乃至8の何れかに記載し
た、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体の製造方法。
The method for producing a polylactic acid resin molded article having both impact resistance and heat resistance according to any one of claims 4 to 8 , wherein the animal and vegetable oil is epoxidized soybean oil.
請求項4乃至9の何れかに記載した製造方法により得られた、耐衝撃性と耐熱性を併有するポリ乳酸系樹脂成形体。A polylactic acid resin molded article having both impact resistance and heat resistance, obtained by the production method according to claim 4 .
JP27763897A 1997-10-09 1997-10-09 Molded body and manufacturing method thereof Expired - Fee Related JP3789217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27763897A JP3789217B2 (en) 1997-10-09 1997-10-09 Molded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27763897A JP3789217B2 (en) 1997-10-09 1997-10-09 Molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11116785A JPH11116785A (en) 1999-04-27
JP3789217B2 true JP3789217B2 (en) 2006-06-21

Family

ID=17586226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27763897A Expired - Fee Related JP3789217B2 (en) 1997-10-09 1997-10-09 Molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3789217B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942181A (en) * 2009-07-06 2011-01-12 株式会社理光 The method of copolymer resin composition, moulded product and manufacturing copolymer resin composition
US10479889B2 (en) 2014-12-30 2019-11-19 Samsung Electronics Co., Ltd. Thermoplastic resin composition, molded article made therefrom, and method of preparing the composition
RU2708850C2 (en) * 2014-09-10 2019-12-11 Клариант Плэстик Энд Коутингз Лтд Breakability modifier for biodegradable polyesters

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321720A (en) 1999-05-10 2000-11-24 Fuji Photo Film Co Ltd Container for photographic sensitive material
JP2006077126A (en) * 2004-09-09 2006-03-23 Mitsubishi Plastics Ind Ltd Resin composition and resin molded product
JP5072174B2 (en) * 2004-10-12 2012-11-14 アキレス株式会社 Biodegradable seedling protective cover
JP2006143829A (en) * 2004-11-18 2006-06-08 Kanebo Ltd Polylactic acid-based resin molding and method for producing the same
BRPI0600783A (en) * 2006-02-24 2007-11-20 Phb Ind Sa biodegradable polymer composition and method for producing a biodegradable polymer composition
JP4967641B2 (en) * 2006-12-18 2012-07-04 パナソニック株式会社 Polymer heating element
JP5409012B2 (en) * 2006-12-29 2014-02-05 英子 山口 Stereocomplex formation accelerator of polylactic acid
KR101391018B1 (en) 2007-03-30 2014-04-30 도레이 카부시키가이샤 Polymer, and film or sheet comprising the same
JP5057874B2 (en) * 2007-07-18 2012-10-24 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
MX2010010430A (en) * 2008-03-24 2011-03-21 Biovation Llc Biolaminate composite assembly and related methods.
WO2012102952A1 (en) 2011-01-24 2012-08-02 Arkema Inc. Epoxidized fatty acid alkyl esters as flexibilizers for poly(lactic acid)
JP6206711B2 (en) * 2013-09-27 2017-10-04 Dic株式会社 Styrenic resin composition and method for producing the same
KR102255307B1 (en) 2014-11-05 2021-05-24 삼성전자주식회사 Thermoplastic resin composition, and molded articles made therefrom
CN106317816B (en) * 2016-09-07 2018-05-25 清华大学深圳研究生院 A kind of low cost toughness-increasing polylactic acid composite material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942181A (en) * 2009-07-06 2011-01-12 株式会社理光 The method of copolymer resin composition, moulded product and manufacturing copolymer resin composition
CN101942181B (en) * 2009-07-06 2013-01-16 株式会社理光 Copolymer resin composition, molded product, and method of manufacturing a copolymer resin composition
RU2708850C2 (en) * 2014-09-10 2019-12-11 Клариант Плэстик Энд Коутингз Лтд Breakability modifier for biodegradable polyesters
US10479889B2 (en) 2014-12-30 2019-11-19 Samsung Electronics Co., Ltd. Thermoplastic resin composition, molded article made therefrom, and method of preparing the composition

Also Published As

Publication number Publication date
JPH11116785A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP3789217B2 (en) Molded body and manufacturing method thereof
EP1302509B1 (en) Lactic acid-base resin compositions and molded articles made thereof
JP3037431B2 (en) Degradable polymer composition
JP3411168B2 (en) Method for producing aliphatic polyester molded article and molded article produced thereby
US5691424A (en) Heat-resistant molded article of lactic acid-base polymer
AU2015257900B2 (en) Injection-moulded article
JP2725870B2 (en) Degradable lactide thermoplastic
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it&#39;s production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
EP1298158B1 (en) Copolymer resin composition and production process thereof
JP3359764B2 (en) Heat-resistant lactic acid-based polymer molding
KR20010023260A (en) Condensation Copolymers having Surpressed Crystallinity
KR100265877B1 (en) Stretch blow molded container and production process thereof
JPH115849A (en) Resin composition and its molded product
KR20230095077A (en) Biodegradable containers and resins therefor
JP3865960B2 (en) Resin molding method
JP3886613B2 (en) Molded body and manufacturing method thereof
JP3913332B2 (en) Molded body and manufacturing method thereof
JP3430125B2 (en) Aliphatic polyester composition for masterbatch and method for producing aliphatic polyester film using the composition
JP3810194B2 (en) Molded body and manufacturing method thereof
US8349955B2 (en) Poly(hydroxyalkanoic acid) plasticized with poly(trimethylene ether) glycol
JP2008037939A (en) Lactic acid resin composition
JP2008037941A (en) Thermoplastic resin composition
Shekhar et al. Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview
AU634723B2 (en) Degradable thermoplastic from lactides
JP2011213940A (en) Polylactic acid-based resin composition, and draw-molded container formed of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees