JP2004268201A - Hard carbon film-coated tool - Google Patents

Hard carbon film-coated tool Download PDF

Info

Publication number
JP2004268201A
JP2004268201A JP2003062702A JP2003062702A JP2004268201A JP 2004268201 A JP2004268201 A JP 2004268201A JP 2003062702 A JP2003062702 A JP 2003062702A JP 2003062702 A JP2003062702 A JP 2003062702A JP 2004268201 A JP2004268201 A JP 2004268201A
Authority
JP
Japan
Prior art keywords
film
diamond
ray diffraction
tool
diffraction peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003062702A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
敏夫 石井
Yasushi Sakamoto
靖 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003062702A priority Critical patent/JP2004268201A/en
Publication of JP2004268201A publication Critical patent/JP2004268201A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard carbon film-coated tool wherein superior abrasion resistance and slidability, and a remarkably longer tool service life than the conventional service life is realized, by enhancing the slidability of a diamond film surface superior in crystallinity and abrasion resistance. <P>SOLUTION: This hard carbon film-coated tool is characterized by including a hexagonal system graphite component of shifting a 2θ value of the X-ray diffraction peak of a (400) surface index of a diamond film to the high angle side by 0.1 degree or more by coating a surface of a cemented carbide material with the diamond film, and shifting the 2θ value of the X-ray diffraction peak of a (008) surface index of the diamond film to the low angle side by 0.1 degree or more by coating the diamond film surface with a diamond-like carbon film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、硬質炭素膜被覆工具に関するものである。
【0002】
【従来の技術】
被加工部材の高硬度及び軽量化に伴って、高硬度、高熱伝導であるダイヤモンド膜を被覆した切削工具や耐摩耗部材を活用する機運が高まっている。特に、ダイヤモンド被覆工具は、アルミ合金やグラファイト材の加工に有望であり、盛んに研究されている。以下の特許文献1から4にダイヤモンド被覆工具が開示されている。
【特許文献1】特開平8−259391号公報(第9頁表1、第10頁表2)
【特許文献2】特開2001−179504号公報(第5頁表5、第7頁表7)
【特許文献3】特開2001−328007号公報(第6頁表2、第7頁表3)
【特許文献4】特開2003−25117号公報(第2頁、請求項1、2)
【0003】
特許文献1は、(220)のX線回折ピ−ク強度が他のピークに比べて強いダイヤモンドを利用することにより膜表面を平滑化させ、摺動性を高めることが開示されている。しかし、これらダイヤモンド成分のみの結晶性や摺動性を改質した場合は硬質膜全体としての耐摩耗性や摺動性のバランスの良い改善が充分には成されず、被覆工具として充分な工具寿命を得られない欠点があった。特許文献2、3は、(400)面の配向が強いダイヤモンドと、(008)面指数のX線回折ピーク強度が強い六方晶グラファイトの両者を含有している硬質炭素膜を被覆することにより、優れた工具寿命を持つ工具が開示されている。特許文献4は、ダイヤモンド被覆膜と潤滑性を有する保護膜とを組み合わせた被覆切削工具であり、該保護膜に硬質炭素膜を用いる技術が開示されている。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、結晶性が良く耐摩耗性の優れたダイヤモンド膜表面の摺動性を高めることにより、耐摩耗性と摺動性の両者が優れた被覆工具を実現し、従来に比して格段に工具寿命の長い硬質炭素膜被覆工具を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究してきた結果、超硬合金材の表面にダイヤモンド膜を被覆し、該ダイヤモンド膜の(400)面指数のX線回折ピークの2θ値が0.1度以上高角側にシフトしており、該ダイヤモンド膜表面にダイヤモンドライクカーボン膜を被覆し、更に該ダイヤモンド膜の(008)面指数のX線回折ピークの2θ値が0.1度以上低角側にシフトしている六方晶グラファイト成分を含有していることを特徴とする硬質炭素膜被覆工具とすることにより、優れた工具寿命を持つ工具を実現できることを見いだし本発明に想到した。
【発明の実施の形態】
【0006】
本発明は、超硬合金材の表面にダイヤモンド膜を形成した後、その表面にダイヤモンドライクカーボン(以下、DLCと記す。)膜を被覆したことを特徴とする硬質炭素膜被覆工具である。こうすることにより、靭性と耐摩耗生の優れた超硬合金材の表面に、高硬度で耐摩耗性が特に優れているダイヤモンド皮膜が形成されており、しかもその表面に摺動特性が高いDLC膜が形成されていることにより、優れた切削特性を有し、工具寿命の長い硬質炭素膜被覆工具が実現できる。一般に、DLC膜は200℃付近の低温で成膜するため、基体や下層膜との密着性が低く、切削工具として使用時に容易に剥がれてしまう欠点があった。しかし、本発明においては同じカーボンから成るダイヤモンド膜の表面にDLC膜を形成しているため、下層膜と密着性が優れ、DLC膜は切削加工時にも剥がれることなく、特に優れた摺動特性を示す。基体表面にダイヤモンド膜やDLC膜等が形成されていることは、X線回折や電子線回折、ラマン分光法等により分析できる。また、皮膜断面を走査電子顕微鏡−エネルギー分散型X線分析装置(SEM−EDX)により分析した時、結晶性の高いダイヤモンド膜の表面にアモルファス状の炭素膜が形成されていることからも確認できる。
【0007】
本発明の硬質炭素膜被覆工具は、該ダイヤモンド膜の(400)面指数のX線回折ピークの2θ値が0.1度以上高角側にシフトしていることが必要である。こうすることにより、該ダイヤモンド膜の摺動性が高まり、ダイヤモンド本来の優れた耐摩耗性と相まって、優れた切削特性を有する硬質炭素膜被覆工具を実現できる。これは(400)面指数のX線回折ピークの2θ値が0.1度以上高角側にシフトしていることにより、DLC成分や六方晶グラファイト成分との結合性が高まったためと考えられる。2θ値のシフト量が0.1度未満であるときは工具特性が低下する欠点が現れる。これはダイヤモンド成分とDLC成分や六方晶グラファイト成分との間の結合力が低下するためと考えられる。
【0008】
本発明の硬質炭素膜被覆工具は、該ダイヤモンド膜の(008)面指数のX線回折ピークの2θ値が0.1度以上低角側にシフトしている六方晶グラファイト成分を含有していることが好ましい。こうすることにより、該ダイヤモンド膜中に摺動性の優れた六方晶グラファイト成分が含有されており、しかもダイヤモンド成分との間に優れた結合性を有しているため、耐摩耗性と摺動性の両者が特に優れ、しかも安定している、より優れた切削特性を有する硬質炭素膜被覆工具を実現できる。これは、六方晶グラファイト成分の(008)面指数のX線回折ピークの2θ値が0.1度以上低角側にシフトしていることから、ダイヤモンドと六方晶グラファイトの両者の間で原子の共有等の干渉があり、ダイヤモンド成分とグラファイト成分の間に強い結合力が働いていると考えられる。このため、ダイヤモンドの特長である優れた耐摩耗性とグラファイトの特長である優れた摺動特性の両者を同時に併せ持つこととなり、優れた工具特性を示すようになったと判断される。六方晶グラファイト成分のシフト量が0.1度未満であるときは工具特性が低下する欠点が現れる。これはダイヤモンド成分と六方晶グラファイト成分との間の結合力が低下するためと考えられる
【0009】
本発明における硬質炭素膜被覆工具の代表例である硬質炭素膜被覆エンドミルの例にそって述べる。本発明の被覆工具において、ダイヤモンドのX線回折ピークの同定は、JCPDSファイルのX線回折データファイル番号6−0675を用い、六方晶グラファイトのX線回折ピークの同定は、同ファイル番号25−284のデータを用いて行った。本発明の被覆工具のダイヤモンド膜を製作するためには、熱フィラメントCVD法やマイクロ波CVD法、rfプラズマCVD法、ECRプラズマCVD法等、公知のCVD法を用いることができるが、成膜条件の調整が適宜必要である。本発明者らの研究では、成膜時の基板温度を高めるにつれてダイヤモンドの(400)X線回折ピークがより高角側へシフトし、グラファイトの(008)X線回折ピークはより低角側へシフトする。また、成膜ガスのCH/H比を下げるにつれてダイヤモンドの(400)X線回折ピークの高角側へのシフト量や、グラファイトの(008)X線回折ピークの低角側へのシフト量が、小さくなることが分かっている。本発明の被覆工具のDLC膜を製作するためには、ガス反応を用いたrfプラズマCVD法やマイクロ波CVD法、ECRプラズマCVD法や、あるいはカーボン製ターゲットを用いた物理蒸着(PVD)法を用いることができるが、ダイヤモンド膜とDLC膜間により高い密着性が得られるため、CVD法で成膜することが好ましい。本発明の用途は、ソリッドエンドミル型切削工具に限るものではなく、スローアウェイインサートを用いたエンドミル型切削工具やフライス用工具、旋削用工具でも良い。また、硬質炭素膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。本発明の被覆工具において、硬質炭素膜の成分は炭素だけに限るものではない。本発明の効果を消失しない範囲でCoやW等の不可避の添加物や不純物を例えば数質量%程度まで含むことが許容される。次に本発明の被覆工具を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものでない。
【0010】
【実施例】
(実施例1)
WC:94質量%、Co:6質量%の組成よりなり、同一ロットで焼結し作製した直径6mm、2枚刃のボールエンドミル型の切削工具用超硬合金基体と、10mm×10mm、厚さ5mmの分析用直方体基板を真空装置内にセットし、それらの表面に、熱フィラメントCVD法により、約8μm厚さのダイヤモンド膜を成膜した。即ち、エンドミルの周辺に配置したタングステン製フィラメントに電流を流すことにより、これを約2500℃に加熱し、これにCH/H比が0.5〜3%のCHとHの混合ガスを10〜150cm/minだけ流し、圧力1.33〜13.3kPa、基板温度900〜1200℃で成膜した。rfプラズマCVD法により、真空装置内にCガスとHとを流し、ガス圧10.7Pa、基板温度200℃、基板バイアス800Vで厚さ0.5μmのDLC膜を成膜した。作製した試料のX線回折パターンは、各試料と一緒に成膜した上記の分析用基板を用いて評価した。理学電気(株)製のX線回折装置(RU−200BH型)により、波長λが0.15405nmのCuKα線を用いて、2θ−θ走査法により測定した。2θの測定範囲は10〜145度で、バックグランドノイズは装置に内蔵されたソフトにより除去した。表1に、各物質のJCPDSファイルに記載されている2θ値(2θ)、面指数及び本発明例1のX線回折測定結果と実測2θの標準2θからのシフト量Δ2θ(2θ−2θ)もあわせて示す。表1から、ダイヤモンドの(400)X線回折ピーク位置と六方晶グラファイトの(008)X線回折ピーク位置のシフト量が特に大きいことがわかる。DLC膜はアモルファス状であるため、明確なX線回折ピークは検出されなかったが、DLC膜が実際に成膜されていることは、ラマンスペクトルで1580cm−1付近と1360cm−1付近にブロードなピークが検出されることから確認した。
【0011】
【表1】

Figure 2004268201
【0012】
表2に実施例1によって作製した本発明例2〜19の硬質炭素膜被覆工具のX線回折測定結果と工具寿命とをまとめて示す。
【0013】
【表2】
Figure 2004268201
【0014】
表2より、本発明例2〜19のいずれの試料も、ダイヤモンドの(400)X線回折ピークのシフト量Δ2θが正の値を示し、高角側に0.1度以上シフトしていることがわかる。六方晶グラファイトの(008)X線回折ピークのシフト量Δ2θが負の値を示し、低角側にシフトしていることがわかる。ここで、900〜1200℃の範囲内で成膜時の基板温度を高めるにつれてダイヤモンドの(400)X線回折ピークがより高角側へシフトし、グラファイトの(008)X線回折ピークはより低角側へシフトした。また、0.5〜3%の範囲内で成膜ガスのCH/H比を下げるにつれてダイヤモンドの(400)X線回折ピークの高角側へのシフト量や、グラファイトの(008)X線回折ピークの低角側へのシフト量が小さくなった。本発明例2〜19の工具寿命は、作製した本発明例の各3本を用いて、グラファイト材を下記の条件で切削し、外周刃の刃先の逃げ面摩耗量が0.1mmに達するまでに切削した切削長さにより示した。
被削材:グラファイト(HS95)
工具形状:ボールエンドミル(φ6、二枚刃)
工具回転数:10000回転/min
切削速度:188m/min
送り速度:2000mm/min(0.1mm/tooth)
切り込み:0.3mm×0.3mm
切削油:使用せず
ショアー硬さHS95のグラファイト材を被削材に用いることにより、工具の耐摩耗性を早期に評価できるようにした。逃げ面摩耗量は倍率100の実体顕微鏡と分解能1μmのスライドテーブルを用いて測定した。表2より、本発明例2〜19は、いずれも切削可能長が710m以上と長く、工具寿命が優れていることがわかる。また、ダイヤモンドの(400)X線回折ピークのシフト量が高角側に0.5〜2.0度であるとき、切削可能長が1430m以上と2倍以上長く、優れた工具寿命が得られ、1.0〜1.5度の時は切削可能長が2590m以上と更に1.8以上倍長く、更に優れた工具寿命が得られることがわかる。また、六方晶グラファイトの(008)X線回折ピークのシフト量が低角側に−0.1〜−1.5度であるとき、切削可能長が1430m以上と2倍長く、優れた工具寿命が得られ、−0.5〜−1.0度の時は切削可能長が2150m以上と更に1.5倍以上長く、更に優れた工具寿命が得られることがわかる。
【0015】
(実施例2)
超硬合金材の表面にダイヤモンド膜を形成し、更にDLC膜を被覆する影響を明らかにするため、実施例1と同一ロットで作製したボールエンドミルの切削工具用超硬合金基体と分析用直方体基板を真空装置内にセットし、実施例1と同じ条件でダイヤモンド膜を成膜し、その表面にDLC膜を成膜しない従来例20を作製した。従来例20のラマンスペクトルは1332cm−1付近のダイヤモンドの鋭いピークと1580cm−1付近のグラファイトの鋭いピークのみが検出され、両ピーク付近にブロードなピークを示すDLCは観察されなかった。また、ダイヤモンド成分の(400)X線回折ピーク位置は高角側に0.1度シフトし、六方晶グラファイト成分の(008)X線回折ピーク位置はシフトしていなかった。従来例20のボールエンドミル3本を用いて実施例1と同一の条件で工具寿命を評価した結果、300m以内で外周刃の刃先摩耗量が0.05mmに達した。この結果、ダイヤモンド成分の(400)X線回折ピーク位置と六方晶グラファイトの(008)X線回折ピーク位置の両シフト量が同じであるダイヤモンド膜の表面にDLC膜を形成した本発明例2よりも工具寿命が1/2以下と短く、工具として劣っていることがわかった。即ち、ダイヤモンド膜の表面にDLC膜を形成した本発明例2〜19は、同じダイヤモンド膜の表面にDLC膜を形成していない従来例20に比べて、2倍以上、工具寿命が優れていることがわかった。
【0016】
(実施例3)
超硬合金材の表面にダイヤモンド膜を形成し、更にDLC膜が被覆されている場合、このダイヤモンド膜が、(400)面指数のX線回折ピークの2θ値が高角側にシフトしているダイヤモンド成分と、(008)面指数のX線回折ピークの2θ値が低角側にシフトしている六方晶グラファイトとの両者の含有の有無による、工具寿命への影響を明らかにするために、従来例21として、実施例1と同一の組成と形状よりなるボールエンドミルの切削工具用超硬合金基体と分析用直方体基板とを真空装置内にセットし、それらの表面に、熱フィラメントCVD法により約8μm厚さの硬質炭素膜を成膜した。その成膜条件は、タングステン製フィラメント温度が約2300℃、炭素濃度が4%のCHとHの混合ガス流量150cm/min、圧力13.3kPa、基板温度800℃である。この表面に実施例1と同一の条件で、厚さ0.5μmのDLC膜を成膜した。従来例21のダイヤモンド膜は、ダイヤモンド成分の(400)面指数X線回折ピークの2θ値が119.5度であり、高角側へのシフト量が0.1度未満と小さく、高角側へのシフトは観察されなかった。また、DLC膜が実際に成膜されていることの確認は、分析用試料のラマンスペクトルに1580cm−1付近と1360cm−1付近にブロードなピークが検出されることから確認した。また、切削テスト後に、皮膜断面をSEM−EDXにより分析し、結晶性の高いダイヤモンド膜の表面にアモルファス状の炭素膜が形成されていることからも確認した。従来例21のボールエンドミル3本を用いて実施例1と同一の条件で工具寿命を評価した結果、460m以内で外周刃の刃先摩耗量が0.05mmに達し、工具寿命が本発明例2の2/3以下にとどまった。本発明例2と従来例21とを比較することにより、(400)面指数のX線回折ピークの2θ値が0.1度以上高角側にシフトしているダイヤモンド膜の表面にDLC膜を形成した本発明例2の工具は、シフト量が0.1度以下であるダイヤモンド膜の表面にDLC膜を形成した従来例21の工具に比べて工具寿命が1.6倍以上優れていることがわかった。
【0017】
(実施例4)
WC:95.5質量%、Co:4.5質量%の組成よりなる直径6mm、2枚刃のスクエアエンドミル型の切削工具用超硬合金基体と、10mm×10mm、厚さ5mmの分析用直方体基板とを真空装置内にセットし、それらの表面に、熱フィラメントCVD法により、約8μm厚さのダイヤモンド膜を成膜した。即ち、エンドミルの周辺に配置したタングステン製フィラメントに電流を流すことにより、これを約2500℃に加熱し、これにCH/H比が0.5〜3%のCHとHの混合ガスを10〜150cm/minだけ流し、圧力1.33〜13.3KPa、基板温度900〜1200℃で成膜した。rfプラズマCVD法により、真空装置内にCガスとHとを流し、ガス圧10.7Pa、基板温度200℃、基板バイアス800Vで厚さ0.3μmのDLC膜を成膜した。スクエアエンドミルの刃先先端にある平坦部を試料面にして、X線回折パターンを、実施例1と同一の条件で測定した。スクエアエンドミルの刃先先端の平坦部は面積が少ないため、平坦部以外は出来るだけ加工で除去するとともに、ビニールテープで覆うことにより、X線回折パターンに影響しないように工夫した。表3に実施例4によって作製した本発明例22〜38の硬質炭素膜被覆工具のX線回折測定結果と工具寿命とをまとめて示す。
【0018】
【表3】
Figure 2004268201
【0019】
表3より、本発明例22〜38のいずれの試料も、硬質炭素膜が(400)面指数のX線回折ピークの2θ値が高角側に0.1度以上シフトしているダイヤモンド成分と(008)面指数のX線回折ピークの2θ値が低角側に0.1度以上シフトしている六方晶グラファイトの両者より成っていることがわかる。また、DLC膜が実際に成膜されていることは、分析用試料のラマンスペクトルに1580cm−1付近と1360cm−1付近にブロードなピークが検出されることから確認した。また、切削テスト後に、皮膜断面をSEM−EDXにより分析し、結晶性の高いダイヤモンド膜の表面にアモルファス状の炭素膜が形成されていることからも確認した。作製した本発明例22〜38のスクエアエンドミル各3本を用いて、本発明例の工具寿命を下記の条件で評価した。
被削材:Al−9質量%Si合金
工具形状:スクエアエンドミル(φ6、二枚刃)
工具回転数:20000回転/分
切削速度:500m/分
送り速度:7.2m/分(0.18mm/刃)
切り込み:Ad15mm×Rd0.8mm
切削油:使用せず
工具寿命は、刃先の逃げ面摩耗量が0.05mmに達するまでに切削した切削長さで示した。表3中に工具寿命を併記する。表3より、本発明例22〜38は、いずれも切削可能長が180m以上と長く、工具寿命が優れていることがわかる。また、ダイヤモンドの(400)X線回折ピークのシフト量が高角側に0.5〜2.0度であるとき切削可能長が270m以上と1.5倍長い、優れた工具寿命が得られ、1.0〜1.5度の時は切削可能長が498m以上と更に1.8倍以上長く、更に優れた工具寿命が得られることがわかる。また、六方晶グラファイトの(008)X線回折ピークのシフト量が低角側に0.1〜1.5度であるとき切削可能長が270m以上と長く、優れた工具寿命が得られ、0.5〜1.0度の時は切削可能長が450m以上と更に1.6倍以上長く、更に優れた工具寿命が得られることがわかった。
【0020】
(実施例5)
超硬合金材の表面にダイヤモンド膜を形成し、DLC膜を被覆する影響を明らかにするため、従来例39として、実施例4と同一ロットで作製したスクエアエンドミル型の切削工具用超硬合金基体と分析用直方体基板を真空装置内にセットし、実施例4と同じ条件でダイヤモンド膜を成膜した後、その表面にDLC膜を成膜しないせず、製作した。従来例39のラマンスペクトルは1332cm−1付近のダイヤモンドの鋭いピークと1580cm−1付近のグラファイトの鋭いピークのみが検出され、両ピーク付近にブロードなピークを示すDLCは観察されなかった。また、ダイヤモンド成分の(400)X線回折ピーク位置は高角側に0.1度シフトし、六方晶グラファイト成分の(008)X線回折ピーク位置はシフトしていなかった。従来例39のスクエアエンドミル3本の用いて実施例4と同一の条件で工具寿命を評価した結果、85m以内で外周刃の刃先摩耗量が0.05mmに達した。この結果、ダイヤモンド成分の(400)X線回折ピーク位置と六方晶グラファイトの(008)X線回折ピーク位置の両シフト量が同じであるダイヤモンド膜の表面にDLC膜を形成した本発明例22よりも工具寿命が1/2以下と短く、工具として劣っていることがわかった。即ち、ダイヤモンド膜の表面にDLC膜を形成した本発明例22〜38は、同じダイヤモンド膜の表面にDLC膜を形成していない従来例39に比べて、2倍以上工具寿命が優れていることがわかった。
【0021】
【発明の効果】
本発明を適用することによって、結晶性が良く耐摩耗性の優れたダイヤモンド膜表面の摺動性が高まることにより、耐摩耗性と摺動性の両者が優れ、格段に工具寿命の長い硬質炭素膜被覆工具を実現できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tool coated with a hard carbon film.
[0002]
[Prior art]
With the high hardness and light weight of the workpiece, there is an increasing trend to utilize cutting tools and wear-resistant members coated with a diamond film having high hardness and high thermal conductivity. In particular, diamond-coated tools are promising for processing aluminum alloys and graphite materials, and are being actively studied. Patent Documents 1 to 4 below disclose diamond coated tools.
[Patent Document 1] JP-A-8-259391 (Table 1 on page 9, Table 2 on page 10)
[Patent Document 2] JP-A-2001-179504 (Table 5 on page 5, Table 7 on page 7)
[Patent Document 3] JP-A-2001-328007 (Table 6 on page 6, Table 3 on page 7)
[Patent Document 4] JP-A-2003-25117 (page 2, claims 1 and 2)
[0003]
Patent Literature 1 discloses that the surface of the film is smoothed by using diamond having an X-ray diffraction peak intensity of (220) which is stronger than other peaks, thereby improving the slidability. However, when the crystallinity and slidability of only these diamond components are modified, a good balance of wear resistance and slidability of the entire hard film is not sufficiently achieved, and a sufficient tool as a coated tool is not obtained. There was a drawback that the life could not be obtained. Patent Literatures 2 and 3 disclose coating a hard carbon film containing both diamond having a strong (400) plane orientation and hexagonal graphite having a strong (008) plane index with an X-ray diffraction peak intensity. Tools with excellent tool life are disclosed. Patent Document 4 discloses a coated cutting tool combining a diamond coating film and a protective film having lubricity, and discloses a technique using a hard carbon film as the protective film.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to realize a coated tool having both excellent wear resistance and slidability by enhancing the slidability of the diamond film surface having good crystallinity and excellent wear resistance, An object of the present invention is to provide a hard carbon film-coated tool having a significantly longer tool life than conventional tools.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have made intensive studies to solve the above-mentioned problems. As a result, the surface of a cemented carbide material is coated with a diamond film, and the 2θ value of the X-ray diffraction peak of the (400) plane index of the diamond film is 0. The diamond film surface is coated with a diamond-like carbon film, and the 2θ value of the X-ray diffraction peak of the (008) plane index of the diamond film is low by 0.1 degree or more. The present inventors have found that a tool having an excellent tool life can be realized by using a hard carbon film-coated tool characterized by containing a hexagonal graphite component shifted to the corner side, and reached the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
[0006]
The present invention is a hard carbon film-coated tool characterized in that a diamond film is formed on a surface of a cemented carbide material and then the surface is coated with a diamond-like carbon (hereinafter referred to as DLC) film. As a result, a diamond film having high hardness and particularly excellent wear resistance is formed on the surface of a cemented carbide material having excellent toughness and wear resistance, and DLC having high sliding characteristics is formed on the surface. By forming the film, a hard carbon film-coated tool having excellent cutting characteristics and a long tool life can be realized. Generally, since the DLC film is formed at a low temperature of around 200 ° C., it has low adhesion to a substrate and a lower layer film, and has a disadvantage that it is easily peeled off when used as a cutting tool. However, in the present invention, the DLC film is formed on the surface of the diamond film made of the same carbon, so that the DLC film has excellent adhesion to the underlayer film, and the DLC film does not come off during the cutting process, and has particularly excellent sliding characteristics. Show. The formation of a diamond film, a DLC film, or the like on the substrate surface can be analyzed by X-ray diffraction, electron beam diffraction, Raman spectroscopy, or the like. Further, when the cross section of the film is analyzed by a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX), it can be confirmed from the fact that an amorphous carbon film is formed on the surface of the highly crystalline diamond film. .
[0007]
In the tool coated with a hard carbon film of the present invention, it is necessary that the 2θ value of the X-ray diffraction peak of the (400) plane index of the diamond film is shifted to a higher angle side by 0.1 degree or more. By doing so, the slidability of the diamond film is enhanced, and a hard carbon film-coated tool having excellent cutting characteristics can be realized in combination with the excellent wear resistance inherent in diamond. This is considered because the 2θ value of the X-ray diffraction peak of the (400) plane index was shifted to the higher angle side by 0.1 degree or more, so that the bondability with the DLC component and the hexagonal graphite component was increased. When the shift amount of the 2θ value is less than 0.1 degree, a disadvantage that the tool characteristics are deteriorated appears. This is probably because the bonding force between the diamond component and the DLC component or the hexagonal graphite component is reduced.
[0008]
The hard carbon film-coated tool of the present invention contains a hexagonal graphite component in which the 2θ value of the X-ray diffraction peak of the (008) plane index of the diamond film is shifted to the lower angle side by 0.1 ° or more. Is preferred. By doing so, the diamond film contains a hexagonal graphite component having excellent slidability and also has an excellent bonding property with the diamond component, so that wear resistance and sliding resistance are improved. The hard carbon film-coated tool, which is particularly excellent in both properties and is stable and has more excellent cutting characteristics, can be realized. This is because the 2θ value of the X-ray diffraction peak of the (008) plane index of the hexagonal graphite component is shifted to the lower angle side by 0.1 degree or more, and therefore, the atomic It is considered that there is interference such as sharing, and a strong bonding force acts between the diamond component and the graphite component. For this reason, both excellent wear resistance, which is a characteristic of diamond, and excellent sliding characteristics, which is a characteristic of graphite, are simultaneously obtained, and it is judged that excellent tool characteristics are exhibited. When the shift amount of the hexagonal graphite component is less than 0.1 degree, there is a disadvantage in that the tool characteristics are deteriorated. This is thought to be due to a decrease in the bonding force between the diamond component and the hexagonal graphite component.
An example of a hard carbon film-coated end mill which is a typical example of the hard carbon film-coated tool in the present invention will be described. In the coated tool of the present invention, the X-ray diffraction peak of diamond is identified using the X-ray diffraction data file No. 6-0675 of the JCPDS file, and the X-ray diffraction peak of hexagonal graphite is identified using the same file number 25-284. Was performed using the above data. In order to manufacture the diamond film of the coated tool of the present invention, a known CVD method such as a hot filament CVD method, a microwave CVD method, an rf plasma CVD method, and an ECR plasma CVD method can be used. Must be adjusted appropriately. In the study of the present inventors, the diamond (400) X-ray diffraction peak shifts to a higher angle side and the (008) X-ray diffraction peak of graphite shifts to a lower angle side as the substrate temperature during film formation is increased. I do. Further, as the CH 4 / H 2 ratio of the film forming gas is lowered, the amount of shift of the (400) X-ray diffraction peak of diamond toward the high angle side and the amount of shift of the (008) X-ray diffraction peak of graphite toward the low angle side are reduced. Has been found to be smaller. In order to manufacture the DLC film of the coated tool of the present invention, an rf plasma CVD method using a gas reaction, a microwave CVD method, an ECR plasma CVD method, or a physical vapor deposition (PVD) method using a carbon target is used. Although it can be used, it is preferable to form the film by a CVD method because higher adhesion can be obtained between the diamond film and the DLC film. The application of the present invention is not limited to a solid end mill type cutting tool, but may be an end mill type cutting tool, a milling tool, or a turning tool using a throw-away insert. Further, a wear-resistant material, a mold, a molten metal part, or the like coated with a hard carbon film may be used. In the coated tool of the present invention, the component of the hard carbon film is not limited to only carbon. It is permissible to include inevitable additives and impurities such as Co and W, for example, up to about several mass% within a range where the effects of the present invention are not lost. Next, the coated tool of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0010]
【Example】
(Example 1)
WC: 94% by mass, Co: 6% by mass, cemented carbide substrate for cutting tool of 6 mm in diameter, 2-flute ball end mill type cutting tool manufactured by sintering in the same lot, 10 mm x 10 mm, thickness A 5 mm rectangular parallelepiped substrate for analysis was set in a vacuum apparatus, and a diamond film having a thickness of about 8 μm was formed on the surface thereof by hot filament CVD. That is, by flowing an electric current through a tungsten filament disposed around the end mill, the tungsten filament is heated to about 2500 ° C. and mixed with CH 4 and H 2 having a CH 4 / H 2 ratio of 0.5 to 3%. A gas was flowed at a flow rate of 10 to 150 cm 3 / min, and a film was formed at a pressure of 1.33 to 13.3 kPa and a substrate temperature of 900 to 1200 ° C. By a rf plasma CVD method, C 2 H 2 gas and H 2 were flowed in a vacuum apparatus, and a DLC film having a thickness of 0.5 μm was formed at a gas pressure of 10.7 Pa, a substrate temperature of 200 ° C., and a substrate bias of 800 V. The X-ray diffraction patterns of the prepared samples were evaluated using the above-mentioned analysis substrate formed together with each sample. The X-ray diffraction apparatus manufactured by Rigaku Denki (Ltd.) (RU-200BH type), the wavelength λ by using the CuKa 1 line of 0.15405 nm, was determined by 2 [Theta]-theta scan technique. The measurement range of 2θ was 10 to 145 degrees, and the background noise was removed by software built in the apparatus. Table 1, 2 [Theta] value listed in the JCPDS file of each substance (2 [Theta] 0), the shift amount Δ2θ from standard 2 [Theta] 0 in plane index and the present invention Example 1 X-ray diffraction measurements and the measured 2θ (2θ-2θ 0 ) is also shown. Table 1 shows that the amount of shift between the (400) X-ray diffraction peak position of diamond and the (008) X-ray diffraction peak position of hexagonal graphite is particularly large. Since the DLC film is amorphous, but definite X-ray diffraction peaks were detected, the DLC film is actually deposited is broad near 1580 cm -1 and near 1360 cm -1 in the Raman spectrum It was confirmed from the fact that a peak was detected.
[0011]
[Table 1]
Figure 2004268201
[0012]
Table 2 summarizes the results of X-ray diffraction measurement and the tool life of the hard carbon film-coated tools of Examples 2 to 19 of the present invention produced in Example 1.
[0013]
[Table 2]
Figure 2004268201
[0014]
From Table 2, it can be seen that the shift amount Δ2θ of the (400) X-ray diffraction peak of diamond shows a positive value in all the samples of Invention Examples 2 to 19, and is shifted by 0.1 ° or more to the high angle side. Understand. The shift amount Δ2θ of the (008) X-ray diffraction peak of hexagonal graphite shows a negative value, indicating that the peak is shifted to the lower angle side. Here, the diamond (400) X-ray diffraction peak shifts to a higher angle side as the substrate temperature at the time of film formation is increased within the range of 900 to 1200 ° C., and the graphite (008) X-ray diffraction peak shifts to a lower angle. Shifted to the side. Further, as the CH 4 / H 2 ratio of the film-forming gas is lowered within the range of 0.5 to 3%, the shift amount of the (400) X-ray diffraction peak of diamond toward the high angle side and the (008) X-ray of graphite are increased. The shift amount of the diffraction peak to the lower angle side became smaller. The tool life of each of the inventive examples 2 to 19 is such that the graphite material is cut under the following conditions using each of the three inventive examples manufactured until the flank wear of the cutting edge of the outer peripheral edge reaches 0.1 mm. This is indicated by the cutting length.
Work material: Graphite (HS95)
Tool shape: Ball end mill (φ6, 2 flutes)
Tool rotation speed: 10,000 rotations / min
Cutting speed: 188m / min
Feeding speed: 2000 mm / min (0.1 mm / tooth)
Cut: 0.3mm × 0.3mm
Cutting oil: Abrasion resistance of a tool can be evaluated at an early stage by using a graphite material having a Shore hardness of HS95 as a work material without using it. The flank wear was measured using a stereo microscope with a magnification of 100 and a slide table with a resolution of 1 μm. From Table 2, it can be seen that Examples 2 to 19 of the present invention all have a long cuttable length of 710 m or more, and have excellent tool life. Further, when the shift amount of the (400) X-ray diffraction peak of diamond is 0.5 to 2.0 degrees on the high angle side, the cuttable length is 1430 m or more, twice or more, and an excellent tool life is obtained, When the angle is 1.0 to 1.5 degrees, the cuttable length is 2590 m or more, which is 1.8 times or more, which indicates that a more excellent tool life can be obtained. Further, when the shift amount of the (008) X-ray diffraction peak of hexagonal graphite is −0.1 to −1.5 degrees on the low angle side, the cuttable length is 1430 m or more, twice as long, and excellent tool life is obtained. When -0.5 to -1.0 degrees, the cuttable length is 2150 m or more, which is 1.5 times or more longer, indicating that a more excellent tool life can be obtained.
[0015]
(Example 2)
In order to clarify the effect of forming a diamond film on the surface of a cemented carbide material and further covering the DLC film, a cemented carbide substrate for a cutting tool of a ball end mill and a rectangular parallelepiped substrate for analysis were manufactured in the same lot as in Example 1. Was set in a vacuum apparatus, a diamond film was formed under the same conditions as in Example 1, and a conventional example 20 in which a DLC film was not formed on the surface was produced. Raman spectra of the conventional example 20 is only sharp peak of graphite near sharp peaks and 1580 cm -1 of the diamond near 1332 cm -1 is detected, DLC showing a broad peak in the vicinity of both peaks were observed. The position of the (400) X-ray diffraction peak of the diamond component was shifted by 0.1 degree to the higher angle side, and the position of the (008) X-ray diffraction peak of the hexagonal graphite component was not shifted. The tool life was evaluated under the same conditions as in Example 1 using three ball end mills of Conventional Example 20, and as a result, the wear amount of the outer peripheral edge reached 0.05 mm within 300 m. As a result, the DLC film was formed on the surface of the diamond film having the same shift amount between the (400) X-ray diffraction peak position of the diamond component and the (008) X-ray diffraction peak position of the hexagonal graphite. It was also found that the tool life was as short as 1/2 or less, which was inferior as a tool. That is, Examples 2 to 19 of the present invention in which the DLC film was formed on the surface of the diamond film had a tool life more than twice as long as that of Conventional Example 20 in which the DLC film was not formed on the surface of the same diamond film. I understand.
[0016]
(Example 3)
In the case where a diamond film is formed on the surface of a cemented carbide material and further coated with a DLC film, the diamond film in which the 2θ value of the (400) plane index X-ray diffraction peak shifts to a higher angle side is obtained. In order to clarify the influence on the tool life due to the presence or absence of both the component and the hexagonal graphite in which the 2θ value of the X-ray diffraction peak of the (008) plane index shifts to the low angle side, In Example 21, a cemented carbide substrate for a cutting tool and a rectangular parallelepiped substrate for analysis of a ball end mill having the same composition and shape as in Example 1 were set in a vacuum apparatus, and the surfaces thereof were heated by a hot filament CVD method. A hard carbon film having a thickness of 8 μm was formed. The film formation conditions are a tungsten filament temperature of about 2300 ° C., a mixed gas flow rate of CH 4 and H 2 having a carbon concentration of 4% of 150 cm 3 / min, a pressure of 13.3 kPa, and a substrate temperature of 800 ° C. On this surface, a DLC film having a thickness of 0.5 μm was formed under the same conditions as in Example 1. In the diamond film of Conventional Example 21, the 2θ value of the (400) plane index X-ray diffraction peak of the diamond component was 119.5 degrees, the shift amount to the high angle side was less than 0.1 degree, and the shift amount to the high angle side was small. No shift was observed. Further, confirmation that the DLC film is actually deposited is a broad peak was confirmed to be detected around 1580 cm -1 and near 1360 cm -1 in the Raman spectrum of the sample for analysis. After the cutting test, the cross section of the film was analyzed by SEM-EDX, and it was confirmed from the fact that an amorphous carbon film was formed on the surface of the highly crystalline diamond film. The tool life was evaluated under the same conditions as in Example 1 using three ball end mills of Conventional Example 21. As a result, the wear amount of the outer peripheral edge reached 0.05 mm within 460 m, and the tool life of Example 2 of the present invention was reduced. It stayed below 2/3. By comparing Inventive Example 2 with Conventional Example 21, a DLC film was formed on the surface of a diamond film in which the 2θ value of the (400) plane index X-ray diffraction peak was shifted to the higher angle side by 0.1 ° or more. The tool of Example 2 of the present invention has a tool life 1.6 times or more superior to the tool of Conventional Example 21 in which a DLC film is formed on the surface of a diamond film having a shift amount of 0.1 degree or less. all right.
[0017]
(Example 4)
WC: 95.5% by mass, Co: 4.5% by mass, diameter: 6 mm, 2-flute square end mill type cemented carbide substrate for cutting tool, 10 mm × 10 mm, 5 mm thick rectangular solid for analysis The substrate and the substrate were set in a vacuum apparatus, and a diamond film having a thickness of about 8 μm was formed on the surface thereof by hot filament CVD. That is, by flowing an electric current through a tungsten filament disposed around the end mill, the tungsten filament is heated to about 2500 ° C. and mixed with CH 4 and H 2 having a CH 4 / H 2 ratio of 0.5 to 3%. A film was formed at a pressure of 1.33 to 13.3 KPa and a substrate temperature of 900 to 1200 ° C. by flowing a gas at a flow rate of 10 to 150 cm 3 / min. By a rf plasma CVD method, C 2 H 2 gas and H 2 were flowed in a vacuum apparatus, and a 0.3 μm thick DLC film was formed at a gas pressure of 10.7 Pa, a substrate temperature of 200 ° C., and a substrate bias of 800 V. The X-ray diffraction pattern was measured under the same conditions as in Example 1 using the flat part at the tip of the edge of the square end mill as the sample surface. Since the flat portion at the tip of the edge of the square end mill has a small area, the portion other than the flat portion is removed by processing as much as possible, and by covering with vinyl tape, it is devised so as not to affect the X-ray diffraction pattern. Table 3 summarizes the results of X-ray diffraction measurement and the tool life of the hard carbon film-coated tools of Examples 22 to 38 of the present invention produced in Example 4.
[0018]
[Table 3]
Figure 2004268201
[0019]
As shown in Table 3, all of the samples of Examples 22 to 38 of the present invention have a diamond component in which the 2θ value of the X-ray diffraction peak of the (400) plane index is shifted by 0.1 degree or more toward the high angle side in the hard carbon film. 008) It can be seen that the 2θ value of the X-ray diffraction peak of the plane index is composed of both hexagonal graphites shifted to the lower angle side by 0.1 ° or more. Further, it is actually deposition DLC film, broad peak Raman spectra near 1580 cm -1 and near 1360 cm -1 of the analytical sample was confirmed to be detected. After the cutting test, the cross section of the film was analyzed by SEM-EDX, and it was confirmed from the fact that an amorphous carbon film was formed on the surface of the highly crystalline diamond film. The tool life of the example of the present invention was evaluated under the following conditions by using each of the manufactured three square end mills of examples 22 to 38 of the present invention.
Work material: Al-9 mass% Si alloy Tool shape: Square end mill (φ6, 2 flutes)
Tool rotation speed: 20000 revolutions / min Cutting speed: 500 m / min Feeding speed: 7.2 m / min (0.18 mm / tooth)
Cut: Ad15mm × Rd0.8mm
Cutting oil: The tool life was not used, and the tool life was indicated by the length of cutting until the flank wear of the cutting edge reached 0.05 mm. Table 3 also shows the tool life. From Table 3, it can be seen that Examples 22 to 38 of the present invention all have a long cuttable length of 180 m or more and have an excellent tool life. In addition, when the shift amount of the (400) X-ray diffraction peak of diamond is 0.5 to 2.0 degrees on the high angle side, the cuttable length is 270 m or more and 1.5 times longer, and an excellent tool life is obtained. When the angle is 1.0 to 1.5 degrees, the cuttable length is 498 m or more, which is 1.8 times or more, which indicates that a more excellent tool life can be obtained. When the shift amount of the (008) X-ray diffraction peak of hexagonal graphite is 0.1 to 1.5 degrees on the low angle side, the cuttable length is as long as 270 m or more, and excellent tool life is obtained. At 0.5 to 1.0 degree, the cuttable length is 450 m or more, which is 1.6 times or more longer, and it can be seen that a more excellent tool life can be obtained.
[0020]
(Example 5)
In order to clarify the effect of forming a diamond film on the surface of a cemented carbide material and covering the DLC film, as a conventional example 39, a cemented carbide substrate for a square end mill type cutting tool manufactured in the same lot as in Example 4 And a rectangular parallelepiped substrate for analysis were set in a vacuum apparatus, a diamond film was formed under the same conditions as in Example 4, and a DLC film was not formed on the surface of the diamond film. Raman spectra of conventional 39 only sharp peak of graphite near sharp peaks and 1580 cm -1 of the diamond near 1332 cm -1 is detected, DLC showing a broad peak in the vicinity of both peaks were observed. The position of the (400) X-ray diffraction peak of the diamond component was shifted by 0.1 degree to the higher angle side, and the position of the (008) X-ray diffraction peak of the hexagonal graphite component was not shifted. The tool life was evaluated under the same conditions as in Example 4 using three square end mills of Conventional Example 39, and as a result, the wear amount of the outer peripheral edge reached 0.05 mm within 85 m. As a result, the DLC film was formed on the surface of the diamond film having the same shift amount between the (400) X-ray diffraction peak position of the diamond component and the (008) X-ray diffraction peak position of the hexagonal graphite. It was also found that the tool life was as short as 1/2 or less, which was inferior as a tool. That is, Examples 22 to 38 of the present invention in which the DLC film was formed on the surface of the diamond film had a tool life twice or more superior to that of Conventional Example 39 in which the DLC film was not formed on the surface of the same diamond film. I understood.
[0021]
【The invention's effect】
By applying the present invention, the slidability of the diamond film surface, which has good crystallinity and excellent wear resistance, is enhanced, so that both the wear resistance and the slidability are excellent, and the hard carbon having a remarkably long tool life. A film-coated tool can be realized.

Claims (2)

超硬合金材の表面にダイヤモンド膜を被覆し、該ダイヤモンド膜の(400)面指数のX線回折ピークの2θ値が0.1度以上高角側にシフトしており、該ダイヤモンド膜表面にダイヤモンドライクカーボン膜を被覆していることを特徴とする硬質炭素膜被覆工具。The surface of the cemented carbide material is coated with a diamond film, and the 2θ value of the X-ray diffraction peak of the (400) plane index of the diamond film is shifted to the higher angle side by 0.1 degree or more. A hard carbon film coated tool characterized by being coated with a like carbon film. 請求項1に記載の硬質炭素膜被覆工具において、該ダイヤモンド膜の(008)面指数のX線回折ピークの2θ値が0.1度以上低角側にシフトしている六方晶グラファイト成分を含有していることを特徴とする硬質炭素膜被覆工具。2. The tool coated with a hard carbon film according to claim 1, wherein the diamond film contains a hexagonal graphite component in which the 2θ value of the X-ray diffraction peak of the (008) plane index is shifted to the lower angle side by 0.1 ° or more. A hard carbon film-coated tool characterized in that:
JP2003062702A 2003-03-10 2003-03-10 Hard carbon film-coated tool Pending JP2004268201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003062702A JP2004268201A (en) 2003-03-10 2003-03-10 Hard carbon film-coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003062702A JP2004268201A (en) 2003-03-10 2003-03-10 Hard carbon film-coated tool

Publications (1)

Publication Number Publication Date
JP2004268201A true JP2004268201A (en) 2004-09-30

Family

ID=33124494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003062702A Pending JP2004268201A (en) 2003-03-10 2003-03-10 Hard carbon film-coated tool

Country Status (1)

Country Link
JP (1) JP2004268201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229755A (en) * 2007-03-19 2008-10-02 Ookouchi Kinzoku Kk Cutting tool having dlc coating and its manufacturing method
JP2015157338A (en) * 2014-02-25 2015-09-03 神奈川県 Cutting tool and cutting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229755A (en) * 2007-03-19 2008-10-02 Ookouchi Kinzoku Kk Cutting tool having dlc coating and its manufacturing method
JP2015157338A (en) * 2014-02-25 2015-09-03 神奈川県 Cutting tool and cutting method

Similar Documents

Publication Publication Date Title
JP2007152491A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting
WO2017179220A1 (en) Surface-coated cutting tool and manufacturing method therefor
JP2020006487A (en) Surface cutting tool of which hard coating layer exhibits excellent chipping resistance
JP2015101747A (en) Cemented carbide and surface-coated cutting tool prepared using the same
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2006297519A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting
JP5041222B2 (en) Surface coated cutting tool
JP4967396B2 (en) Si-containing composite nitride film and coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2004268201A (en) Hard carbon film-coated tool
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004243494A (en) Surface coated cutting tool
JP2001179504A (en) Hard carbon film-coated tool
JP4845490B2 (en) Surface coated cutting tool
JP6759536B2 (en) Cover cutting tool
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP5476842B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP5099495B2 (en) Surface coated cutting tool
WO2020213263A1 (en) Cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2009095916A (en) Surface-coated cutting tool
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061006