JP2004268070A - Hot forging method for reinforcing surface and hot forged parts reinforcing surface - Google Patents

Hot forging method for reinforcing surface and hot forged parts reinforcing surface Download PDF

Info

Publication number
JP2004268070A
JP2004268070A JP2003059882A JP2003059882A JP2004268070A JP 2004268070 A JP2004268070 A JP 2004268070A JP 2003059882 A JP2003059882 A JP 2003059882A JP 2003059882 A JP2003059882 A JP 2003059882A JP 2004268070 A JP2004268070 A JP 2004268070A
Authority
JP
Japan
Prior art keywords
forging
forged
hot
nitride
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003059882A
Other languages
Japanese (ja)
Inventor
Takumi Hijii
巧 肘井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003059882A priority Critical patent/JP2004268070A/en
Publication of JP2004268070A publication Critical patent/JP2004268070A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain hot forged parts excellent in wear resistance without sacrificing hot workability and performing special surface treatment. <P>SOLUTION: After applying a slurry S1 containing aluminum powder to the forming surface in the impression 5 of a preheated lower die 3 and the forming surface in the impression 6 of a preheated upper die 4 and applying a slurry S2 containing a nitride such as BN, Si<SB>3</SB>N<SB>4</SB>to the surface of a heated base stock ( ferrous material ) 1 to be forged, by performing striking and promoting the reaction between the nitride and the aluminum under high temperature and high pressure, AlN is generated in the outer layer part of the forged parts. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、熱間鍛造方法に係り、より詳しくは熱間鍛造と同時に表面を強化する表面強化熱間鍛造方法とこの熱間鍛造により製造された表面強化熱間鍛造部品に関する。
【0002】
【従来の技術】
近年、製造コストの低減を目的に、熱間鍛造のままでも高強度、高靭性を有する、いわゆる非調質鍛造部品の開発が進められている。例えば、特許文献1には、Siを多め(1〜3重量%)に添加し、鍛造後に急冷してマルテンサイト組織とすることが、特許文献2には、Bを添加すると共に、C、Si、Mn、Cr、Mo等で決まる炭素当量(Ceq)を適当に設定して、ベイナイト組織とすることが記載されている。
【0003】
ところで、部品によっては、耐摩耗性重視で表層部のみを高硬度にすればよいものもあり、このような部品を得るには、従来一般には、熱間鍛造後に耐摩耗性向上を狙った表面処理を行うようにしていた。この場合、表面処理方法としては、表面焼入処理、浸炭処理、窒化処理、被覆処理等、種々の方法があるが、優れた耐摩耗性を確保するには、PVD法やCVD法により窒化アルミニウム(AlN)などの硬質セラミックス皮膜を形成する被覆処理が最も適している(例えば、特許文献3、特許文献4等参照)。
【0004】
【特許文献1】
特開平5−43979号公報
【特許文献2】
特開平5−279788号公報
【特許文献3】
特開平8−296034号公報
【特許文献4】
特開2000−205802号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記したように非調質を前提とする強化策によれば、合金元素の添加量を増加させたり、添加する合金元素の数を増加させる必要があるため、鍛造素材の熱間加工性が悪化する。この熱間加工性の低下は、強度アップのための型製作費の上昇、必要鍛造圧の増圧によるエネルギー費の増大、型寿命の低下による型修理費の増大等を招き、結果として製造コストを上昇させる大きな要因になる。
また、上記硬質セラミックス皮膜を形成する被覆処理によれば、真空プロセスであるPVD法やCVD法を利用しなければならないため、処理に多大のコストがかかり、量産できないこともあって、その適用範囲は限られたものとなる。
【0006】
本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、熱間加工性を犠牲にすることなく、しかも特別の表面処理を行うことなく、耐摩耗性に優れた熱間鍛造部品を得ることができるようにし、もって生産性の向上並びに生産コストの低減に大きく寄与する表面強化熱間鍛造方法を提供し、併せて耐摩耗性と靭性とに優れた表面強化熱間鍛造部品を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するため、表面強化熱間鍛造方法としての第1の発明は、非アルミニウム系材料の熱間鍛造方法であって、鍛造素材の表面と鍛造型の成形面との何れか一方に、アルミニウム粉末を含むスラリーを、何れか他方に窒化物粉末を含むスラリーをそれぞれ塗布した後、型打ちを行い、鍛造品の表層部にAlN層を生成させることを特徴とする。
この第1の発明においては、予め鍛造温度まで加熱された鍛造素材並びに予熱された鍛造型の熱により、これらに塗布されたスラリー中の水分が急速に蒸発し、アルミニウム粒子および窒化物粒子が、鍛造素材の表面または鍛造型の成形面に析出する。したがって、その後、型打ちすると、アルミニウム粒子と窒化物粒子とが高温および高圧下で接触して急速に化学反応を起こし、これにより鍛造部品の表層部には硬質のAlN層が生成される。
また、表面強化熱間鍛造方法としての第2の発明は、アルミニウム系材料の熱間鍛造方法であって、鍛造型の成形面に、窒化物粉末を含むスラリーを塗布した後、型打ちを行い、鍛造品の表層部にAlN層を生成させることを特徴とする。
この第2の発明においては、予熱された鍛造型の熱により、これに塗布されたスラリー中の水分が急速に蒸発し、窒化物粒子が鍛造型の成形面に析出する。したがって、その後、型打ちすると、鍛造温度に加熱された鍛造素材であるアルミニウムと前記鍛造型の成形面に析出した窒化物粒子とが高温および高圧下で接触して急速に化学反応を起こし、これにより鍛造部品の表層部には硬質のAlN層が生成される。
本第1および第2の発明において、上記窒化物は、アルミニウムと反応してAlNを生成するものあれば、特にその種類を問わない。このような窒化物としては、窒化ボロン(BN)、窒化シリコン(Si)等がある。
上記方法により製造された熱間鍛造部品は、表層部に硬質のAlN層が生成される一方で、内部は未硬化のままで残るので、耐摩耗性および靭性に優れたものとなる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて説明する。
図1は、本発明に係る表面強化熱間鍛造方法の一つの実施の形態を示したものである。同図中、1は鍛造素材、2は鍛造型である。鍛造型2は、下型3とこの下型3に対向配置された上型4とからなっており、上型4は、駆動手段により下型3に対して接近離間するようになっている。下型3および上型4の対向面には、インプレッション(型彫り部)5、6が設けられており、鍛造に際しては、これらインプレッション5、6の間で鍛造素材1が押し潰され、所定形状の鍛造部品10(図2)が得られるようになる。
【0009】
本実施の形態は、鉄系材料の熱間鍛造を行うもので、鍛造に際しては、鍛造素材1が加熱炉内で所定の鍛造温度に加熱され、一方、鍛造型2を構成する下型3および上型4が適当な外熱手段(ガスバーナ等)を用いて所定温度に予熱される。鍛造素材1の加熱温度は、鋼種に応じて適宜温度が選択され、例えば、炭素鋼乃至低合金鋼の場合は1050〜1150℃程度となる。また、鍛造型2の予熱温度としては、一般的な予熱温度より高めの450〜550℃程度を選択するのが望ましい。
【0010】
しかして、本実施の形態においては、アルミニウム粉末を含むスラリーS1とBN、Si等の窒化物を含むスラリーS2とを別途用意する。そして、鍛造に際しては、アルミニウム粉末を含むスラリーS1を、予熱を終えた下型3のインプレッション5内の成形面と上型4のインプレッション6内の成形面とに塗布すると共に、窒化物を含むスラリーS2を、加熱を終えた鍛造素材1の表面に塗布する。なお、これらスラリーS1、S2の塗布方法は任意であり、スプレー方式で塗布しても、はけ塗り方式で塗布してもよい。このようにスラリーS1、S2を塗布すると、鍛造型2(下型3、上型4)の熱および鍛造素材1の熱で、スラリーS1、S2中の水分が急速に蒸発し、下型3、上型4のインプレッション5、6内の成形面にはアルミニウム粒子が、鍛造素材1の表面には窒化物粒子がそれぞれ析出する。
【0011】
上記スラリーS1、S2の塗布が終了したら、鍛造素材1を下型3のインプレッション5上に載置し、続いて上型4を下降させて型打ちを行う。すると、インプレッション5、6の間で鍛造素材1が押し潰され、これと同時に、下型3、上型4のインプレッション5、6内の成形面に析出している高温のアルミニウム粒子と鍛造素材1の表面に析出している高温の窒化物粒子とが相互に高圧力で接触する。この結果、窒化物としてBNを選択した場合は下記(1)式の化学反応が、窒化物としてSiを選択した場合は下記(2)式の反応がそれぞれ急速に起こる。
2BN+3Al→2AlN+AlB (1)
Si+Al→AlN+3SiN (2)
【0012】
すなわち、鍛造素材1と鍛造型2との界面でAlNの生成反応が急速に起こり、この結果、図2に示すように、鍛造成形後の鍛造部品10の表層部には、硬質のAlN層11が適当厚さ(数十μm)に形成される。したがって、このようにして得られた鍛造部品10は、特別の表面処理(被覆処理)を行わなくても耐摩耗性に著しく優れたものとなる。一方、このような鍛造部品10は、内部の硬さが低いので、十分高い靭性を有し、結果として耐摩耗性および靭性共に優れた表面強化熱間鍛造部品が効率よく製造される。
【0013】
なお、上記実施の形態においては、アルミニウム粉末を含むスラリーS1を鍛造型2に、窒化物を含むスラリーS2を鍛造素材1にそれぞれ塗布するようにしたが、この塗布の対象は逆、すなわち、アルミニウム粉末を含むスラリーS1を鍛造素材1に、窒化物を含むスラリーS2を鍛造型2にそれぞれ塗布するようにしてもよい。
また、これらスラリーS1、S2の塗布は、鍛造部品に対して表面硬化を必要する部分に対応して、鍛造素材1および鍛造型2の必要箇所に部分的に塗布してもよいことはもちろんである。この場合は、下型3だけへの塗布、または上型4だけへの塗布も含まれる。
さらに、上記実施の形態においては、鍛造素材1として鉄系材料を用いたが、この実施の形態で用いられる鍛造素材1は、アルミニウム系以外の材料すなわち非アルミニウム系材料であれば任意であり、鉄系材料以外にもチタン系材料、銅系材料等を選択することができる。
【0014】
ここで、アルミニウム系材料の熱間鍛造を行う場合は、BN、Si等の窒化物を含むスラリーS2のみを下型3のインプレッション5内の成形面と上型4のインプレッション6内の成形面とに塗布すればよい。この場合は、型打ちと同時に、下型3、上型4のインプレッション5、6内の成形面に析出している高温の窒化物粒子と鍛造素材1のアルミニウムとの間で、上記した(1)式または(2)式の反応が起こり、上記同様に鍛造成形後の鍛造部品の表層部には、硬質のAlN層11(図2)が適当厚さに形成される。この場合は、鍛造素材にスラリーを塗布する必要がないので、非アルミニウム系材料に比べて鍛造作業性は向上する。
【0015】
【実施例】
実施例1
アルミニウム粉末を90重量%含むスラリーとBN粉末を10重量%含むスラリーとを用意し、S35C炭素鋼からなる直径85mmの棒材を鍛造素材として用い、上記実施の形態と同様(図1)、アルミニウム粉末を含むスラリーは、500℃に予熱を終えた下型3および上型4のインプレッション5、6内の成形面とに塗布し、窒化物を含むスラリーは、1100℃に加熱を終えた鍛造素材の表面に塗布し、その後、断面縮小率40%となるように熱間鍛造を行った。そして、熱間鍛造後、得られた鍛造部品から試験片を採取し、その表面硬さをマイクロビッカース硬度計で測定した。
図3は、鍛造部品の表面硬さの測定結果を鍛造素材の表面硬さと対比して示したものである。これより、本発明の方法により得られた鍛造部品の表面硬さは、HV1000程度となっており、鍛造素材の硬さHV200〜240と比べて著しく硬化していることが明らかである。
【0016】
実施例2
BN粉末を10重量%含むスラリーを用意し、6061アルミニウム合金からなる直径85mmの棒材を鍛造素材として用い、450℃に予熱を終えた下型3および上型4のインプレッション5、6内の成形面に前記スラリーを塗布し、500℃に加熱された鍛造素材を断面縮小率40%となるように熱間鍛造を行った。そして、熱間鍛造後、得られた鍛造部品から試験片を採取し、その表面硬さをマイクロビッカース硬度計で測定した。
図4は、鍛造部品の表面硬さの測定結果を鍛造素材の表面硬さと対比して示したものである。これより、本発明の方法により得られた鍛造部品の表面硬さは、HV1000近い値となっており、鍛造素材の硬さHV100〜120と比べて著しく硬化していること明らかである。
【0017】
【発明の効果】
以上、説明したように、本発明に係る表面強化熱間鍛造方法によれば、窒化物粉末を含むスラリーを鍛造素材または鍛造型に塗布し、さらに必要によりアルミニウム粉末を含むスラリーを鍛造素材または鍛造型に塗布するという簡単な処理で、鍛造部品の表層部に硬質のAlN層を生成させることができ、鍛造素材の高級化(高合金化)や特別の表面処理が不要になって、耐摩耗性および靭性に優れた熱間鍛造部品を高能率にかつ低コストで得ることができるようになり、その適用範囲は著しく拡大する。
【図面の簡単な説明】
【図1】本発明に係る表面強化熱間鍛造方法の一つの実施の形態を示す模式図である。
【図2】本熱間鍛造方法で得られた表面強化熱間鍛造部品の状態を示す模式図である。
【図3】鉄系材料を対象に本発明の方法を実施して得られた鍛造品の表面硬さの測定結果を鍛造素材の表面硬さと対比して示すグラフである。
【図4】アルミニウム系材料を対象に本発明の方法を実施して得られた鍛造品の表面硬さの測定結果を鍛造素材の表面硬さと対比して示すグラフである。
【符号の説明】
1 鍛造素材
2 鍛造型
3 下型
4 上型
5、6 インプレッション(成形面)
10 鍛造部品
11 AlN層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hot forging method, and more particularly, to a surface strengthening hot forging method for strengthening a surface simultaneously with hot forging, and a surface strengthened hot forged part manufactured by the hot forging.
[0002]
[Prior art]
In recent years, for the purpose of reducing manufacturing costs, development of so-called non-heat treated forged parts having high strength and high toughness even in hot forging has been promoted. For example, in Patent Literature 1, a large amount (1 to 3% by weight) of Si is added, and after forging, rapid cooling is performed to obtain a martensitic structure. In Patent Literature 2, B is added, and C and Si are added. , Mn, Cr, Mo and the like are described as appropriately setting a carbon equivalent (Ceq) to obtain a bainite structure.
[0003]
By the way, some parts only have to have a high hardness only in the surface layer in order to emphasize wear resistance. To obtain such a part, conventionally, generally, a surface for improving wear resistance after hot forging is used. Processing was performed. In this case, there are various surface treatment methods such as a surface quenching treatment, a carburizing treatment, a nitriding treatment, and a coating treatment. In order to ensure excellent wear resistance, aluminum nitride is formed by a PVD method or a CVD method. A coating process for forming a hard ceramic film such as (AlN) is most suitable (for example, see Patent Documents 3 and 4).
[0004]
[Patent Document 1]
JP-A-5-43979 [Patent Document 2]
JP-A-5-279788 [Patent Document 3]
JP-A-8-296034 [Patent Document 4]
JP 2000-205802 A
[Problems to be solved by the invention]
However, as described above, according to the strengthening measure on the premise of non-heat treatment, it is necessary to increase the amount of alloying elements or increase the number of alloying elements to be added. Worsens. This decrease in hot workability leads to an increase in mold manufacturing costs for increasing strength, an increase in energy costs due to an increase in required forging pressure, and an increase in mold repair costs due to a decrease in mold life. Will be a major factor.
Further, according to the coating process for forming the hard ceramic film, since a PVD method or a CVD method, which is a vacuum process, must be used, a large cost is required for the process, and mass production cannot be performed. Is limited.
[0006]
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to reduce wear resistance without sacrificing hot workability and without performing special surface treatment. Provides a surface-reinforced hot forging method that enables excellent hot forged parts to be obtained, thereby greatly contributing to improved productivity and reduced production costs. In addition, the surface has excellent wear resistance and toughness. It is to provide a reinforced hot forged part.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first invention as a surface strengthening hot forging method is a hot forging method of a non-aluminum-based material, wherein one of a surface of a forged material and a forming surface of a forging die is formed. After applying a slurry containing an aluminum powder and a slurry containing a nitride powder to one of the other, stamping is performed to form an AlN layer on the surface layer of the forged product.
In the first invention, the water in the slurry applied to the forging material heated in advance to the forging temperature and the heat of the preheated forging die rapidly evaporates, and aluminum particles and nitride particles are Precipitates on the surface of the forging material or the molding surface of the forging die. Therefore, when subsequently stamped, the aluminum particles and the nitride particles come into contact with each other at high temperature and high pressure to cause a rapid chemical reaction, thereby forming a hard AlN layer on the surface of the forged part.
The second invention as a surface strengthening hot forging method is a hot forging method for an aluminum-based material, in which a slurry containing a nitride powder is applied to a molding surface of a forging die, and then a die is formed. And forming an AlN layer on the surface layer of the forged product.
In the second invention, the heat of the preheated forging die causes the water in the slurry applied thereto to evaporate rapidly, and nitride particles precipitate on the molding surface of the forging die. Therefore, after that, when stamping, aluminum, which is a forging material heated to the forging temperature, and nitride particles precipitated on the molding surface of the forging die come into contact with each other under high temperature and high pressure, causing a rapid chemical reaction. As a result, a hard AlN layer is generated on the surface layer of the forged part.
In the first and second inventions, the type of the nitride is not particularly limited as long as it reacts with aluminum to generate AlN. Examples of such a nitride include boron nitride (BN) and silicon nitride (Si 3 N 4 ).
The hot forged part manufactured by the above method has a hard AlN layer formed on the surface layer portion, while the inside remains unhardened, and thus has excellent wear resistance and toughness.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows one embodiment of the surface strengthening hot forging method according to the present invention. In the figure, 1 is a forged material, and 2 is a forging die. The forging die 2 includes a lower die 3 and an upper die 4 opposed to the lower die 3, and the upper die 4 is moved toward and away from the lower die 3 by driving means. Impressions (sculpted portions) 5 and 6 are provided on opposing surfaces of the lower mold 3 and the upper mold 4, and during forging, the forged material 1 is crushed between the impressions 5 and 6 to have a predetermined shape. Of the forged part 10 (FIG. 2).
[0009]
In the present embodiment, hot forging of an iron-based material is performed. In forging, a forging material 1 is heated to a predetermined forging temperature in a heating furnace, while a lower die 3 and a lower die 3 constituting a forging die 2 are formed. The upper mold 4 is preheated to a predetermined temperature using a suitable external heating means (a gas burner or the like). The heating temperature of the forging material 1 is appropriately selected according to the type of steel. For example, in the case of carbon steel or low alloy steel, it is about 1050 to 1150 ° C. Further, as the preheating temperature of the forging die 2, it is desirable to select about 450 to 550 ° C. which is higher than a general preheating temperature.
[0010]
Thus, in the present embodiment, a slurry S1 containing aluminum powder and a slurry S2 containing nitride such as BN or Si 3 N 4 are separately prepared. Then, at the time of forging, the slurry S1 containing the aluminum powder is applied to the molding surface in the impression 5 of the lower mold 3 and the molding surface in the impression 6 of the upper mold 4 which have been preheated, and the slurry containing nitride is applied. S2 is applied to the surface of the forged material 1 that has been heated. The method of applying these slurries S1 and S2 is arbitrary, and may be applied by a spray method or a brushing method. When the slurries S1 and S2 are applied in this manner, the water in the slurries S1 and S2 is rapidly evaporated by the heat of the forging die 2 (the lower die 3 and the upper die 4) and the heat of the forging material 1, and the lower die 3 and the Aluminum particles precipitate on the molding surfaces in the impressions 5 and 6 of the upper mold 4, and nitride particles precipitate on the surface of the forged material 1.
[0011]
When the application of the slurries S1 and S2 is completed, the forged material 1 is placed on the impression 5 of the lower die 3, and then the upper die 4 is lowered to perform stamping. Then, the forged material 1 is crushed between the impressions 5 and 6, and at the same time, the high-temperature aluminum particles precipitated on the molding surfaces in the impressions 5 and 6 of the lower mold 3 and the upper mold 4 and the forged material 1 And high-temperature nitride particles precipitated on the surface of the substrate contact each other at a high pressure. As a result, when BN is selected as the nitride, the chemical reaction of the following formula (1) rapidly occurs, and when Si 3 N 4 is selected as the nitride, the reaction of the following formula (2) occurs rapidly.
2BN + 3Al → 2AlN + AlB 2 (1)
Si 3 N 4 + Al → AlN + 3SiN (2)
[0012]
That is, an AlN generation reaction occurs rapidly at the interface between the forging material 1 and the forging die 2, and as a result, as shown in FIG. 2, a hard AlN layer 11 is formed on the surface layer of the forged part 10 after forging. Is formed to an appropriate thickness (several tens of μm). Therefore, the forged part 10 obtained in this way has a remarkably excellent wear resistance without performing a special surface treatment (coating treatment). On the other hand, since such a forged part 10 has a low internal hardness, it has sufficiently high toughness, and as a result, a surface-reinforced hot forged part excellent in both wear resistance and toughness is efficiently manufactured.
[0013]
In the above-described embodiment, the slurry S1 containing aluminum powder is applied to the forging die 2 and the slurry S2 containing nitride is applied to the forging material 1, respectively. The slurry S1 containing the powder may be applied to the forging material 1 and the slurry S2 containing the nitride may be applied to the forging die 2, respectively.
In addition, the slurry S1 and S2 may be partially applied to necessary portions of the forging material 1 and the forging die 2, corresponding to portions requiring surface hardening of the forged part. is there. In this case, application to only the lower mold 3 or application to only the upper mold 4 is included.
Further, in the above-described embodiment, an iron-based material is used as the forging material 1. However, the forging material 1 used in this embodiment is arbitrary as long as it is a material other than an aluminum-based material, that is, a non-aluminum-based material. In addition to iron-based materials, titanium-based materials, copper-based materials, and the like can be selected.
[0014]
Here, when hot forging of an aluminum-based material is performed, only the slurry S2 containing a nitride such as BN or Si 3 N 4 is applied to the molding surface in the impression 5 of the lower mold 3 and the slurry 6 in the impression 6 of the upper mold 4. What is necessary is just to apply to a molding surface. In this case, at the same time as the stamping, between the high-temperature nitride particles precipitated on the molding surfaces in the impressions 5 and 6 of the lower mold 3 and the upper mold 4 and the aluminum of the forged material 1, the above-mentioned (1) The reaction of formula (2) or formula (2) occurs, and a hard AlN layer 11 (FIG. 2) is formed to an appropriate thickness on the surface layer of the forged part after forging similarly to the above. In this case, there is no need to apply a slurry to the forging material, so that the forging workability is improved as compared with a non-aluminum-based material.
[0015]
【Example】
Example 1
A slurry containing 90% by weight of aluminum powder and a slurry containing 10% by weight of BN powder were prepared, and a bar made of S35C carbon steel having a diameter of 85 mm was used as a forging material. The slurry containing the powder is applied to the molding surfaces in the impressions 5 and 6 of the lower mold 3 and the upper mold 4 which have been preheated to 500 ° C., and the slurry containing the nitride has been heated to 1100 ° C. Then, hot forging was performed so that the cross-sectional reduction ratio was 40%. Then, after hot forging, a test piece was sampled from the obtained forged part, and its surface hardness was measured with a micro-Vickers hardness meter.
FIG. 3 shows the measurement results of the surface hardness of the forged part in comparison with the surface hardness of the forged material. From this, it is clear that the surface hardness of the forged part obtained by the method of the present invention is about HV1000, which is significantly harder than the hardness HV200 to 240 of the forged material.
[0016]
Example 2
A slurry containing 10% by weight of BN powder was prepared, and a bar made of a 6061 aluminum alloy having a diameter of 85 mm was used as a forging material. The lower mold 3 and the upper mold 4 which had been preheated to 450 ° C. were formed in the impressions 5 and 6. The slurry was applied to the surface, and hot forging was performed on the forged material heated to 500 ° C. so that the cross-sectional reduction ratio was 40%. Then, after hot forging, a test piece was sampled from the obtained forged part, and its surface hardness was measured with a micro-Vickers hardness meter.
FIG. 4 shows the measurement results of the surface hardness of the forged part in comparison with the surface hardness of the forged material. From this, it is apparent that the surface hardness of the forged part obtained by the method of the present invention is a value close to HV1000, and is significantly harder than the hardness HV100 to 120 of the forged material.
[0017]
【The invention's effect】
As described above, according to the surface strengthening hot forging method according to the present invention, the slurry containing the nitride powder is applied to the forging material or the forging die, and the slurry containing the aluminum powder is further forged, if necessary. With a simple process of applying to the mold, a hard AlN layer can be formed on the surface layer of the forged part, eliminating the need for upgrading (high alloying) and special surface treatment of the forged material, and abrasion resistance. Hot forged parts having excellent properties and toughness can be obtained with high efficiency and at low cost, and the range of application is remarkably expanded.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a surface strengthening hot forging method according to the present invention.
FIG. 2 is a schematic view showing a state of a surface-reinforced hot forged part obtained by the present hot forging method.
FIG. 3 is a graph showing a measurement result of a surface hardness of a forged product obtained by performing a method of the present invention on an iron-based material, in comparison with a surface hardness of a forged material.
FIG. 4 is a graph showing the results of measuring the surface hardness of a forged product obtained by performing the method of the present invention on an aluminum-based material, in comparison with the surface hardness of the forged material.
[Explanation of symbols]
1 Forging material 2 Forging die 3 Lower die 4 Upper die 5, 6 Impression (molding surface)
10 Forged parts 11 AlN layer

Claims (5)

非アルミニウム系材料の熱間鍛造方法であって、鍛造素材の表面と鍛造型の成形面との何れか一方に、アルミニウム粉末を含むスラリーを、何れか他方に窒化物粉末を含むスラリーをそれぞれ塗布した後、型打ちを行い、鍛造品の表層部にAlN層を生成させることを特徴とする表面強化熱間鍛造方法。A hot forging method for a non-aluminum material, in which a slurry containing an aluminum powder is applied to one of a surface of a forged material and a molding surface of a forging die, and a slurry containing a nitride powder is applied to the other. And forming an AlN layer on the surface layer of the forged product after stamping. アルミニウム系材料の熱間鍛造方法であって、鍛造型の成形面に、窒化物粉末を含むスラリーを塗布した後、型打ちを行い、鍛造品の表層部にAlN層を生成させることを特徴とする表面強化熱間鍛造方法。A hot forging method for an aluminum-based material, comprising applying a slurry containing a nitride powder to a molding surface of a forging die, performing stamping, and forming an AlN layer on a surface layer of the forged product. Surface strengthening hot forging method. 窒化物が、BNであることを特徴とする請求項1または2に記載の表面強化熱間鍛造方法。The surface strengthening hot forging method according to claim 1, wherein the nitride is BN. 窒化物が、Siであることを特徴とする請求項1または2に記載の表面強化熱間鍛造方法。The surface strengthening hot forging method according to claim 1, wherein the nitride is Si 3 N 4 . 請求項1乃至4の何れか1項に記載の熱間鍛造方法により製造されたことを特徴とする表面強化熱間鍛造部品。A surface-reinforced hot forged part produced by the hot forging method according to any one of claims 1 to 4.
JP2003059882A 2003-03-06 2003-03-06 Hot forging method for reinforcing surface and hot forged parts reinforcing surface Pending JP2004268070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003059882A JP2004268070A (en) 2003-03-06 2003-03-06 Hot forging method for reinforcing surface and hot forged parts reinforcing surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003059882A JP2004268070A (en) 2003-03-06 2003-03-06 Hot forging method for reinforcing surface and hot forged parts reinforcing surface

Publications (1)

Publication Number Publication Date
JP2004268070A true JP2004268070A (en) 2004-09-30

Family

ID=33122582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003059882A Pending JP2004268070A (en) 2003-03-06 2003-03-06 Hot forging method for reinforcing surface and hot forged parts reinforcing surface

Country Status (1)

Country Link
JP (1) JP2004268070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016106A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Hot forging method and insulating lubricant for hot forging
JP4751967B1 (en) * 2011-03-24 2011-08-17 弘志 宮▲崎▼ Screw point manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016106A (en) * 2005-07-06 2007-01-25 Toyota Motor Corp Hot forging method and insulating lubricant for hot forging
JP4751967B1 (en) * 2011-03-24 2011-08-17 弘志 宮▲崎▼ Screw point manufacturing method

Similar Documents

Publication Publication Date Title
JP5497884B2 (en) Nitritable steel composition for the production of piston rings and cylinder liners
CN104152916A (en) Thermal treatment and plasma nitrocarburizing surface treatment process method for special wear-resistant die steel with ultrahigh heat conductivity for hot stamping
WO2009063909A1 (en) Method of heat-treating steel, process for producing machine part, and machine part
CN110042305A (en) A kind of anti-corrosive properties, wearability high-chromium cast iron alloy and preparation method thereof
Birol Effect of post-oxidation treatment on thermal fatigue behaviour of plasma nitrided hot work tool steel at elevated temperatures
CN105908120A (en) Ion nitriding-low pressure oxidation composite treatment method of aluminum alloy die-casting die or die steel
JP5762843B2 (en) Pressure ring and manufacturing method thereof
Birol Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP4752635B2 (en) Method for manufacturing soft nitrided parts
JP2004268070A (en) Hot forging method for reinforcing surface and hot forged parts reinforcing surface
JP2000038653A (en) Die or mold having surface film
JP2015117412A (en) Nitriding treatment method, and nitrided article
CN103774085A (en) High-nitrogen austenite layer in low-carbon alloy steel surface preparation and preparation method thereof
JP2015025161A (en) Surface hardening method of iron or iron alloy and apparatus of the same, and surface hardening structure of iron or iron alloy
TW541355B (en) Modification of diffusion coating grain structure by nitriding
JP2000334544A (en) Production of die for hot working
JP2001131688A (en) Air-hardened low or medium carbon steel for improving heat treatment
CN104611645B (en) A kind of high-temperature alloy mould steel
JP4531448B2 (en) Mold nitriding method
JPH09256821A (en) Engine valve
JP5366571B2 (en) Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
TWI575086B (en) Method of combining electrical-discharge machining and post-heat treatment for improving mechanical properties of clad alloy substrate
TWI616256B (en) Nitriding treatment-incorporated electro-discharge machining method