JPH09256821A - Engine valve - Google Patents

Engine valve

Info

Publication number
JPH09256821A
JPH09256821A JP9033996A JP9033996A JPH09256821A JP H09256821 A JPH09256821 A JP H09256821A JP 9033996 A JP9033996 A JP 9033996A JP 9033996 A JP9033996 A JP 9033996A JP H09256821 A JPH09256821 A JP H09256821A
Authority
JP
Japan
Prior art keywords
valve
gas
high temperature
heat resistant
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9033996A
Other languages
Japanese (ja)
Inventor
Atsushi Taguchi
篤 田口
Hirotaka Kato
博孝 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP9033996A priority Critical patent/JPH09256821A/en
Publication of JPH09256821A publication Critical patent/JPH09256821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve abrasion resistance at a high temperature in a valve face part by forming at least a valve head part in a valve element, in which a valve head is connected to a valve shaft, of anticorrosion heat resistant super alloy containing specific quantity of nickel, chromium, aluminum, and titanium and forming a nitrogen layer in a valve face part in the valve head. SOLUTION: A material consisting of anticorrosion heat resistant super alloy is machined, so that a valve head 2 is connected to a shaft 1, and a valve element 3 of an engine valve is formed by finishing. A nitrogen layer is formed on a valve face 4 when the valve element 3 is nitrided. In this process, anticorrosion heat resistant super alloy containing 35-80% of nickel, 13-25% of chromium, 0.9-2.0% of aluminum, 2.0-3.0% of titanium is available for a material for the valve element 3. In the nitriding process, the finished valve element 3 is held in N2 gas atmosphere at 350 deg.C for 10 minutes in a processing furnace, for example, and then, a mixture gas of NH3 and RX gas is introduced into the furnace, and the inside of the furnace is kept at 580 deg.C for 5 hours, and as a result, gas nitriding is applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は自動車用エンジン
等のエンジンの排気弁として用いられるエンジンバルブ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine valve used as an exhaust valve of an engine such as an automobile engine.

【0002】[0002]

【従来の技術】一般にエンジンバルブとしては、弁軸に
弁傘を連設したきのこ形の弁体から成るバルブが用いら
れるが、特にエンジンの排気弁は、高温の排気ガスにさ
らされ、弁傘の弁フェース部の最高温度は700℃に達
する。この弁フェース部はシリンダヘッドのバルブシー
トに対して衝突と摺動を繰返すため、高温時における優
れた耐摩耗性が要求される。
2. Description of the Related Art Generally, as an engine valve, a valve composed of a mushroom-shaped valve body having a valve shaft connected to a valve shaft is used. The maximum temperature of the valve face portion of the valve reaches 700 ° C. Since the valve face portion repeatedly collides with and slides on the valve seat of the cylinder head, excellent wear resistance at high temperatures is required.

【0003】この排気弁として、従来は、たとえばJI
SG4311のSUH35などの耐熱鋼により構成した
弁体に、低シアンタフトライド処理やガス軟窒化などの
軟窒化処理を施したものを用いていたが、弁フェース部
の作動温度が700℃程度に達する場合は、窒化層の硬
さが低下して充分な耐摩耗性は得られず、この窒化層硬
さの低下は、窒化処理の温度や時間などの処理条件を変
えても改善できなかった。また特に最近は、自動車用デ
ィーゼルエンジンやガソリンエンジンでは、高出力化や
燃費改善により排気温度が上昇し、これに伴って弁フェ
ース作動温度もさらに上昇するため、高温時における耐
摩耗性低下が大きな問題となっている。
As this exhaust valve, conventionally, for example, JI
When the valve body made of heat resistant steel such as SUH35 of SG4311 is subjected to low cyan tufftride treatment or soft nitriding treatment such as gas nitrocarburizing, the operating temperature of the valve face reaches about 700 ° C. However, the hardness of the nitrided layer was reduced and sufficient abrasion resistance was not obtained, and this decrease in the hardness of the nitrided layer could not be improved even if the treatment conditions such as temperature and time of the nitriding treatment were changed. In recent years, particularly, in automobile diesel engines and gasoline engines, exhaust temperature rises due to higher output and improved fuel economy, and the valve face operating temperature also rises accordingly, resulting in a large decrease in wear resistance at high temperatures. It's a problem.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記従来の
問題点を解決するもので、高温の排気ガスにさらされて
も弁フェース部の硬さ低下が小さく、弁フェース部の高
温時における耐摩耗性がすぐれたエンジンバルブを提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, in that the hardness of the valve face is not significantly reduced even when exposed to high temperature exhaust gas, and the valve face is resistant to high temperatures. It is intended to provide an engine valve having excellent wear resistance.

【0005】[0005]

【課題を解決するための手段】この発明のエンジンバル
ブは、弁軸に弁傘を連設した弁体の少なくとも前記弁傘
部を、重量%でニッケルを35〜80%、クロムを13
〜25%、アルミニウムを0.9〜2.0%,チタンを
2.0〜3.0%含む耐食耐熱超合金で構成し、前記弁
傘の弁フェース部に、窒化層を形成したことを特徴とす
る。
According to the engine valve of the present invention, at least the valve head portion of a valve body in which a valve head is connected to a valve shaft, nickel is 35 to 80% by weight and chromium is 13% by weight.
.About.25%, 0.9 to 2.0% of aluminum, and 2.0 to 3.0% of titanium, and a nitride layer is formed on the valve face portion of the valve umbrella. Characterize.

【0006】この発明において弁体を構成する耐食耐熱
超合金の各組成の限定理由を以下に述べる。先ずニッケ
ルは、オーステナイトマトリックスとNi3(Al,Ti)
のガンマプライム相を構成し、耐食耐熱超合金の耐食性
と強度を確保する元素として不可欠であるとともに、窒
化層において窒素を固溶せず、また窒化物も形成しない
ため、高温での窒素の拡散を遅くし、高温保持による窒
化層の硬さの低下が小さくなる。ニッケルは35%未満
では高温に長時間加熱された場合にη相が肥大凝集化し
て高温強度を低下させ、80%をこえると窒化層の硬さ
の低下を防ぐ効果があがらず、単にコストアップをまね
くだけとなる。
The reasons for limiting the respective compositions of the corrosion resistant heat resistant superalloy constituting the valve body in the present invention will be described below. First, nickel is composed of austenite matrix and Ni 3 (Al, Ti).
It is essential as an element that forms the gamma-prime phase of the alloy and secures the corrosion resistance and strength of the corrosion-resistant heat-resistant superalloy, and does not form a solid solution of nitrogen in the nitride layer and does not form a nitride. Is slowed down, and the decrease in hardness of the nitrided layer due to high temperature holding is reduced. If the nickel content is less than 35%, the η phase enlarges and agglomerates when heated to a high temperature for a long time to lower the high-temperature strength. It will only lead to.

【0007】クロムは、窒化層において窒素と結合して
クロム窒化物を形成し、窒化層の硬さを向上させる。そ
のため、クロムは13%以上必要とするが、25%をこ
えると高温強度が低下する。
Chromium combines with nitrogen in the nitride layer to form chromium nitride, which improves the hardness of the nitride layer. Therefore, chromium is required to be 13% or more, but if it exceeds 25%, the high temperature strength decreases.

【0008】アルミニウムは、オーステナイトマトリッ
クスからガンマプライム相を析出させ、耐食耐熱超合金
を強化するとともに、本発明では窒化層において窒素と
結合しアルミ窒化物を形成する。このアルミ窒化物によ
り高温での窒素の拡散や窒化物の凝集が遅くなり、高温
保持による窒化層の硬さの低下が小さくなる。この高温
保持による硬さの低下を小さくするためにはアルミニウ
ムは最低0.9%必要とするが、2.0%を越えると熱
間加工性が著しく悪くなる。
Aluminum precipitates the gamma prime phase from the austenite matrix, strengthens the corrosion resistant heat resistant superalloy, and in the present invention combines with nitrogen in the nitride layer to form aluminum nitride. This aluminum nitride slows down the diffusion of nitrogen at high temperature and the agglomeration of nitride, and the decrease in hardness of the nitride layer due to holding at high temperature is reduced. Aluminum must be at least 0.9% in order to reduce the decrease in hardness due to holding at high temperature, but if it exceeds 2.0%, the hot workability becomes extremely poor.

【0009】チタンは、アルミニウムと同様にオーステ
ナイトマトリックスからガンマプライム相を析出させ、
耐食耐熱超合金を強化するとともに、本発明では窒化層
において窒素と結合しチタン窒化物を形成する。このチ
タン窒化物により高温での窒素の拡散や窒化物の凝集が
遅くなり、高温保持による窒化層の硬さの低下が小さく
なる。この高温保持による硬さの低下を小さくするため
にはチタンは最低2.0%必要とするが、3.0%を越
えると熱間加工性が著しく悪くなる。
Titanium, like aluminum, precipitates a gamma prime phase from an austenite matrix,
In addition to strengthening the corrosion and heat resistant superalloy, the present invention combines with nitrogen in the nitride layer to form titanium nitride. This titanium nitride slows down the diffusion of nitrogen and the agglomeration of the nitride at a high temperature, and the decrease in the hardness of the nitride layer due to the high temperature retention is reduced. Titanium is required to be at least 2.0% in order to reduce the decrease in hardness due to holding at high temperature, but if it exceeds 3.0%, the hot workability is significantly deteriorated.

【0010】この発明において上記ニッケルその他の組
成条件を充足する耐食耐熱超合金としては、JISG4
901の耐食耐熱超合金のうちのNCF750、NCF
751、NCF80A、特公平1−12827号公報の
特許請求の範囲1〜4に記載された弁用鋼、特開平1−
259140号公報の特許請求の範囲に記載された排気
弁用ニッケル基合金などを用いることができる。
In the present invention, as the corrosion-resistant heat-resistant superalloy satisfying the above-mentioned nickel and other composition conditions, JISG4
NCF750, NCF of 901 corrosion resistant superalloy
751, NCF80A, valve steel described in claims 1 to 4 of Japanese Patent Publication No. 12827/1989, JP-A-1-.
The nickel-based alloy for exhaust valves described in the claims of Japanese Patent No. 259140 can be used.

【0011】この発明において弁軸に弁傘を連設した弁
体は、弁体全体が耐食耐熱超合金から成る一体構造品と
するほか、耐食耐熱超合金製の弁傘部を、鉄基耐熱鋼等
から成る別種金属製の弁軸に溶接した溶接構造品として
もよい。なお上記一体構造品は、上記溶接構造品に比べ
て、溶接部がなくなるため信頼性が向上するとともに製
造コストを低減できるという長所を有する。またこの発
明において弁傘の弁フェース部に形成する窒化層は、そ
の厚さが5μm未満だと耐摩耗性が不充分なので、5μ
m以上の厚さとするのが好ましい。
In the present invention, the valve body in which the valve shaft is continuously connected to the valve shaft is an integral structure product in which the entire valve body is made of a corrosion resistant heat resistant superalloy. The welded structure may be welded to a valve shaft made of another metal such as steel. Note that the integrated structure product has the advantages over the welded structure product that the welded portion is eliminated, so that the reliability is improved and the manufacturing cost can be reduced. Further, in the present invention, if the thickness of the nitride layer formed on the valve face portion of the valve umbrella is less than 5 μm, the wear resistance is insufficient, so that it is 5 μm.
The thickness is preferably m or more.

【0012】[0012]

【発明の実施の形態】以下図面によってこの発明の一具
体例を説明すると、図1に示すように前記例示したNC
F750等の耐食耐熱超合金から成る素材を加工して、
軸1に弁傘2を連設して成り所定の寸法精度に仕上加工
した弁体3を得る。この弁体3に対して窒化処理をおこ
なって、弁フェース4部に窒化層5を形成させることに
より、この発明のエンジンバルブが得られる。この窒化
層5は、弁フェース4部のみに形成させても、弁体3の
全面に形成させてもよいが、図2は後者の場合を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific example of the present invention will be described below with reference to the drawings. As shown in FIG.
By processing a material made of corrosion resistant heat resistant super alloy such as F750,
A valve body 3 is formed by connecting a valve umbrella 2 to a shaft 1 and finished to a predetermined dimensional accuracy to obtain a valve body 3. The engine valve of the present invention is obtained by subjecting this valve body 3 to a nitriding treatment to form a nitride layer 5 on the valve face 4 portion. The nitride layer 5 may be formed only on the valve face 4 portion or on the entire surface of the valve body 3, but FIG. 2 shows the latter case.

【0013】上記弁体3の素材として用いる耐食耐熱超
合金は、酸素との親和力の大きいクロムを多量に含むた
め、機械加工後の弁体3の表面には薄い酸化物層が形成
され、従来の低シアンタフトライド処理やガス軟窒化で
は、有効な窒化層5の形成が困難である。そこで、たと
えば特開平3−44457号公報に開示されているよう
に、被処理材を予めフッ素を含む反応ガス雰囲気中に保
持して表面層にフッ化物膜を生成した後窒化雰囲気中で
加熱する方法や、被処理材を予め塩素などの還元性ガス
を含む反応ガス雰囲気中に保持して被処理材表面の酸化
被膜を還元後窒化雰囲気中で加熱する方法、被処理材の
表面にショットブラスト加工などの機械的処理を施して
該表面部の酸化被膜を除去後窒化雰囲気中で加熱する方
法、などを採用することにより、厚さのばらつきの少な
い窒化層5を確実に形成することができる。
Since the corrosion-resistant and heat-resistant superalloy used as the material for the valve body 3 contains a large amount of chromium, which has a high affinity for oxygen, a thin oxide layer is formed on the surface of the valve body 3 after machining, which is a conventional problem. It is difficult to effectively form the nitride layer 5 by the low cyan tufftride treatment or the gas soft nitriding. Therefore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 3-44457, the material to be treated is previously held in a reaction gas atmosphere containing fluorine to form a fluoride film on the surface layer and then heated in a nitriding atmosphere. Method, method of holding the material to be processed in a reaction gas atmosphere containing a reducing gas such as chlorine in advance and heating the oxide film on the surface of the material to be processed in a nitriding atmosphere after reduction, shot blasting on the surface of the material to be processed By adopting a method of performing mechanical treatment such as working to remove the oxide film on the surface and then heating in a nitriding atmosphere, it is possible to surely form the nitride layer 5 with less variation in thickness. .

【0014】[0014]

【実施例】次に実施例および比較例によって、この発明
をさらに詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0015】実施例 耐食耐熱超合金素材として、重量%でニッケルを約40
%(残部)、アルミニウムを1.37%、チタンを2.
6%、炭素を0.02%、ケイ素を0.14%、マンガ
ンを0.09%、クロムを24%、ニオブを0.99
%、ボロンを0.003%、鉄を32%含む、特公平1
−12827号公報の特許請求の範囲第1項記載の弁用
鋼の鋼種を用い、図1に示す形状(但し弁体3の全長:
99mm、弁軸1の軸径:6mm、弁傘2の傘径:33.5
mm)に仕上加工した弁体3を、前処理として処理炉内に
おいてNF3 を5000ppm含有するN2 ガス雰囲気
中で350℃で10分間保持したのち、同処理炉内にN
3 とRXガスの混合ガスを導入し、炉内を580℃に
5時間保持して、ガス窒化処理をおこなった。その結
果、厚さ20μmのほぼ均一な窒化層5を弁体全周に形
成したエンジンバルブが得られた。
EXAMPLE As a corrosion resistant heat resistant superalloy material, about 40% by weight of nickel was used.
% (The balance), aluminum 1.37%, titanium 2.
6%, carbon 0.02%, silicon 0.14%, manganese 0.09%, chromium 24%, niobium 0.99
%, Boron 0.003%, Iron 32%, Special Fairness 1
The shape shown in FIG. 1 (however, the total length of the valve body 3:
99mm, valve shaft 1 shaft diameter: 6mm, valve umbrella 2 umbrella diameter: 33.5
The valve body 3 which has been subjected to a finishing process of 10 mm) is held as a pretreatment in a N 2 gas atmosphere containing 5000 ppm of NF 3 at 350 ° C. for 10 minutes as a pretreatment.
A gas mixture of H 3 and RX gas was introduced, and the inside of the furnace was kept at 580 ° C. for 5 hours to perform gas nitriding treatment. As a result, an engine valve in which a substantially uniform nitride layer 5 having a thickness of 20 μm was formed on the entire circumference of the valve body was obtained.

【0016】比較例 素材としてJISG4311の耐熱鋼SUH35(主要
組成=ニッケル4%、炭素0.53%、マンガン9%、
クロム21%、窒素0.4%、残部鉄)を用い、実施例
と同寸法に仕上加工した弁体を、実施例と同条件で前処
理およびガス窒化処理をおこなった。その結果、厚さ5
0μmのほぼ均一な窒化層を弁体全周に形成したエンジ
ンバルブが得られた。
Comparative Example JIS G4311 heat-resistant steel SUH35 (main composition = nickel 4%, carbon 0.53%, manganese 9%, as a material)
A valve body finished to the same dimensions as in the example using 21% chromium, 0.4% nitrogen, and the balance iron) was subjected to pretreatment and gas nitriding treatment under the same conditions as in the example. As a result, thickness 5
An engine valve having a substantially uniform nitride layer of 0 μm formed all around the valve body was obtained.

【0017】上記実施例および比較例で得た試料につい
て、弁フェース4部の作動温度に相当する700℃の保
持炉中に100時間保持し、初期(保持炉装入前)と上
記保持後における弁フェース4部の窒化層5の硬度(但
し図2に示すように弁フェース4の表面より10μmの
位置にある測定点Pにおける硬度)を測定したところ、
表1および図3に示す結果が得られた。
The samples obtained in the above Examples and Comparative Examples were held in a holding furnace at 700 ° C., which corresponds to the operating temperature of the valve face 4 for 100 hours, at the initial stage (before charging the holding furnace) and after the above holding. When the hardness of the nitrided layer 5 at the valve face 4 portion (however, the hardness at the measurement point P at a position 10 μm from the surface of the valve face 4 as shown in FIG. 2) was measured,
The results shown in Table 1 and FIG. 3 were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】これらのデータから判るように、比較例品
では、700℃×100時間保持(以下高温保持とい
う)後の窒化層5部の硬度が、母材の硬度(400〜5
00HV(0.1) )と同程度まで大巾に低下するが、本発
明の実施例品では窒化層5の高温保持後の硬度低下はご
く僅かである。
As can be seen from these data, in the comparative example product, the hardness of 5 parts of the nitride layer after holding at 700 ° C. for 100 hours (hereinafter referred to as holding at high temperature) is the hardness of the base material (400 to 5).
00HV (0.1)), but the hardness of the nitrided layer 5 after holding at high temperature is very small in the example of the present invention.

【0020】次に上記の初期(高温保持前)および高温
保持後の、実施例および比較例の各試料を、弁座試験装
置(但しバルブシート材質:鉄系焼結合金)に組込み、
燃料としてLPGを用いてカム回転数:2000rpm
で24時間連続運転する耐久試験をおこない、弁フェー
ス4部の摩耗量を測定した結果を、表2および図4に示
す。
Next, the above-mentioned initial (before high temperature holding) and after each high temperature holding samples of Examples and Comparative Examples were incorporated into a valve seat test apparatus (however, valve seat material: ferrous sintered alloy),
Cam rotation speed: 2000 rpm using LPG as fuel
Table 2 and FIG. 4 show the results of measuring the amount of wear of the valve face 4 by conducting a durability test in which the valve is continuously operated for 24 hours.

【0021】[0021]

【表2】 [Table 2]

【0022】これらのデータから判るように、比較例品
は高温保持品の弁フェース4部の摩耗量が大きく、耐摩
耗性が劣るのに対し、本発明の実施例品は高温保持品も
弁フェース4の摩耗量が少なく、耐摩耗性が優れてい
る。
As can be seen from these data, the comparative example product has a large amount of wear on the valve face 4 of the high temperature holding product and is inferior in wear resistance, whereas the example product of the present invention has a high temperature holding product. The amount of wear of the face 4 is small and the wear resistance is excellent.

【0023】[0023]

【発明の効果】以上説明したようにこの発明によれば、
弁傘自体が高温強度の高い耐食耐熱超合金から成り、こ
の弁傘の弁フェース部に形成した窒化層の高温保持によ
る硬さの低下が、アルミ窒化物およびチタン窒化物によ
り抑制されるので、高温の排気ガスにさらされても弁フ
ェース部の硬さ低下が小さく、弁フェース部の高温時に
おける耐摩耗性がすぐれたエンジンバルブが得られる。
As described above, according to the present invention,
Since the valve umbrella itself is made of a corrosion-resistant heat-resistant superalloy with high temperature strength, the decrease in hardness of the nitride layer formed on the valve face portion of this valve umbrella due to high temperature retention is suppressed by aluminum nitride and titanium nitride. Even if the valve face is exposed to high temperature exhaust gas, the hardness of the valve face is small, and an engine valve having excellent wear resistance at high temperature can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一具体例を示すエンジンバルブの弁
体の正面図である。
FIG. 1 is a front view of a valve body of an engine valve showing a specific example of the present invention.

【図2】図1の弁体の窒化処理後の要部拡大断面図であ
る。
FIG. 2 is an enlarged cross-sectional view of an essential part of the valve body of FIG. 1 after a nitriding treatment.

【図3】この発明の実施例品および比較例品の窒化層の
硬さの変化を示す線図である。
FIG. 3 is a diagram showing a change in hardness of a nitride layer of an example product and a comparative example product of the present invention.

【図4】この発明の実施例品および比較例品の耐久試験
結果を示す線図である。
FIG. 4 is a diagram showing a result of a durability test of an example product and a comparative example product of the present invention.

【符号の説明】[Explanation of symbols]

1…弁軸、2…弁傘、3…弁体、4…弁フェース、5…
窒化層。
1 ... Valve shaft, 2 ... Valve umbrella, 3 ... Valve body, 4 ... Valve face, 5 ...
Nitride layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弁軸に弁傘を連設した弁体の少なくとも
前記弁傘部を、重量%でニッケルを35〜80%、クロ
ムを13〜25%、アルミニウムを0.9〜2.0%,
チタンを2.0〜3.0%含む耐食耐熱超合金で構成
し、前記弁傘の弁フェース部に、窒化層を形成したこと
を特徴とするエンジンバルブ。
1. At least the valve head portion of a valve body in which a valve head is continuously connected to a valve shaft, 35 to 80% by weight of nickel, 13 to 25% of chromium, and 0.9 to 2.0 of aluminum. %,
An engine valve comprising a corrosion-resistant heat-resistant superalloy containing titanium in an amount of 2.0 to 3.0%, and a nitride layer formed on a valve face portion of the valve umbrella.
JP9033996A 1996-03-19 1996-03-19 Engine valve Pending JPH09256821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9033996A JPH09256821A (en) 1996-03-19 1996-03-19 Engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9033996A JPH09256821A (en) 1996-03-19 1996-03-19 Engine valve

Publications (1)

Publication Number Publication Date
JPH09256821A true JPH09256821A (en) 1997-09-30

Family

ID=13995772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033996A Pending JPH09256821A (en) 1996-03-19 1996-03-19 Engine valve

Country Status (1)

Country Link
JP (1) JPH09256821A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001863A (en) * 2007-06-21 2009-01-08 Air Water Inc Nitriding treatment method, mechanical component having different materials jointed, method for manufacturing engine valve, and engine valve
CN104975899A (en) * 2014-04-08 2015-10-14 曼恩柴油机涡轮股份公司曼恩柴油机涡轮德国分公司 An Exhaust Valve For An Internal Combustion Engine, And A Method Of Strengthening An Annular Valve Seat Area In An Exhaust Valve
JPWO2015118924A1 (en) * 2014-02-10 2017-03-23 日産自動車株式会社 Sliding mechanism
CN113606010A (en) * 2021-08-26 2021-11-05 重庆宗申发动机制造有限公司 Fuel engine valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001863A (en) * 2007-06-21 2009-01-08 Air Water Inc Nitriding treatment method, mechanical component having different materials jointed, method for manufacturing engine valve, and engine valve
JPWO2015118924A1 (en) * 2014-02-10 2017-03-23 日産自動車株式会社 Sliding mechanism
US10590812B2 (en) 2014-02-10 2020-03-17 Nissan Motor Co., Ltd. Sliding mechanism
CN104975899A (en) * 2014-04-08 2015-10-14 曼恩柴油机涡轮股份公司曼恩柴油机涡轮德国分公司 An Exhaust Valve For An Internal Combustion Engine, And A Method Of Strengthening An Annular Valve Seat Area In An Exhaust Valve
JP2015212543A (en) * 2014-04-08 2015-11-26 マン ディーゼル アンド ターボ フィリアル エーエフ マン ディーゼル アンド ターボ エスイー ティスクランド Exhaust valve for internal combustion engine
CN113606010A (en) * 2021-08-26 2021-11-05 重庆宗申发动机制造有限公司 Fuel engine valve

Similar Documents

Publication Publication Date Title
US6623568B2 (en) Ti alloy poppet valve and a method of manufacturing the same
JPH0234766A (en) Carburizing and hardening method
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JP4063709B2 (en) Method for surface modification of austenitic metal, refractory metal product and turbo part obtained thereby
US4767597A (en) Heat-resistant alloy
JPH09256821A (en) Engine valve
JPH0971841A (en) Steel for soft-nitriding
JPS60162760A (en) Production of high-strength heat resistant material
JP2000160287A (en) Nitriding non-heat treated forged parts and manufacture thereof
JP3018804B2 (en) Surface treatment method for titanium alloy members
JP2000328163A (en) Exhaust valve alloy for diesel engine and production of exhaust valve
JPS6160861A (en) Piston ring material made of steel
JP6101058B2 (en) Method for producing ferritic surface modified metal member
JPH0849512A (en) Engine valve
JP2002115514A (en) Aluminum alloy valve spring retainer and method of its manufacture
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
WO2002044435A1 (en) Steel for carburization and carburized gear
JPH07269316A (en) Low strength titanium alloy made intake engine valve
JP2811206B2 (en) Heat-resistant steel for cold forging
JPH03122257A (en) Piston ring material
JP3239545B2 (en) Aluminizing treatment method for metal surface
JPH07268516A (en) Low-strength titanim alloy rod suitable for intake engine valve
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion
JPH03219065A (en) Engine valve made of titanium-aluminum alloy
JP3142224B2 (en) Ferritic heat-resistant cast steel and diesel engine pre-combustion chamber member using the same