JP2004266297A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2004266297A
JP2004266297A JP2004170150A JP2004170150A JP2004266297A JP 2004266297 A JP2004266297 A JP 2004266297A JP 2004170150 A JP2004170150 A JP 2004170150A JP 2004170150 A JP2004170150 A JP 2004170150A JP 2004266297 A JP2004266297 A JP 2004266297A
Authority
JP
Japan
Prior art keywords
reactor
processed
wafer
torr
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004170150A
Other languages
Japanese (ja)
Inventor
Mikio Wakamiya
宮 幹 夫 若
Yoshio Kasai
井 良 夫 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004170150A priority Critical patent/JP2004266297A/en
Publication of JP2004266297A publication Critical patent/JP2004266297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LP-CVD device which forms a BSG film of uniform boron concentration on the surface of a semiconductor wafer without using a distributing nozzle, and to provide a method for forming the BSG film of uniform boron concentration with superior reproducibility by using the device. <P>SOLUTION: A decompression CVD device 20 comprises: a boat 4 holding a plurality of wafers to be processed 10; a reactor housing the boat 4; a heater 5 which is arranged around the reactor to heat an atmosphere in the reactor; and gas introduction pipes 2 and 3 introducing a reactant gas into the reactor. In a method for manufacturing a semiconductor device which forms a boron silicate glass (BSG) thin film on the wafer to be processed 10 by using the device 20, a source gas containing a boron (B) of concentration of 4 wt.% or more is supplied through the gas introduction pipes 2 and 3 having a spout positioned below a position where the wafer to be processed 10 is held, at a temperature of 600-800 °C and a pressure of 0.1-5 Torr. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、半導体製造装置および半導体装置の製造方法に関し、特に、減圧CVD装置およびこれを用いて半導体ウェーハ上にBSG膜を形成する工程を含む半導体装置の製造方法に関する。   The present invention relates to a semiconductor manufacturing apparatus and a method of manufacturing a semiconductor device, and more particularly to a low-pressure CVD apparatus and a method of manufacturing a semiconductor device including a step of forming a BSG film on a semiconductor wafer using the same.

半導体装置の製造においては、シリコンをRIE(Reactive Ion Etching)により選択的に除去する工程で酸化膜がマスク材として利用される。また、RIEの工程終了後にマスク材のみを選択的に剥離する場合には、酸化膜中にボロン(B)を高濃度にドープしたボロンシリケートグラス(B oron- S ilicate G lass、以下、単にBSGという)が広く用いられている。 In the manufacture of a semiconductor device, an oxide film is used as a mask material in a process of selectively removing silicon by RIE (Reactive Ion Etching). Further, in the case of selectively stripping only the mask material after the step completion of RIE, the boron in the oxide film (B) a boron silicate glass doped with a high concentration (B oron- S ilicate G lass, hereinafter simply BSG Is widely used.

バッチ式のLP−CVD(Low Pressure-Chemical Vapor Deposition)装置を用いて従来の技術によりBSG膜を製造する方法を図3を参照しながら説明する。   A method of manufacturing a BSG film by a conventional technique using a batch type LP-CVD (Low Pressure-Chemical Vapor Deposition) apparatus will be described with reference to FIG.

図3は、従来のLP−CVD装置の一例の炉構造を示す概略図である。同図に示すLP−CVD装置50は、アウターチューブ1およびインナーチューブ6を有する二重構造の反応管を有し、インナーチューブ6の内側に被処理ウェーハである半導体基板10を保持するボート4を備えている。インナーチューブ6の底部近傍からは、反応ガスを導入するノズル3,52がインナーチューブ6内に延在して配設されている。   FIG. 3 is a schematic view showing a furnace structure of an example of a conventional LP-CVD apparatus. The LP-CVD apparatus 50 shown in FIG. 1 has a reaction tube having a double structure having an outer tube 1 and an inner tube 6, and a boat 4 holding a semiconductor substrate 10 as a processing target wafer inside the inner tube 6. Have. From the vicinity of the bottom of the inner tube 6, nozzles 3, 52 for introducing a reaction gas are arranged to extend into the inner tube 6.

ノズル52は、ボート4の上端の周辺領域に至るまで配設され、このノズル内を通って反応ガスがインナーチューブ内に導入される。使用済の反応ガスは、インナーチューブ6とアウターチューブ1とに挟まれた領域を通過して装置下部に設けられた排気口12,13から排出される。ウェーハ10の加熱は反応管の外側に設けられたヒータ5により行われる。また、LP−CVD装置50の底部に設けられた減圧口15には、真空ポンプ11が接続され、これにより反応管内の気圧が調整される。   The nozzle 52 is disposed up to the peripheral region at the upper end of the boat 4, and the reaction gas is introduced into the inner tube through the nozzle. The used reaction gas passes through a region sandwiched between the inner tube 6 and the outer tube 1 and is discharged from exhaust ports 12 and 13 provided at the lower part of the apparatus. The heating of the wafer 10 is performed by a heater 5 provided outside the reaction tube. In addition, a vacuum pump 11 is connected to a pressure reducing port 15 provided at the bottom of the LP-CVD apparatus 50, and thereby the pressure inside the reaction tube is adjusted.

従来、このようなLP−CVD装置50を用いてBSG膜を形成する場合は、ボート4に保持された半導体基板の位置に対応する複数の噴射口を有する分散ノズルを用いてボロンのソースとなるガス、例えば、ホウ酸トリメチル(TMB)を反応炉内に導いていた。これは、多数の半導体基板にソースガスを均等に供給するためであり、これにより半導体基板上に、均一のボロン濃度を有するBSG膜を均一の膜厚で形成することができた。   Conventionally, when a BSG film is formed using such an LP-CVD apparatus 50, the BSG film is used as a source of boron by using a dispersion nozzle having a plurality of injection ports corresponding to the positions of the semiconductor substrates held by the boat 4. A gas, for example, trimethyl borate (TMB) was introduced into the reactor. This is for uniformly supplying the source gas to a large number of semiconductor substrates, whereby a BSG film having a uniform boron concentration could be formed on the semiconductor substrates with a uniform thickness.

しかしながら、上述の分散ノズルを用いた成膜方法では、濃度および膜厚の均一化はガスノズルの口径に依存するところが大きい。従って、定期メンテナンス等によりガスノズルを交換した場合に、ガスノズルの加工精度にばらつきがあるとノズルの交換前後でプロセスの再現性を得ることができないという問題点があった。   However, in the above-described film forming method using the dispersion nozzle, the uniformity of the concentration and the film thickness largely depends on the diameter of the gas nozzle. Therefore, when the gas nozzle is replaced due to regular maintenance or the like, if the processing accuracy of the gas nozzle varies, there is a problem that reproducibility of the process cannot be obtained before and after the replacement of the nozzle.

本発明は、上記事情に鑑みてなされたものであり、その目的は分散ノズルを用いることなく均一のボロン濃度を有するBSG膜を半導体ウェーハの表面に形成するLP−CVD装置およびこれを用いた半導体装置の製造方法において、均一のボロン濃度を有するBSG膜を再現性良く形成する方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an LP-CVD apparatus for forming a BSG film having a uniform boron concentration on a surface of a semiconductor wafer without using a dispersion nozzle, and a semiconductor using the same. It is an object of the present invention to provide a method of manufacturing a device, in which a BSG film having a uniform boron concentration is formed with good reproducibility.

本発明は、以下の手段により上記課題の解決を図る。   The present invention solves the above problems by the following means.

即ち、本発明によれば、
複数の被処理ウェーハを保持するボートと、このボートを収納する反応炉と、この反応炉の周囲に配設され、上記反応炉内の雰囲気を約600℃〜約800℃の温度まで加熱するヒータと、上記被処理ウェーハが保持される位置よりも下方に位置する噴出口を有し、重量比4%以上の濃度のホウ素(B)を含むソースガスを上記反応炉内に導入するガス導入管と、上記反応炉内の気圧を0.1Torr〜5Torrに維持する減圧手段と、を備えた減圧CVD(Chemical Vapor Deposition )装置が提供される。
That is, according to the present invention,
A boat for holding a plurality of wafers to be processed, a reactor for accommodating the boat, and a heater disposed around the reactor for heating an atmosphere in the reactor to a temperature of about 600 ° C. to about 800 ° C. And a gas introduction pipe having a jet port located below a position where the wafer to be processed is held, and introducing a source gas containing boron (B) having a concentration by weight of 4% or more into the reaction furnace. And a pressure reducing means for maintaining the pressure in the reaction furnace at 0.1 Torr to 5 Torr, thereby providing a reduced pressure CVD (Chemical Vapor Deposition) apparatus.

上記減圧CVD装置は、上記反応炉内の雰囲気が約700℃で維持されるように上記ヒータを制御する温度制御手段をさらに備えることが望ましい。   It is preferable that the low-pressure CVD apparatus further includes temperature control means for controlling the heater so that the atmosphere in the reaction furnace is maintained at about 700 ° C.

上記減圧CVD装置はまた、上記反応炉内の気圧が約0.5Torrで維持されるように上記減圧手段を制御する減圧制御手段をさらに備えることがより望ましい。   More preferably, the reduced pressure CVD apparatus further includes reduced pressure control means for controlling the reduced pressure means so that the pressure in the reaction furnace is maintained at about 0.5 Torr.

また、本発明によれば、
複数の被処理ウェーハを保持するボートと、このボートを収納する反応炉と、この反応炉の周囲に配設され、上記反応炉内の雰囲気を加熱するヒータと、上記被処理ウェーハが保持される位置よりも下方に位置する噴出口から反応ガスを上記反応炉内に導入するガス導入管とを備えた減圧CVD装置を用いた、半導体装置の製造方法であって、約600℃〜約800℃の温度および0.1Torr〜5Torrの圧力で、重量比4%以上の濃度のホウ素(B)を含むソースガスを上記ガス導入管から供給して上記被処理ウェーハ上にボロンシリケートグラス(BSG)の薄膜を形成する工程を備えた半導体装置の製造方法が提供される。
According to the present invention,
A boat for holding a plurality of wafers to be processed, a reaction furnace for accommodating the boat, a heater disposed around the reaction furnace for heating an atmosphere in the reaction furnace, and holding the wafer for processing; A method for manufacturing a semiconductor device using a reduced-pressure CVD apparatus having a gas introduction pipe for introducing a reaction gas into the reaction furnace from an ejection port located below the position, wherein the temperature is about 600 ° C. to about 800 ° C. At a temperature of 0.1 Torr to 5 Torr, a source gas containing boron (B) having a weight ratio of 4% or more is supplied from the gas introduction pipe to form boron silicate glass (BSG) on the wafer to be processed. A method of manufacturing a semiconductor device including a step of forming a thin film is provided.

上記ソースガスには、ホウ酸トリメチル(TMB:Trimethyl Borate)またはホウ酸トリエチル(TEB:Triethyl Borate )を含むと良い。   The source gas may contain trimethyl borate (TMB) or triethyl borate (TEB).

また、上記製造方法において、上記反応炉内の雰囲気を約700℃まで加熱することが好ましい。   Further, in the above manufacturing method, it is preferable to heat the atmosphere in the reaction furnace to about 700 ° C.

また、上記製造方法において、上記反応炉内の気圧は、約0.5Torrであるとさらに好ましい。   Further, in the above manufacturing method, it is more preferable that the pressure in the reaction furnace is about 0.5 Torr.

以上詳述したとおり、本発明は、以下の効果を奏する。   As described in detail above, the present invention has the following effects.

即ち、本発明にかかる半導体製造装置によれば、被処理ウェーハが保持される位置よりも下方に位置する噴出口を有し、重量比4%以上の濃度のホウ素(B)を含むソースガスを上記反応炉内に導入するガス導入管を備えているので、分散ノズルを用いることなく、上記被処理ウェーハの表面に均一のボロン濃度及び膜厚のBSG膜を形成することができる。   That is, according to the semiconductor manufacturing apparatus of the present invention, a source gas containing boron (B) having a concentration by weight of 4% or more is provided, having an ejection port located below a position where a wafer to be processed is held. Since a gas introduction pipe for introducing the gas into the reaction furnace is provided, a BSG film having a uniform boron concentration and a uniform thickness can be formed on the surface of the wafer to be processed without using a dispersion nozzle.

また、本発明にかかる半導体装置の製造方法によれば、重量比4%以上の濃度のボロン(B)を含むソースガスを被処理ウェーハが保持される位置よりも下方に位置する噴出口を有するガス導入管から反応炉内に供給するので、ウェーハ間でボロン濃度の均一性の良いBSG膜を安定して製造することができる。これにより、ガスノズルの加工精度に多少のばらつきがあっても交換前後で成膜条件を変更する必要がないので、再現性の高い半導体製造方法が提供される。   Further, according to the method of manufacturing a semiconductor device of the present invention, the semiconductor device has a spout located below a position where a source gas containing boron (B) at a weight ratio of 4% or more is held below a position where a wafer to be processed is held. Since the gas is supplied from the gas inlet tube into the reaction furnace, a BSG film having a uniform boron concentration between wafers can be stably manufactured. Thus, even if there is some variation in the processing accuracy of the gas nozzle, it is not necessary to change the film forming conditions before and after the replacement, so that a semiconductor manufacturing method with high reproducibility is provided.

以下、本発明の実施の形態のいくつかについて図面を参照しながら説明する。なお、以下の各図において、図3と同一の部分については、同一の参照番号を付してその詳細な説明を省略する。   Hereinafter, some embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same portions as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.

図1は、本発明にかかる減圧CVD装置の実施の一形態の炉構造を示す概略図である。図3との対比において明らかなように、同図に示すバッチ式LP−CVD装置20は、ソースガスを導くノズルとして分散ノズルでなく、被処理ウェーハ10が保持される位置よりも下方に位置する噴出口を有する短ノズル2を備えた点に特徴がある。その他の点は、図3に示す減圧CVD装置50とほぼ同一である。   FIG. 1 is a schematic diagram showing a furnace structure of one embodiment of a reduced pressure CVD apparatus according to the present invention. As is clear from comparison with FIG. 3, the batch-type LP-CVD apparatus 20 shown in FIG. 3 is not a dispersion nozzle as a nozzle for guiding a source gas, but is located below a position where the wafer 10 to be processed is held. It is characterized by having a short nozzle 2 having an ejection port. The other points are almost the same as those of the low pressure CVD apparatus 50 shown in FIG.

次に、図1に示す減圧CVD装置20を用いた半導体の製造方法について、本発明にかかる半導体装置の製造方法の実施の一形態として説明する。本実施形態は、短ノズル2を用いて炉内のボロン濃度が重量比4%以上になるよう材料ガスを反応炉に供給する点に特徴がある。   Next, a method for manufacturing a semiconductor using the low-pressure CVD apparatus 20 shown in FIG. 1 will be described as an embodiment of a method for manufacturing a semiconductor device according to the present invention. This embodiment is characterized in that the material gas is supplied to the reaction furnace using the short nozzle 2 so that the boron concentration in the furnace becomes 4% by weight or more.

図2は、本実施形態の半導体装置製造方法によってBSG膜を形成したときの炉内のボロン濃度(横軸:重量比%)とBSG膜のボロン濃度均一性(縦軸:%)との関係を示す相関図である。短ノズル2としては、L字型の25mm−6mmφを用い、温度700℃、圧力0.5Torrの成膜条件で、材料ガスとして短ノズル2からホウ酸トリメチル(TMB)を供給し、また、短ノズル3からオルトケイ酸エチル(TEOS:Tetraethoxysilane )を供給した。   FIG. 2 shows the relationship between the boron concentration in the furnace (horizontal axis: weight ratio%) and the boron concentration uniformity of the BSG film (vertical axis:%) when the BSG film is formed by the semiconductor device manufacturing method of the present embodiment. FIG. Trimethyl borate (TMB) is supplied from the short nozzle 2 as a material gas under a film forming condition of a temperature of 700 ° C. and a pressure of 0.5 Torr using an L-shaped 25 mm-6 mmφ as the short nozzle 2. Ethyl orthosilicate (TEOS: Tetraethoxysilane) was supplied from the nozzle 3.

図2からわかるように、炉内のボロン濃度が重量比4%以上の領域においては、短ノズル2を用いた場合でも半導体ウェーハに形成されるBSG膜中のボロン濃度のばらつきを4%未満に抑制することができる。   As can be seen from FIG. 2, in the region where the boron concentration in the furnace is 4% by weight or more, even when the short nozzle 2 is used, the variation in the boron concentration in the BSG film formed on the semiconductor wafer is reduced to less than 4%. Can be suppressed.

また、ウェット系のエッチングによりBSG膜を選択的に剥離するプロセスがある。このとき、残存させる酸化膜との選択比は、BSG膜中のボロン濃度に依存する。このため、十分な選択比を得るためにはBSG膜中にボロンを高濃度でドープさせる必要がある。この場合に、本実施形態の半導体製造方法を用いてBSG膜のボロン濃度が重量比4%以上になるように材料ガスを供給すれば、図2に示す短ノズル2を用いた成膜が可能である。これにより、高い再現性でBSG膜を形成することができる。   Further, there is a process of selectively removing the BSG film by wet etching. At this time, the selectivity to the remaining oxide film depends on the boron concentration in the BSG film. Therefore, in order to obtain a sufficient selectivity, it is necessary to dope boron into the BSG film at a high concentration. In this case, if the material gas is supplied using the semiconductor manufacturing method of the present embodiment so that the boron concentration of the BSG film becomes 4% or more by weight, film formation using the short nozzle 2 shown in FIG. 2 is possible. It is. Thereby, a BSG film can be formed with high reproducibility.

以上、本発明の実施の形態について説明したが、本発明は上記形態に限るものでなく、その要旨を逸脱しない範囲で種々変形して用いることができる。また、材料や各種成膜条件は要求仕様に応じて変更することが可能である。例えば、上記実施形態ではボロンのソースガスとして、ホウ酸トリメチル(TMB)を用いたが、これに限ることなく、例えばホウ酸トリエチル(TEB)を用いても良い。また、成膜条件も、700℃に限らず、600℃〜800℃の範囲内でも良い結果が得られている。さらに、圧力に関しても、0.5Torrに限らず、0.1Torr〜5Torrの範囲で図2に示す均一性とほぼ同様に良好な均一性が得られる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be variously modified and used without departing from the gist thereof. Further, materials and various film forming conditions can be changed according to required specifications. For example, in the above-described embodiment, trimethyl borate (TMB) is used as the boron source gas. However, the present invention is not limited to this. For example, triethyl borate (TEB) may be used. Also, the film forming conditions are not limited to 700 ° C., and good results are obtained in the range of 600 ° C. to 800 ° C. Further, the pressure is not limited to 0.5 Torr, and in the range of 0.1 Torr to 5 Torr, good uniformity can be obtained almost similarly to the uniformity shown in FIG.

本発明に係る半導体装置の製造方法の一実施形態に用いるLP−CVD装置の炉構造を示す概略図である。FIG. 1 is a schematic view showing a furnace structure of an LP-CVD apparatus used in an embodiment of a method for manufacturing a semiconductor device according to the present invention. 炉内ボロン濃度とウェーハ間のボロン濃度均一性の関係を示す相関図である。It is a correlation diagram which shows the relationship between the boron concentration in a furnace, and the boron concentration uniformity between wafers. 従来のLP−CVD装置の一例の炉構造を示す概略図である。It is the schematic which shows the furnace structure of an example of the conventional LP-CVD apparatus.

符号の説明Explanation of reference numerals

1 アウターチューブ
2,3,52 ノズル
4 ボート
5 ヒータ
6 インナーチューブ
8 フランジ
9 熱遮蔽板
10 被処理ウェーハ
11 真空ポンプ
12,13 排出口
20 減圧CVD装置
DESCRIPTION OF SYMBOLS 1 Outer tube 2, 3, 52 Nozzle 4 Boat 5 Heater 6 Inner tube 8 Flange 9 Heat shield plate 10 Wafer to be processed 11 Vacuum pump 12, 13 Outlet 20 Low pressure CVD apparatus

Claims (5)

複数の被処理ウェーハを保持するボートと、前記ボートを収納する反応炉と、この反応炉の周囲に配設され、前記反応炉内の雰囲気を加熱するヒータと、前記被処理ウェーハが保持される位置よりも下方に位置する噴出口から反応ガスを前記反応炉内に導入するガス導入管とを備えた減圧CVD装置を用いた、半導体装置の製造方法であって、
約600℃〜約800℃の温度および0.1Torr〜5Torrの圧力でソースガスを前記ガス導入管から供給し、ボロンシリケートグラス(BSG)の薄膜であって、該薄膜自身の重量に対するホウ素(B)の重量の比が4%以上の薄膜を形成する工程を備えた半導体装置の製造方法。
A boat for holding a plurality of wafers to be processed, a reactor for accommodating the boat, a heater disposed around the reactor to heat an atmosphere in the reactor, and the wafer to be processed held therein A method for manufacturing a semiconductor device, comprising using a reduced pressure CVD apparatus having a gas introduction pipe for introducing a reaction gas into the reaction furnace from an ejection port located below the position,
A source gas is supplied from the gas introduction tube at a temperature of about 600 ° C. to about 800 ° C. and a pressure of 0.1 Torr to 5 Torr, and a thin film of boron silicate glass (BSG) is formed. A) forming a thin film having a weight ratio of 4% or more.
前記反応炉内の雰囲気が約700℃で維持されるように前記ヒータを制御する工程をさらに備えたことを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method according to claim 1, further comprising controlling the heater so that an atmosphere in the reaction furnace is maintained at about 700.degree. 前記反応炉内の気圧を約0.5Torrで維持する工程をさらに備えたことを特徴とする請求項1または2に記載の半導体装置の製造方法。   The method according to claim 1, further comprising maintaining a pressure in the reaction furnace at about 0.5 Torr. 前記ソースガスは、ホウ酸トリメチル(TMB:Trimethyl Borate)を含むことを特徴とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。   4. The method according to claim 1, wherein the source gas includes trimethyl borate (TMB). 5. 前記ソースガスは、ホウ酸トリエチル(TEB:Triethyl Borate )を含むことを特徴とする請求項1乃至3のいずれかに記載の半導体装置の製造方法。   4. The method according to claim 1, wherein the source gas includes triethyl borate (TEB).
JP2004170150A 2004-06-08 2004-06-08 Manufacturing method of semiconductor device Pending JP2004266297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170150A JP2004266297A (en) 2004-06-08 2004-06-08 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170150A JP2004266297A (en) 2004-06-08 2004-06-08 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10317888A Division JP2000150499A (en) 1998-11-09 1998-11-09 Low pressure cvd device and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2004266297A true JP2004266297A (en) 2004-09-24

Family

ID=33128752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170150A Pending JP2004266297A (en) 2004-06-08 2004-06-08 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2004266297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018036193A1 (en) * 2016-08-25 2018-03-01 杭州纤纳光电科技有限公司 Perovskite thin film low-pressure chemical deposition equipment and using method thereof, and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018036193A1 (en) * 2016-08-25 2018-03-01 杭州纤纳光电科技有限公司 Perovskite thin film low-pressure chemical deposition equipment and using method thereof, and application
KR20180042441A (en) * 2016-08-25 2018-04-25 항조우 마이크로콴타 세미컨덕터 컴퍼니 리미티드 Low Pressure Chemical Vapor Deposition Equipment of Perovskite Thin Films, Their Application and Application
KR101942696B1 (en) 2016-08-25 2019-04-11 항조우 마이크로콴타 세미컨덕터 컴퍼니 리미티드 Low Pressure Chemical Vapor Deposition Equipment of Perovskite Thin Films, Their Application and Application
US10319534B2 (en) 2016-08-25 2019-06-11 Hangzhou Microquanta Semiconductor Co., Ltd. Perovskite thin film low-pressure chemical deposition equipment and uses thereof

Similar Documents

Publication Publication Date Title
KR100481441B1 (en) Method for manufacturing a semiconductor device and apparatus for manufacturing a semiconductor
KR100903484B1 (en) Cvd method and device for forming silicon-containing insulation film
KR20200104923A (en) Processing methods for silicon nitride thin films
US5702531A (en) Apparatus for forming a thin film
US7611995B2 (en) Method for removing silicon oxide film and processing apparatus
TWI436423B (en) Oxidation apparatus and method for semiconductor process
US8808452B2 (en) Silicon film formation apparatus and method for using same
CN109671611B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP2018107182A (en) Substrate processing apparatus and substrate processing method, and substrate processing system
US20180090319A1 (en) Hard mask and manufacturing method thereof
KR20210038830A (en) Film forming method and film forming apparatus
TW202117065A (en) Gas introduction structure, heattreatment device, and gas supply method
KR20200116416A (en) Film forming method and film forming apparatus
US20190292662A1 (en) Film-forming method and film-forming apparatus
JP2004266297A (en) Manufacturing method of semiconductor device
JP4464364B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2001156063A (en) Method and apparatus for manufacturing semiconductor device
KR20030074418A (en) Substrate processing method and apparatus
JP2000150499A (en) Low pressure cvd device and manufacture of semiconductor device
JP5571157B2 (en) Semiconductor device manufacturing method, cleaning method, and substrate processing apparatus
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP4423282B2 (en) Manufacturing method of semiconductor device
US20220415659A1 (en) Method of processing substrate, substrate processing apparatus, recording medium, and method of manufacturing semiconductor device
JP7149890B2 (en) Film forming method and film forming apparatus
JP2005203404A (en) Etching system

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20070419

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080411

A02 Decision of refusal

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A02