JP2000150499A - Low pressure cvd device and manufacture of semiconductor device - Google Patents

Low pressure cvd device and manufacture of semiconductor device

Info

Publication number
JP2000150499A
JP2000150499A JP10317888A JP31788898A JP2000150499A JP 2000150499 A JP2000150499 A JP 2000150499A JP 10317888 A JP10317888 A JP 10317888A JP 31788898 A JP31788898 A JP 31788898A JP 2000150499 A JP2000150499 A JP 2000150499A
Authority
JP
Japan
Prior art keywords
reactor
torr
pressure
boat
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10317888A
Other languages
Japanese (ja)
Inventor
Mikio Wakamiya
宮 幹 夫 若
Yoshio Kasai
井 良 夫 笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10317888A priority Critical patent/JP2000150499A/en
Publication of JP2000150499A publication Critical patent/JP2000150499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low pressure CVD device by which a BSG film with uniform boron concentration is formed on the surface of a semiconductor wafer without using a dispersion nozzle, and a method by which a BSG film with uniform boron concentration can be formed with good reproducibility by using a CVD device. SOLUTION: A low pressure CVD device 20 has a boat 4 holding a plurality of wafers 10 to be treated, a reaction furnace in which the boat 4 is housed, a heater 5 which is provided around the reaction furnace and heats atmosphere in the reaction furnace, and gas introducing pipes 2 and 3 through which reactive gas is introduced into the reaction furnace. In a manufacturing method which employs a CVD device 20 to form boron silicate glass(BSG) thin films on the wafers 10 to be treated, source gas containing not less than 4% wt.ratio of boron (B) is supplied through the gas introducing pipes 2 and 3 whose outlets are provided at positions lower than a position where the wafers 10 to be treated are held at 600 deg.C-800 deg.C under 1 Torr-5 Torr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置お
よび半導体装置の製造方法に関し、特に、減圧CVD装
置およびこれを用いて半導体ウェーハ上にBSG膜を形
成する工程を含む半導体装置の製造方法に関する。
The present invention relates to a semiconductor manufacturing apparatus and a method of manufacturing a semiconductor device, and more particularly to a low-pressure CVD apparatus and a method of manufacturing a semiconductor device including a step of forming a BSG film on a semiconductor wafer using the same. .

【0002】[0002]

【従来の技術】半導体装置の製造においては、シリコン
をRIE(Reactive Ion Etching)により選択的に除去
する工程で酸化膜がマスク材として利用される。また、
RIEの工程終了後にマスク材のみを選択的に剥離する
場合には、酸化膜中にボロン(B)を高濃度にドープし
たボロンシリケートグラス(Boron-Silicate Glass、以
下、単にBSGという)が広く用いられている。
2. Description of the Related Art In the manufacture of semiconductor devices, an oxide film is used as a mask material in a step of selectively removing silicon by RIE (Reactive Ion Etching). Also,
When selectively stripping only the mask material after the RIE step completion, boron silicate glass doped with boron (B) in high concentration in the oxide film (B oron- S ilicate G lass, hereinafter, simply referred to as BSG) Is widely used.

【0003】バッチ式のLP−CVD(Low Pressure-C
hemical Vapor Deposition)装置を用いて従来の技術に
よりBSG膜を製造する方法を図3を参照しながら説明
する。
[0003] Batch type LP-CVD (Low Pressure-C
A method of manufacturing a BSG film by a conventional technique using a chemical vapor deposition (apparatus) will be described with reference to FIG.

【0004】図3は、従来のLP−CVD装置の一例の
炉構造を示す概略図である。同図に示すLP−CVD装
置50は、アウターチューブ1およびインナーチューブ
6を有する二重構造の反応管を有し、インナーチューブ
6の内側に被処理ウェーハである半導体基板10を保持
するボート4を備えている。インナーチューブ6の底部
近傍からは、反応ガスを導入するノズル3,52がイン
ナーチューブ6内に延在して配設されている。
FIG. 3 is a schematic view showing a furnace structure of an example of a conventional LP-CVD apparatus. The LP-CVD apparatus 50 shown in FIG. 1 has a double-structured reaction tube having an outer tube 1 and an inner tube 6, and a boat 4 for holding a semiconductor substrate 10 which is a wafer to be processed inside the inner tube 6. Have. From the vicinity of the bottom of the inner tube 6, nozzles 3 and 52 for introducing a reaction gas are provided to extend into the inner tube 6.

【0005】ノズル52は、ボート4の上端の周辺領域
に至るまで配設され、このノズル内を通って反応ガスが
インナーチューブ内に導入される。使用済の反応ガス
は、インナーチューブ6とアウターチューブ1とに挟ま
れた領域を通過して装置下部に設けられた排気口12,
13から排出される。ウェーハ10の加熱は反応管の外
側に設けられたヒータ5により行われる。また、LP−
CVD装置50の底部に設けられた減圧口15には、真
空ポンプ11が接続され、これにより反応管内の気圧が
調整される。
[0005] The nozzle 52 is disposed up to the peripheral region of the upper end of the boat 4, and the reaction gas is introduced into the inner tube through the nozzle. The used reaction gas passes through a region sandwiched between the inner tube 6 and the outer tube 1 and has an exhaust port 12 provided at a lower portion of the apparatus.
13 to be discharged. The heating of the wafer 10 is performed by a heater 5 provided outside the reaction tube. LP-
The vacuum pump 11 is connected to the pressure reducing port 15 provided at the bottom of the CVD apparatus 50, and thereby the pressure inside the reaction tube is adjusted.

【0006】従来、このようなLP−CVD装置50を
用いてBSG膜を形成する場合は、ボート4に保持され
た半導体基板の位置に対応する複数の噴射口を有する分
散ノズルを用いてボロンのソースとなるガス、例えば、
ホウ酸トリメチル(TMB)を反応炉内に導いていた。
これは、多数の半導体基板にソースガスを均等に供給す
るためであり、これにより半導体基板上に、均一のボロ
ン濃度を有するBSG膜を均一の膜厚で形成することが
できた。
Conventionally, when a BSG film is formed using such an LP-CVD apparatus 50, boron is dispersed using a dispersion nozzle having a plurality of injection ports corresponding to the positions of the semiconductor substrates held on the boat 4. Source gas, for example,
Trimethyl borate (TMB) was introduced into the reactor.
This is to supply the source gas evenly to many semiconductor substrates, whereby a BSG film having a uniform boron concentration can be formed on the semiconductor substrates with a uniform thickness.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述の
分散ノズルを用いた成膜方法では、濃度および膜厚の均
一化はガスノズルの口径に依存するところが大きい。従
って、定期メンテナンス等によりガスノズルを交換した
場合に、ガスノズルの加工精度にばらつきがあるとノズ
ルの交換前後でプロセスの再現性を得ることができない
という問題点があった。
However, in the film forming method using the above-mentioned dispersion nozzle, uniformity of the concentration and the film thickness largely depends on the diameter of the gas nozzle. Therefore, when the gas nozzle is replaced due to regular maintenance or the like, if the processing accuracy of the gas nozzle varies, there is a problem that reproducibility of the process cannot be obtained before and after the replacement of the nozzle.

【0008】本発明は、上記事情に鑑みてなされたもの
であり、その目的は分散ノズルを用いることなく均一の
ボロン濃度を有するBSG膜を半導体ウェーハの表面に
形成するLP−CVD装置およびこれを用いた半導体装
置の製造方法において、均一のボロン濃度を有するBS
G膜を再現性良く形成する方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an LP-CVD apparatus for forming a BSG film having a uniform boron concentration on the surface of a semiconductor wafer without using a dispersion nozzle, and an LP-CVD apparatus using the same. In a method of manufacturing a semiconductor device using the same, a BS having a uniform boron concentration is used.
An object of the present invention is to provide a method for forming a G film with good reproducibility.

【0009】[0009]

【課題を解決するための手段】本発明は、以下の手段に
より上記課題の解決を図る。
The present invention solves the above problems by the following means.

【0010】即ち、本発明によれば、複数の被処理ウェ
ーハを保持するボートと、このボートを収納する反応炉
と、この反応炉の周囲に配設され、上記反応炉内の雰囲
気を約600℃〜約800℃の温度まで加熱するヒータ
と、上記被処理ウェーハが保持される位置よりも下方に
位置する噴出口を有し、重量比4%以上の濃度のホウ素
(B)を含むソースガスを上記反応炉内に導入するガス
導入管と、上記反応炉内の気圧を0.1Torr〜5T
orrに維持する減圧手段と、を備えた減圧CVD(Ch
emical Vapor Deposition)装置が提供される。
That is, according to the present invention, a boat for holding a plurality of wafers to be processed, a reaction furnace for accommodating the boat, and a reactor provided around the reaction furnace, which have an atmosphere in the reaction furnace of about 600 A heater for heating to a temperature of about 800 ° C. to about 800 ° C., and a source gas including a spout located below a position where the wafer to be processed is held and containing boron (B) at a concentration by weight of 4% or more. And a gas introduction pipe for introducing the gas into the reactor, and the pressure in the reactor is set to 0.1 Torr to 5 T.
decompression CVD (Ch
An emical Vapor Deposition device is provided.

【0011】上記減圧CVD装置は、上記反応炉内の雰
囲気が約700℃で維持されるように上記ヒータを制御
する温度制御手段をさらに備えることが望ましい。
It is preferable that the low pressure CVD apparatus further includes a temperature control means for controlling the heater so that the atmosphere in the reaction furnace is maintained at about 700 ° C.

【0012】上記減圧CVD装置はまた、上記反応炉内
の気圧が約0.5Torrで維持されるように上記減圧
手段を制御する減圧制御手段をさらに備えることがより
望ましい。
[0012] More preferably, the reduced pressure CVD apparatus further includes reduced pressure control means for controlling the reduced pressure means so that the pressure in the reaction furnace is maintained at about 0.5 Torr.

【0013】また、本発明によれば、複数の被処理ウェ
ーハを保持するボートと、このボートを収納する反応炉
と、この反応炉の周囲に配設され、上記反応炉内の雰囲
気を加熱するヒータと、上記被処理ウェーハが保持され
る位置よりも下方に位置する噴出口から反応ガスを上記
反応炉内に導入するガス導入管とを備えた減圧CVD装
置を用いた、半導体装置の製造方法であって、約600
℃〜約800℃の温度および0.1Torr〜5Tor
rの圧力で、重量比4%以上の濃度のホウ素(B)を含
むソースガスを上記ガス導入管から供給して上記被処理
ウェーハ上にボロンシリケートグラス(BSG)の薄膜
を形成する工程を備えた半導体装置の製造方法が提供さ
れる。
Further, according to the present invention, a boat for holding a plurality of wafers to be processed, a reactor for accommodating the boat, and a heater disposed around the reactor for heating the atmosphere in the reactor. A method for manufacturing a semiconductor device, comprising: using a low-pressure CVD apparatus including a heater and a gas introduction pipe for introducing a reaction gas into the reaction furnace from an ejection port located below a position where the wafer to be processed is held. And about 600
° C to about 800 ° C and 0.1 Torr to 5 Torr
forming a thin film of boron silicate glass (BSG) on the wafer to be processed by supplying a source gas containing boron (B) at a weight ratio of 4% or more from the gas introduction pipe at a pressure of r. A method for manufacturing a semiconductor device is provided.

【0014】上記ソースガスには、ホウ酸トリメチル
(TMB:Trimethyl Borate)またはホウ酸トリエチル
(TEB:Triethyl Borate)を含むと良い。
The above source gas preferably contains trimethyl borate (TMB) or triethyl borate (TEB).

【0015】また、上記製造方法において、上記反応炉
内の雰囲気を約700℃まで加熱することが好ましい。
In the above-mentioned manufacturing method, it is preferable that the atmosphere in the reaction furnace is heated to about 700 ° C.

【0016】また、上記製造方法において、上記反応炉
内の気圧は、約0.5Torrであるとさらに好まし
い。
In the above method, it is more preferable that the pressure in the reactor is about 0.5 Torr.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態のいく
つかについて図面を参照しながら説明する。なお、以下
の各図において、図3と同一の部分については、同一の
参照番号を付してその詳細な説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the same portions as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0018】図1は、本発明にかかる減圧CVD装置の
実施の一形態の炉構造を示す概略図である。図3との対
比において明らかなように、同図に示すバッチ式LP−
CVD装置20は、ソースガスを導くノズルとして分散
ノズルでなく、被処理ウェーハ10が保持される位置よ
りも下方に位置する噴出口を有する短ノズル2を備えた
点に特徴がある。その他の点は、図3に示す減圧CVD
装置50とほぼ同一である。
FIG. 1 is a schematic diagram showing a furnace structure of one embodiment of a low pressure CVD apparatus according to the present invention. As is clear from comparison with FIG. 3, the batch type LP-
The CVD apparatus 20 is characterized in that a short nozzle 2 having an ejection port located below a position where the processing target wafer 10 is held is provided as a nozzle for guiding a source gas, instead of a dispersion nozzle. Other points are the low pressure CVD shown in FIG.
It is almost the same as the device 50.

【0019】次に、図1に示す減圧CVD装置20を用
いた半導体の製造方法について、本発明にかかる半導体
装置の製造方法の実施の一形態として説明する。本実施
形態は、短ノズル2を用いて炉内のボロン濃度が重量比
4%以上になるよう材料ガスを反応炉に供給する点に特
徴がある。
Next, a method of manufacturing a semiconductor using the low pressure CVD apparatus 20 shown in FIG. 1 will be described as an embodiment of a method of manufacturing a semiconductor device according to the present invention. The present embodiment is characterized in that the material gas is supplied to the reaction furnace using the short nozzle 2 so that the boron concentration in the furnace becomes 4% by weight or more.

【0020】図2は、本実施形態の半導体装置製造方法
によってBSG膜を形成したときの炉内のボロン濃度
(横軸:重量比%)とBSG膜のボロン濃度均一性(縦
軸:%)との関係を示す相関図である。短ノズル2とし
ては、L字型の25mm−6mmφを用い、温度700
℃、圧力0.5Torrの成膜条件で、材料ガスとして
短ノズル2からホウ酸トリメチル(TMB)を供給し、
また、短ノズル3からオルトケイ酸エチル(TEOS:
Tetraethoxysilane)を供給した。
FIG. 2 shows the boron concentration in the furnace (horizontal axis: weight ratio%) and the boron concentration uniformity of the BSG film (vertical axis:%) when the BSG film is formed by the semiconductor device manufacturing method of this embodiment. FIG. 6 is a correlation diagram showing a relationship with the following. As the short nozzle 2, an L-shaped 25 mm−6 mmφ is used, and the temperature is 700
Trimethyl borate (TMB) was supplied from the short nozzle 2 as a material gas under a film forming condition of 0 ° C. and a pressure of 0.5 Torr,
In addition, ethyl orthosilicate (TEOS:
Tetraethoxysilane).

【0021】図2からわかるように、炉内のボロン濃度
が重量比4%以上の領域においては、短ノズル2を用い
た場合でも半導体ウェーハに形成されるBSG膜中のボ
ロン濃度のばらつきを4%未満に抑制することができ
る。
As can be seen from FIG. 2, in the region where the boron concentration in the furnace is 4% by weight or more, even when the short nozzle 2 is used, the variation in the boron concentration in the BSG film formed on the semiconductor wafer is reduced by 4%. %.

【0022】また、ウェット系のエッチングによりBS
G膜を選択的に剥離するプロセスがある。このとき、残
存させる酸化膜との選択比は、BSG膜中のボロン濃度
に依存する。このため、十分な選択比を得るためにはB
SG膜中にボロンを高濃度でドープさせる必要がある。
この場合に、本実施形態の半導体製造方法を用いてBS
G膜のボロン濃度が重量比4%以上になるように材料ガ
スを供給すれば、図2に示す短ノズル2を用いた成膜が
可能である。これにより、高い再現性でBSG膜を形成
することができる。
In addition, BS is formed by wet etching.
There is a process for selectively removing the G film. At this time, the selectivity with respect to the remaining oxide film depends on the boron concentration in the BSG film. Therefore, in order to obtain a sufficient selection ratio, B
It is necessary to dope the SG film with a high concentration of boron.
In this case, using the semiconductor manufacturing method of the present embodiment, the BS
If the material gas is supplied such that the boron concentration of the G film becomes 4% or more by weight, film formation using the short nozzle 2 shown in FIG. 2 is possible. Thereby, a BSG film can be formed with high reproducibility.

【0023】以上、本発明の実施の形態について説明し
たが、本発明は上記形態に限るものでなく、その要旨を
逸脱しない範囲で種々変形して用いることができる。ま
た、材料や各種成膜条件は要求仕様に応じて変更するこ
とが可能である。例えば、上記実施形態ではボロンのソ
ースガスとして、ホウ酸トリメチル(TMB)を用いた
が、これに限ることなく、例えばホウ酸トリエチル(T
EB)を用いても良い。また、成膜条件も、700℃に
限らず、600℃〜800℃の範囲内でも良い結果が得
られている。さらに、圧力に関しても、0.5Torr
に限らず、0.1Torr〜5Torrの範囲で図2に
示す均一性とほぼ同様に良好な均一性が得られる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be variously modified and used without departing from the gist thereof. Further, materials and various film forming conditions can be changed according to required specifications. For example, in the above embodiment, trimethyl borate (TMB) was used as the boron source gas. However, the present invention is not limited to this. For example, triethyl borate (TMB) may be used.
EB) may be used. Also, the film forming conditions are not limited to 700 ° C., and good results are obtained in the range of 600 ° C. to 800 ° C. Further, regarding the pressure, 0.5 Torr
However, good uniformity can be obtained almost in the range of 0.1 Torr to 5 Torr, similarly to the uniformity shown in FIG.

【0024】[0024]

【発明の効果】以上詳述したとおり、本発明は、以下の
効果を奏する。
As described in detail above, the present invention has the following effects.

【0025】即ち、本発明にかかる半導体製造装置によ
れば、被処理ウェーハが保持される位置よりも下方に位
置する噴出口を有し、重量比4%以上の濃度のホウ素
(B)を含むソースガスを上記反応炉内に導入するガス
導入管を備えているので、分散ノズルを用いることな
く、上記被処理ウェーハの表面に均一のボロン濃度及び
膜厚のBSG膜を形成することができる。
That is, according to the semiconductor manufacturing apparatus of the present invention, the semiconductor manufacturing apparatus has an ejection port located below a position where a wafer to be processed is held, and contains boron (B) at a weight ratio of 4% or more. Since the gas introduction pipe for introducing the source gas into the reaction furnace is provided, a BSG film having a uniform boron concentration and a uniform thickness can be formed on the surface of the wafer to be processed without using a dispersion nozzle.

【0026】また、本発明にかかる半導体装置の製造方
法によれば、重量比4%以上の濃度のボロン(B)を含
むソースガスを被処理ウェーハが保持される位置よりも
下方に位置する噴出口を有するガス導入管から反応炉内
に供給するので、ウェーハ間でボロン濃度の均一性の良
いBSG膜を安定して製造することができる。これによ
り、ガスノズルの加工精度に多少のばらつきがあっても
交換前後で成膜条件を変更する必要がないので、再現性
の高い半導体製造方法が提供される。
Further, according to the method of manufacturing a semiconductor device of the present invention, the source gas containing boron (B) having a concentration by weight of 4% or more is injected under the position below the position where the wafer to be processed is held. Since the gas is supplied into the reaction furnace from the gas introduction tube having the outlet, a BSG film having a uniform boron concentration between wafers can be stably manufactured. Thus, even if there is some variation in the processing accuracy of the gas nozzle, it is not necessary to change the film forming conditions before and after the replacement, so that a highly reproducible semiconductor manufacturing method is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体装置の製造方法の一実施形
態に用いるLP−CVD装置の炉構造を示す概略図であ
る。
FIG. 1 is a schematic view showing a furnace structure of an LP-CVD apparatus used in an embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】炉内ボロン濃度とウェーハ間のボロン濃度均一
性の関係を示す相関図である。
FIG. 2 is a correlation diagram showing a relationship between boron concentration in a furnace and boron concentration uniformity between wafers.

【図3】従来のLP−CVD装置の一例の炉構造を示す
概略図である。
FIG. 3 is a schematic diagram showing a furnace structure of an example of a conventional LP-CVD apparatus.

【符号の説明】[Explanation of symbols]

1 アウターチューブ 2,3,52 ノズル 4 ボート 5 ヒータ 6 インナーチューブ 8 フランジ 9 熱遮蔽板 10 被処理ウェーハ 11 真空ポンプ 12,13 排出口 20 減圧CVD装置 DESCRIPTION OF SYMBOLS 1 Outer tube 2, 3, 52 Nozzle 4 Boat 5 Heater 6 Inner tube 8 Flange 9 Heat shielding plate 10 Wafer to be processed 11 Vacuum pump 12, 13 Discharge port 20 Low pressure CVD apparatus

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA11 BA26 BA42 BA44 EA06 FA10 GA02 JA09 JA10 KA04 KA23 KA28 KA41 LA15 5F045 AA06 AB36 AC08 AC09 AD10 AD11 AD12 AE19 AE21 AF03 BB02 BB03 BB04 DP19 DQ05 DQ10 EC02 EC08 EE15 EF02 EF08 EF20 EK06 GB05 5F058 BA20 BC02 BC04 BF04 BF25 BF32 BJ02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA11 BA26 BA42 BA44 EA06 FA10 GA02 JA09 JA10 KA04 KA23 KA28 KA41 LA15 5F045 AA06 AB36 AC08 AC09 AD10 AD11 AD12 AE19 AE21 AF03 BB02 BB03 BB04 DP19 DQ05 EF20 EC02 EF02 EC08 EK06 GB05 5F058 BA20 BC02 BC04 BF04 BF25 BF32 BJ02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数の被処理ウェーハを保持するボート
と、 前記ボートを収納する反応炉と、この反応炉の周囲に配
設され、前記反応炉内の雰囲気を約600℃〜約800
℃の温度まで加熱するヒータと、 前記被処理ウェーハが保持される位置よりも下方に位置
する噴出口を有し、重量比4%以上の濃度のホウ素
(B)を含むソースガスを前記反応炉内に導入するガス
導入管と、 前記反応炉内の気圧を0.1Torr〜5Torrに維
持する減圧手段と、を備えた減圧CVD(Chemical Vap
or Deposition)装置。
1. A boat for holding a plurality of wafers to be processed, a reactor for accommodating the boat, and a reactor disposed around the reactor, wherein the atmosphere in the reactor is about 600 ° C. to about 800 ° C.
A heater that heats the wafer to a temperature of about 10 ° C., and a jet port that is located below a position where the wafer to be processed is held, and the source gas containing boron (B) having a concentration by weight of 4% or more is supplied to the reaction furnace. Low pressure CVD (Chemical Vap) having a gas introduction pipe for introducing gas into the reactor, and pressure reducing means for maintaining the pressure in the reactor at 0.1 Torr to 5 Torr.
or Deposition) device.
【請求項2】前記反応炉内の雰囲気が約700℃で維持
されるように前記ヒータを制御する温度制御手段をさら
に備えたことを特徴とする請求項1に記載の減圧CVD
装置。
2. The low pressure CVD according to claim 1, further comprising a temperature control means for controlling the heater so that the atmosphere in the reaction furnace is maintained at about 700 ° C.
apparatus.
【請求項3】前記反応炉内の気圧が約0.5Torrで
維持されるように前記減圧手段を制御する減圧制御手段
をさらに備えたことを特徴とする請求項1または2に記
載の減圧CVD装置。
3. The low-pressure CVD according to claim 1, further comprising a low-pressure control unit that controls the low-pressure unit so that the pressure in the reactor is maintained at about 0.5 Torr. apparatus.
【請求項4】複数の被処理ウェーハを保持するボート
と、前記ボートを収納する反応炉と、この反応炉の周囲
に配設され、前記反応炉内の雰囲気を加熱するヒータ
と、前記被処理ウェーハが保持される位置よりも下方に
位置する噴出口から反応ガスを前記反応炉内に導入する
ガス導入管とを備えた減圧CVD装置を用いた、半導体
装置の製造方法であって、 約600℃〜約800℃の温度および0.1Torr〜
5Torrの圧力で、重量比4%以上の濃度のホウ素
(B)を含むソースガスを前記ガス導入管から供給して
前記被処理ウェーハ上にボロンシリケートグラス(BS
G)の薄膜を形成する工程を備えた半導体装置の製造方
法。
4. A boat for holding a plurality of wafers to be processed, a reactor for accommodating the boat, a heater disposed around the reactor and heating an atmosphere in the reactor, A method for manufacturing a semiconductor device using a reduced-pressure CVD apparatus having a gas introduction pipe for introducing a reaction gas into the reaction furnace from an ejection port located below a position where a wafer is held; C. to a temperature of about 800 C. and 0.1 Torr.
At a pressure of 5 Torr, a source gas containing boron (B) at a concentration of 4% or more by weight is supplied from the gas introduction pipe to form a boron silicate glass (BS) on the wafer to be processed.
G) A method for manufacturing a semiconductor device comprising the step of forming a thin film.
【請求項5】前記ソースガスは、ホウ酸トリメチル(T
MB:Trimethyl Borate)を含むことを特徴とする請求
項4に記載の半導体装置の製造方法。
5. The method according to claim 1, wherein the source gas is trimethyl borate (T
The method for manufacturing a semiconductor device according to claim 4, wherein MB: Trimethyl Borate is included.
【請求項6】前記ソースガスは、ホウ酸トリエチル(T
EB:Triethyl Borate)を含むことを特徴とする請求
項4に記載の半導体装置の製造方法。
6. The source gas is triethyl borate (T
5. The method according to claim 4, further comprising EB (Triethyl Borate).
JP10317888A 1998-11-09 1998-11-09 Low pressure cvd device and manufacture of semiconductor device Pending JP2000150499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10317888A JP2000150499A (en) 1998-11-09 1998-11-09 Low pressure cvd device and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10317888A JP2000150499A (en) 1998-11-09 1998-11-09 Low pressure cvd device and manufacture of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004170150A Division JP2004266297A (en) 2004-06-08 2004-06-08 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000150499A true JP2000150499A (en) 2000-05-30

Family

ID=18093183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10317888A Pending JP2000150499A (en) 1998-11-09 1998-11-09 Low pressure cvd device and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000150499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434516B1 (en) * 2001-08-27 2004-06-05 주성엔지니어링(주) semiconductor manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434516B1 (en) * 2001-08-27 2004-06-05 주성엔지니어링(주) semiconductor manufacturing apparatus
US6966951B2 (en) 2001-08-27 2005-11-22 Jusung Engineering Co., Ltd. Apparatus of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
KR100481441B1 (en) Method for manufacturing a semiconductor device and apparatus for manufacturing a semiconductor
TW460943B (en) Reduction of mobile ion and metal contamination in HDP-CVD chambers using chamber seasoning film depositions
US6235112B1 (en) Apparatus and method for forming thin film
KR101081628B1 (en) Gas distribution showerhead featuring exhaust apertures
KR100518156B1 (en) Method and apparatus for elimination of teos/ozone silicon oxide surface sensitivity
KR0155151B1 (en) Apparatus for reaction treatment
TWI436423B (en) Oxidation apparatus and method for semiconductor process
US5702531A (en) Apparatus for forming a thin film
KR20080029846A (en) Film formation method and apparatus for forming silicon oxide film
US20090124083A1 (en) Film formation apparatus and method for using same
CN109671611B (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20090114156A1 (en) Film formation apparatus for semiconductor process
JPH0786174A (en) Film deposition system
US6170492B1 (en) Cleaning process end point determination using throttle valve position
JPH11345778A (en) Method for cleaning film preparing apparatus and mechanism for cleaning the apparatus
JP2002009072A (en) Method and apparatus for forming silicon nitride film
KR100413914B1 (en) Film Formation Method
JP2000150499A (en) Low pressure cvd device and manufacture of semiconductor device
US20020108930A1 (en) Apparatus for removing native oxide layers from silicon wafers
KR20030074418A (en) Substrate processing method and apparatus
KR970023821A (en) STO and BTO thin film manufacturing method and device thereof having high dielectric properties
JP2004266297A (en) Manufacturing method of semiconductor device
JP4464364B2 (en) Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP7408772B2 (en) Substrate processing equipment, exhaust equipment, semiconductor device manufacturing method, substrate processing method and program
JPS63266072A (en) Vapor phase reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803