JP2004265865A - アルカリ電池用酸化銀粉末およびその製造方法 - Google Patents

アルカリ電池用酸化銀粉末およびその製造方法 Download PDF

Info

Publication number
JP2004265865A
JP2004265865A JP2004035297A JP2004035297A JP2004265865A JP 2004265865 A JP2004265865 A JP 2004265865A JP 2004035297 A JP2004035297 A JP 2004035297A JP 2004035297 A JP2004035297 A JP 2004035297A JP 2004265865 A JP2004265865 A JP 2004265865A
Authority
JP
Japan
Prior art keywords
silver oxide
silver
oxide powder
less
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004035297A
Other languages
English (en)
Other versions
JP4756189B2 (ja
Inventor
Koji Tagami
幸治 田上
Yoshiyuki Masachi
吉行 正地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004035297A priority Critical patent/JP4756189B2/ja
Publication of JP2004265865A publication Critical patent/JP2004265865A/ja
Application granted granted Critical
Publication of JP4756189B2 publication Critical patent/JP4756189B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】 正極としての酸化銀そのものに自己放電を起こし難い性質を持たせることにより,貯蔵特性の良好な酸化銀電池を得る。
【解決手段】 50℃のKOH40%水溶液中で24時間浸漬したときの電Ag溶出量が40mg/L以下であるアルカリ電池用酸化銀粉末,さらには50℃のKOH40%水溶液中で72時間浸漬した後にもX線回折法にてAgのピークが実質的に現れないアルカリ電池用酸化銀粉末である。この酸化銀粉末は,粉末X線回折法により,(111) 面の半価巾から計算される結晶子サイズが250オングストロームを超え1000オングストローム以下であり,粒子径については,二次粒子の平均粒径が1μm以上500μm以下,二次粒子を形成する一次粒子が0.1μm以上10.0μm以下,そしてBET法による比表面積が5m2/g 以下である。
【選択図】 なし

Description

本発明は,酸化銀電池用の正極材料,すなわちアルカリ電池用酸化銀粉末およびその製造方法に関する。
酸化銀電池は,酸化銀(Ag2O)を正極材料とし亜鉛を負極活物質として構成される電池である。この電池は電圧を長時間一定に保つことができるので主に水晶発振時計駆動用電源やゲーム機のIC駆動電源等に用いられている。
酸化銀電池は一般に次のように構成される。電池の正極は,活物質としての酸化銀粉末に,MnO2,NiOOH,CoOOH,AgNiO2,AgCoO2,CaO,MnO,HgO,CdO,CdS,ポリテトラフルオロエチレン,金属銀,AgOおよびカーボンからなる群から選ばれた少なくとも1種の添加剤を配合して形成される。正極合材と呼ばれるこれらの混合物は一般には金型プレスによって円盤状に成形される(これを,合材成形体と呼ぶ)。
合材成形体はステンレス鋼またはステンレス鋼の積層材からなる缶(正極缶)に収容されており,解放された側の合材成形体上にセパレーターが乗せられ,負極の亜鉛ペーストを充填した缶(負極缶)と合体される。正極缶と負極缶との間の絶縁体封止材として一般にナイロン製リングが用いられる。電解液にはNaOH,KOHまたはその混合物が用いられる。電解液の注入は正極缶に合材成形体を収容した後に行うことが多い。負極の亜鉛ペーストにも電解液を添加する場合がある。組み立てられた電池は電解液が合剤成形体へ浸透しやすいように加圧養生される。
酸化銀電池に求められる特性のうち,特に重視されるのは例えば5年以上の使用に耐え得ること等の長寿命である。高温下になる場合や,常温中に数年間保管した場合にも変わらない特性を有しなければならない。しかし,実際には酸化銀(Ag2O)は電解液中で不安定である。このため,Ag2Oがアルカリ溶液中に溶解し,溶解したAgイオンがZn負極に到達し,Zn負極と反応して自己放電を生じたり,Ag2O自身の分解反応によってAgが析出し,これによる自己放電が起きることがある。
このような自己放電を抑制するために,正極と負極の間にセロハンを位置せしめ,そのセロハンで溶解したAgイオンを捕集することで負極への拡散を防ぐ技術が開発された。更にはポリプロピレンフィルムやPEGF膜を正極とセロハンの間に設置し,これらを多層化することも採用されている。しかし,セロファンがAgイオンにより酸化され,その機能が劣化することは避けられない。また,セパレータの多層化についても電池の容積に限界があることから,これにも自ずと限界がある。
このようなことから,正極側からの対策として,例えば特許文献1には正極合材にCdを添加して銀の溶出を抑える方法,特許文献2にはAg2O中に酸化亜鉛を添加する方法,特許文献3には酸化銀正極を二酸化マンガンとカーボンの混合成形体で挟む方法などが提案されている。
特開昭59-167963 号公報 特開昭55-133765 号公報 特開平2-12762 号公報
前記のように,酸化銀電池の自己放電に関しては,セパレーター側では種々の改良が試みられているが,Cdを添加する方法は,今後,環境上,望まれていない。酸化亜鉛を添加する方法では酸化亜鉛が活物質として機能しないため,電池容量の低下をもたらしてしまうし,二酸化マンガンとカーボンの混合成形体を正極とセパレータの間に設置する方法では,電池製造工程が煩雑となることは否めず,コスト高になってしまうといった問題がある。
このような問題は,正極としての酸化銀そのものを自己放電を起こし難いものにすれば解決し得るが,そのような例は報告がない。したがって,本発明の目的は,自己放電の少ない電池用酸化銀粉末を得ることにある。
本発明者らは,前記の課題に関わる問題について研究を続けてきたが,電解液への銀イオン溶出速度は酸化銀の粉体特性や酸化銀の結晶性の影響を受けることから,これらの特性を適正にコントロールすれば自己放電の少ない酸化銀を得ることができ,貯蔵後の放電容量の維持率が改良されることがわかった。とくに,銀イオンの溶解速度を小さくするには,酸化銀粉体の比表面積,一次粒子径および結晶粒子径を所定の範囲とすることが必要であり,これらの要因は相互に複雑に絡み合っており,その要因の一つでも欠けると改良効果が不十分となる。さらに,電池の貯蔵性という点からは,電解液中への銀イオンの溶出速度だけではなく,電解液中での酸化銀の還元分解反応も重要であり,電解液中でも酸化銀が酸化物として安定である必要がある。
このような知見事実に基づき,本発明によれば,50℃のKOH40%水溶液中で24時間浸漬したときに該液中へのAg溶出量が40mg/L(Lはリットルを表す)以下であるアルカリ電池用酸化銀粉末,さらには50℃のKOH40%水溶液中で72時間浸漬した後にもX線回折法にてAgのピークが実質的に現れないアルカリ電池用酸化銀粉末を提供するものである。
このアルカリ電池用酸化銀粉末は,粉末X線回折法により,(111) 面の半価巾から計算される結晶子サイズが250オングストロームを超え1000オングストローム以下であり,粒子径については,二次粒子の平均粒径が1μm以上500μm以下,二次粒子を形成する一次粒子が0.1μm以上10.0μm以下,そして比表面積については,BET法による比表面積が5m2/g 以下であるのがよい。
本発明によれば,この酸化銀粉末に,MnO2,NiOOH,CoOOH,AgNiO2,AgCoO2,CaO,MnO,HgO,CdO,CdS,ポリテトラフルオロエチレン,金属銀,AgOおよびカーボンからなる群から選ばれた少なくとも1 種の添加剤を配合して成形してなるアルカリ電池用正極合材成形体,さらには,負極活物質,正極活物質,アルカリ電解液,セパレータ,及び缶体からなるアルカリ電池において,負極活物質としてZnを主成分とする合金,電解液としてNaOH,KOHまたはその混合物,正極活物質として前記の酸化銀を用いたアルカリ電池を提供する。
本発明の酸化銀粉末は自己放電を起こし難い性質を有するから,貯蔵特性の良好な酸化銀電池を構成することができる。
本発明に従う酸化銀は,電解液中へのAgイオンの溶出量が少ない点に一つの特徴があり,50℃のKOH40%水溶液に24時間浸漬させたときのAgイオン溶出量が40mg/L以下である。Agイオン溶出量がこれより多いと,溶解したAgイオンがZn負極に達する速度が大きくなり,いわゆる自己放電を生じる速度も速くなる。また50℃のKOH40%水溶液中で72時間浸漬した後にもX線回折法にてAgのピークが実質的に現れない。すなわち,この浸漬でも酸化銀からAgが析出しない。このことは電解液中での安定性を表しており,その結果,電池の貯蔵後の容量維持率が良好となる。
このような耐自己放電性および耐分解性を示す酸化銀においては,粉末X線回折法にて(111) 面のピークの半価巾から計算される結晶子サイズが250オングストロームを超え1000オングストローム以下であり,粒子径については,二次粒子の平均粒径が1μm以上500μm以下,二次粒子を形成する一次粒子が0.1μm以上10.0μm以下,そして比表面積については,BET法による比表面積が5m2/g 以下であるのがよい。
結晶子サイズが250オングストローム以下であると電解液中で不安定となるのではないかと推察されるが,電解液中で酸化銀の還元が進みやすくなる。このため,250オングストロームより大きな結晶子サイズを有することが必要である。しかし,1000オングストロームを超えようなものは実際には製造しがたく,得られたとしても,その効果は飽和するので,250超え〜1000オングストローム好ましくは270〜1000オングストロームであるのがよい。
酸化銀の粒子径(平均粒子径)については,一次粒子が集合して形成される二次粒子径が1μm未満では嵩高い粉体となり,流動性が悪くなって取り扱い難くなると共に貯蔵後の容量維持率を良好に維持することも困難となる。しかし,二次粒径が500μmを超えても貯蔵後の容量維持率に対しては大きな効果は期待できない。したがって,二次粒子径は1〜500μm,好ましくは1.5〜500μm,さらに好ましくは5〜300μmであるのがよい。二次粒子を形成している一次粒子径については0.1μm未満では電解液中での安定性が悪くなって酸化銀が還元されやすくなるので好ましくない。しかし10μmより大きく成長させるには特殊な反応となり,そのためにコスト高になってしまう。このため,一次粒子径は0.1〜10μm,好ましくは0.5〜5μm程度であるのがよい。
酸化銀の比表面積については,BET法による測定値で5m2/g 以下である必要があり,好ましくは4m2/g 以下,さらに好ましくは0.5m2/g以下である。比表面積が5m2/g を超えると電解液中への銀イオンの溶出速度が速くなり,またAgへの還元が進みやすくなって本発明の目的が達成できなくなる。
このような酸化銀の粉体特性や結晶子サイズと,電解液中へのAgイオン溶出速度並びに耐分解性との関係は複雑であり,相互に絡みあっていて個別に説明することは困難であるが,要するところ,一次粒子径が大きく,比表面積が小さく且つ結晶子サイズが大きなものが貯蔵特性がよく,これらの特性が一つでも欠けると貯蔵性の良い電池は得られない。
本発明に従う酸化銀は,次のような工程を経て製造することができる。不純物の低減のために3と4の工程は2回以上繰り返されることもある。
1.水中で銀塩とアルカリを中和反応させてスラリーを得る工程(中和工程という)。
2.前記スラリーから固体粒子成分を分離する工程(同固液分離工程)。
3.固体粒子成分を洗浄する工程(同洗浄工程) 。
4.固体粒子成分を100℃以上の温度で脱水若しくは分解させる工程(同熱処理工程)
〔中和工程〕
中和工程ではAgの無機酸塩とアルカリ化合物とを水中で適度に攪拌しながら反応させる工程であり,この反応方法にはAg塩にアルカリを添加する方法,アルカリ水溶液にAg塩を添加する方法,またはAg塩とアルカリを同時に水に添加する方法などがあるが,電池用の酸化銀としては,Ag塩にアルカリを添加する方法もしくはAg塩とアルカリを水に同時に添加する方法がよい。Ag塩としては銀の硫酸塩または硝酸塩が好ましく,アルカリ化合物としては, NaOH,KOH,NH3,(NH3)2CO3, Na2CO3, Na2SO4,(NH3)2SO4等が使用できる。
酸化銀を合成するプロセスには,細かな条件も含めると,その組み合わせはほぼ無限と言っても過言ではなく,電池用として好適な酸化銀を得る為の製造方法を一義的に導き出すのは困難であるが,特に基本的で重要な因子として,反応母液中の銀イオンの溶解量,パルプ濃度,酸化銀の生成速度を挙げることが出来る。本発明者らの試験結果によると,本発明に従う酸化銀を得るには,銀イオンの溶解量(銀イオン濃度)は10mg/L以上とするのが好ましく,更に好ましくは15mg/L以上である。溶解度をコントロールする手段として,反応温度,pHが一般的であるが,錯化剤を用いると,更に銀の溶解度を高くすることが出来る。また更に好ましくは,酸化銀の生成速度,すなわち中和開始から濾過工程に至るまでの時間を30分以上かけることが望ましい。
Agの無機酸塩とアルカリを反応させるさいに錯化剤を共存させることもできる。この中和反応で液中から酸化銀を析出させるのであるが,析出殿物の一次粒子径,二次粒子径,比表面積およびその結晶性は,反応溶液へのAgの溶解度,パルプ濃度,攪拌等による対流速度等の各種因子によって影響を受ける。したがって,これらの因子を適正にコントロールして本発明に従う粒径や比表面積のものとすることが必要である。粒子の成長に及ぼす要因には,反応温度,反応液濃度,塩類またはアルカリの添加速度,添加後の熟成時間があり,これらをコントロールして本発明に従う粒子径とする必要がある。そのコントロールのために,反応液のpHは5以上,11以下であるのがよい。pHが11を超えるとAgの溶解度が小さくなって二次粒子径が小さくなり,逆にpHが5未満ではAgの溶解度が高くなりすぎて,収率が悪くなってしまう。そのさい,反応液中に分散剤,錯化剤,凝集剤などを共存させることによっても,一次粒子径,二次粒子径,結晶性をコントロールすることができる。反応温度は高い程,粒子の成長が進みやすいが,あまり高温になると特殊な装置が必要となるので100℃以下とするのが好ましい。しかし,10℃以下では結晶粒径が小さくなり,母液中のAg濃度も低くなって,貯蔵特性および放電特性の良好な酸化銀を得るのが困難となる。
より具体的には,Agの無機酸塩とアルカリ化合物とを水中で反応させるさいに,その反応母液中のAgイオンの溶解量,すなわち反応液中のAg濃度が10mg/L以上,好ましくは15mg/L以上に維持されるように,反応温度,反応物の濃度,反応液のpH,反応物の添加速度,反応後の熟成時間や熟成温度などを調節するのが好ましい。後記の実施例に示すように,反応中の液中Ag濃度が10mg/L未満となると,250オングストロームを超える結晶粒径の酸化銀粉末を安定して得ることが困難となり,貯蔵特性および放電特性の良好な酸化銀を得るのが困難となる。反応液中のAg濃度を10mg/L以上とするには,前記のように反応液のpHを5〜11に調整すること,および反応温度を10〜100℃に維持することに加えて,アルカリ濃度(アルカリ量−硝酸イオンまたは硫酸イオン)を2mol/L 以下とするのがよい。また熟成は20〜100℃の範囲内の好ましくは高温側で10分以上実施するのがよい。
パルプ濃度は主として一次粒子の凝集径,ひいては二次粒子径に影響を与えるところが大きい。二次粒子はその成長過程で,一次粒子同士,又は二次粒子同士が衝突を繰り返しながら成長していくので,衝突の頻度を増やせば二次粒子径は大きくなる。このようなことからパルプ濃度100g/L以上,450g/L未満とするのがよい。
〔固液分離・洗浄工程〕
固液分離にはフィルタープレス法,遠心脱水等が適用できる。洗浄は純水を用いるのがよい。洗浄にさいしては,洗浄濾液の電気伝導度が所定の値をとる間で行う必要がある。電池貯蔵時の銀の還元や溶出の挙動は,前述した粉体特性以外にも不純物の影響も受けやすく,洗浄工程において原料起因の塩が残留すると,電池中において自己放電の原因となる。特に硝酸イオン,硫酸イオンなどの影響が大きいので,好ましくは総不純物量が0.02%以下,好ましくは0.01%以下となるまで洗浄するのが望ましい。硫酸イオンおよび/または硝酸イオンの含有量を0.02%以下,好ましくは0.01%以下にまで低減した酸化銀は放電性能の非常に良好なものとなる。
前記の中和工程で得られた酸化銀は,洗浄工程に於いて充分洗浄される必要がある。洗浄工程の目的は酸化銀の含量を高める為と,原料起因の硝酸イオンや硫酸イオンを除去する点にある。後記の実施例では銀塩として硝酸銀を使用した関係で原料起因の不純物として硝酸イオンを測定したが,硫酸イオンも同等の影響を与えると考えられる。また2種以上の価数を取り得るようなイオンについても同様な影響があると推察される。
〔熱処理工程〕
洗浄後のケーキの熱処理はケーキ中の水分除去と,残留しているAg塩の分解を目的とするものである。熱処理温度は50℃以上400℃以下で行うのが望ましい。400℃を超える温度では酸化銀が分解して金属銀が析出し,電池の容量を小さくしてしまう。50℃未満では乾燥速度が遅くなって非効率である。熱処理雰囲気としては,大気中のCO2が酸化銀と反応しないように不活性ガス中または真空中若しくは脱CO2エアー中で行うのが望ましい。なお,高純度の酸化銀を得るために,50℃以上400℃以下の温度で熱処理した後,再び洗浄工程を行い,さらに300℃以下の温度で熱処理することもできる。
このようにして得られる本発明に従う酸化銀粉末は,従来の酸化銀電池と同様にこれを正極活物質として使用することができる。すなわち,負極活物質,正極活物質,アルカリ電解液,セパレータ,及び缶体からなるアルカリ電池において,負極活物質としてZnを主成分とする合金,電解液としてNaOH,KOHまたはその混合物,正極活物質として本発明に従う酸化銀粉末を用いることができる。そのさい,従来の酸化銀電池の場合と同様に,本発明に従う酸化銀粉末を,MnO2,NiOOH,CoOOH,AgNiO2,AgCoO2,CaO,MnO,HgO,CdO,CdS,ポリテトラフルオロエチレン,金属銀,AgOおよびカーボンからなる群から選ばれた少なくとも1 種の添加剤を配合して成形することによって合材成形体とし,この合成成形体を正極とすることができる。
以下に実施例を挙げるが,各実施例中の各種測定値を得るのに用いた測定法について,予め説明する。
(1) 二次粒子径の測定
酸化銀を0.2%ヘキサメタ燐酸水溶液中に超音波照射下で分散させ,レーザー粒度測定器(MICROTRAC HRA)を用いて体積基準の平均粒径を求めた。平均粒子径が100μmを超えるような粒子については篩径により算出した。なお,他の測定方法として,SEM像やHELLOS粒度分布による方法においても測定は可能である。
(2) 一次粒子径の測定
SEM又はTEMによる粒子の写真から 粒子100について縦方向及び横方向の粒子径を測定し,平均値を求めた。
(3) 結晶子サイズの測定
X線源はCuのKα1線を用い,(111 )回折ピークの半価巾とピーク位置から次式により求めた。
t = 0.9 ×λ/(B× cosθ)
t :結晶粒子径
λ:CuのKα1線の波長
B:半価巾
θ:回折角
(4) KOH中での銀イオン溶出量の測定
50ccのKOH40%水溶液に試料5gを投入し,5 分間撹拌を行ったあと密閉し,密閉状態で50℃の恒温槽に24時間浸漬した。その後濾過し,濾液をICPにて分析を行った。アルカリによる濾紙の浸食が激しい場合は,遠心分離で固液分離する。
(5) KOH中恒温保存後におけるAgの析出
50ccのKOH40%水溶液に試料5gを投入し,5 分間撹拌を行ったあと密閉し,密閉状態で50℃の恒温槽に72時間浸漬した。その後濾過し,残査を純水にて充分洗浄し,乾燥した粉体をX線回折して,Agのピークが現れるか否かを調べた。アルカリによる濾紙の浸食が激しい場合には,遠心分離で固液分離する。なお,Agの回折ピークに関しては次の点を考慮した。
すなわち,Agは立方晶(ICDD No.40783)であり,CuのKα1を用いてX線回折を行なった場合には,強度の高い順に2θ=38.115o, 44.276oおよび 77.469oの位置に回折ピークを持つ。これに対して, Ag2Oは立方晶(ICDD No.411104) であり,強度の高い順に2θ=32.789o, 38.065oおよび 54.901oの位置に回折ピークを持つ。このように, Agの第1ピークとAg2Oの第2ピークはほぼ同位置にあるから, これらのピークで両者を判別するのが困難である。従って,Agのピークが現れているのか否かを知るには, Agの第2ピーク(2θ=44.276o)が確認できることが肝要である。このとき,バックグラウンドに現れるノイズも同時にピークとして観測されるので,ノイズによるピークからAgの第2ピークを区別する目安として,次の2点を基準とした。ひとつは,2θ=44.276±0.1oに発現するAgの第2ピークは半値幅が 0.1o以上であること,第2は2θ=44.276± 2oに発現する他のどのノイズピークよりもピーク強度が2倍以上であることである。
(6) 容量維持率の計算
試験用の電池はビーカータイプのものを使用した。正極作成にあたっては,活物質とPTFE(ポリテトラフルオロエチレン) とカーボンを,0.8:0.1:0.1の比率で混合した混合物を圧延機に通して0.2mm厚のシート状とし,このシートから直径15mmの円板状のディスクを切り出し,これを2tの圧力で集電体としてのNiメッシュに張り付け,これを正極とした。なお正極中の活物質重量は0.15mgとなった。負極はw×h×t=20mm×10mm×1mmのZn板を使用し,参照極にはw×h×t=5mm×20mm×1mmのZn板を使用した。また,電解液としては40%のKOH溶液を100cc使用した。作成した電池を50℃,湿度80%の恒温恒湿器内に96時間放置した後の放電容量と貯蔵前の放電容量との百分率から容量維持率(%) を求め,これを指標とした。容量維持率の高い程,粉体貯蔵性が良好であることを意味する。
容量維持率(%) =100 ×貯蔵後の放電容量(mAh/g)/貯蔵前の放電容量(mAh/g)
(7) 反応母液中のAg溶解量の測定
中和終了時に反応容器よりスラリーを採取し,これを濾過し,その濾液をICPにて分析した。
〔実施例1〕
Ag濃度35%の硝酸銀溶液6000gを純水で4Lに希釈した硝酸銀水溶液を90℃に維持し,撹拌しながら,48%NaOH1.65Lを120分間かけて添加した。さらに90℃を保ちながら撹拌を重ねる熟成を行ったあとスラリーを濾別し,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥し,解砕して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は18mg/Lであった。
〔実施例2〕
Ag濃度35%の硝酸銀溶液600gを純水で0.8Lに希釈した。他方,NaOHをモル濃度で0.6mol/Lに調製した液温50℃のアルカリ水溶液1.8Lを準備し,このアルカリ水溶液に対し,前記の硝酸銀を溶解した水溶液と48%のNaOHを同時に添加して中和澱物を得た。その際,48%NaOH水溶液の添加量については,槽内に存在した当初のNaOH総量から,前記塩類添加によって増加したNO3 -イオンを中和するのに要するNaOH量を差し引いた場合にも,常に0.6mol/LのNaOHが槽内で維持されるように調製した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥し,解砕して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は14mg/Lであった。
〔実施例3〕
Ag濃度35%の硝酸銀溶液600gを純水で0.8Lに希釈した。他方,NaOHをモル濃度で0.02mol/Lに調製した液温20℃のアルカリ水溶液1.8Lを準備し,このアルカリ水溶液に対し,前記の硝酸銀を溶解した水溶液と48%のNaOHを同時に添加して中和澱物を得た。その際,48%NaOH水溶液の添加量については,槽内に存在した当初のNaOH総量から,前記塩類添加によって増加したNO3 -イオンを中和するのに要するNaOH量を差し引いた場合にも,常に0.02mol/LのNaOHが槽内で維持されるように調製した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥し,解砕して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は10mg/Lであった。
〔実施例4〕
Ag濃度35%の硝酸銀溶液1715gを純水で4.0Lに希釈した。該硝酸銀溶液に最終pHが6.0になるようにNaHCO3を40分間かけて添加した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。
〔実施例5〕
硝酸ナトリウム100g/Lの水溶液3Lに,Ag濃度120g/Lの硝酸銀と100g/LのNaHCO3水溶液を同時に添加した。このとき硝酸銀の添加速度は40mL/分とし,NaHCO3の添加速度は槽内液のpHが5.9となるように調整した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。
〔実施例6〕
実施例4で得られた酸化銀粉末を成形,粉砕,分級を行い,二次粒子径の粒度分布が70〜300μmであり,二次粒子の平均粒子径が150μmである酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。
〔実施例7〕
Ag濃度35%のの硝酸銀溶液1715gを純水で4.0Lに希釈した。該硝酸銀溶液に最終pHが6.0になるようにNH4HCO3を40分間かけて添加した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性及び放電性能を調べ,その結果を表1に示した。
〔実施例8〕
濃度100g/Lの硝酸アンモニウム水溶液3Lに,Ag濃度120g/Lの硝酸銀と濃度100g/LのNaHCO3水溶液を同時に添加した。このとき硝酸銀の添加速度は40mL/分とし,NaHCO3の添加速度は槽内液のpHが5.9となるように調整した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性及び放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は3200mg/Lであった。
〔比較例1〕
Ag濃度35%の硝酸銀溶液150gを純水で0.8Lに希釈した。他方,NaOHをモル濃度で0.02mol/Lに調製した液温20℃のアルカリ水溶液1.8Lを準備し,このアルカリ水溶液に対し,前記の硝酸銀を溶解した水溶液と48%のNaOHを同時に添加して中和澱物を得た。その際,48%NaOH水溶液の添加量については,槽内に存在した当初のNaOH総量から,前記塩類添加によって増加したNO3 -イオンを中和するのに要するNaOH量を差し引いた場合にも,常に0.02mol/LのNaOHが槽内で維持されるように調製した。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥し,解砕して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は5mg/Lであった。
〔比較例2〕
Ag濃度35%の硝酸銀溶液25gを純水で0.8Lに希釈した。他方,48%NaOHを8.4g秤量し,純水にて1Lに希釈した。前記の硝酸銀水溶液を5℃の前記のNaOH水溶液中に撹拌下で添加して酸化銀スラリーを得た。得られたスラリーを濾別後,純水で十分洗浄して,ケーキを得た。得られたケーキを乾燥し,解砕して酸化銀粉末を得た。得られた酸化銀粉末の粉体特性,貯蔵特性および放電性能を調べ,その結果を表1に示した。なお,反応母液中のAgイオンの含量は1mg/Lであった。
Figure 2004265865
表1の結果から明らかなように,結晶粒径が小さく(比較例2では一次粒子径も小さい),比表面積が大きい酸化銀が得られた比較例1と2のものは,貯蔵特性および放電性能がいずれも劣っているが,一次粒子径,二次粒子径および結晶粒径がいずれも本発明で規定する範囲内で大きくかつ比表面積も小さい実施例1〜8のものは貯蔵特性および放電性能に優れることがわかる。また,比較例では母液中のAg濃度が低いのに対し実施例のものでは母液中のAg濃度が高くなっている。
〔実施例9〕
中和時のアルカリ水溶液の温度を,表2に示したように90℃,75℃,50℃(実施例2のもの),25℃と変化させた以外は,実施例2を繰り返した。得られた各酸化銀粉末の粉体特性,貯蔵特性および放電性能を表2に示した。また母液中のAg濃度についても表2に示した。
〔実施例10〕
中和時のアルカリ添加量を変化させた以外は,実施例2を繰り返した。アルカリ添加量は,表3に示したように, 添加した総NaOH量からNO3 -イオン量を差し引いた量 (NaOH−NO3)を2mol/L, 0.6(実施例2)mol/L および0.08mol/L に変化させた。得られた各酸化銀粉末の粉体特性,貯蔵特性および放電性能を表3に示した。また母液中のAg濃度についても表3に示した。
〔実施例11〕
中和反応終了後に90℃に昇温し,その温度に所定の時間熟成した以外は,実施例2を繰り返した。90℃での熟成時間は,表4に示すように,0時間(実施例2),0.5時間,3時間,12時間とした。得られた各酸化銀粉末の粉体特性,貯蔵特性および放電性能を表4に示した。
〔実施例12〕
中和時のアルカリ水溶液の温度を,表5に示したように10℃,20℃(実施例3のもの),40℃,60℃と変化させた以外は,実施例3を繰り返した。得られた各酸化銀粉末の粉体特性,貯蔵特性および放電性能を表5に示した。また母液中のAg濃度についても表5に示した。
〔実施例13〕
得られたスラリーを濾別後,純水で洗浄するさいに,その洗浄に使用した洗浄水の量を変化させた以外は,実施例4を繰り返した。洗浄水の量は,表6に示した量とし,各々の洗浄後の濾液の電気伝導度を測定した。なお洗浄は20℃のイオン交換水を用い,該イオン交換水の洗浄前の電気伝導度は20℃で0.08mS/mであった。また,洗浄後の酸化銀中の硝酸イオン濃度も測定した。これらの測定値と得られた各酸化銀粉末の放電性能(維持率)を表6に示した。
Figure 2004265865
Figure 2004265865
Figure 2004265865
Figure 2004265865
Figure 2004265865
表2および表5の結果から,中和温度と母液中のAg濃度には相関が見られ,中和温度を所定の温度以上とすることによって,母液中のAg濃度が高くなり,比表面積が小さくなると共に一次粒径,二次粒径および結晶粒径が望ましい大きさになって,優れた貯蔵特性および放電特性の酸化銀粉末が得られることがわかる。
また,表3から,中和時のアルカリ量も酸化銀特性に影響を与えることがわかる。すなわち,アルカリ量をあまり過剰にすると母液中のAg濃度を所望量にすることが困難になる。表4の結果からは,中和反応後に熟成を行うと,比表面積が小さくなりながら,一次粒径,二次粒径および結晶粒径が望ましい大きさになって,優れた貯蔵特性および放電特性の酸化銀粉末が得られることがわかる。表6からは,スラリーの洗浄を十分に行って硝酸イオンを除去すると,放電特性の優れた酸化銀粉末が得られることがわかる。

Claims (8)

  1. 50℃のKOH40%水溶液中で24時間浸漬したときに該液中へのAg溶出量が40mg/L以下であるアルカリ電池用酸化銀粉末。
  2. 50℃のKOH40%水溶液中で72時間浸漬した後にもX線回折法にてAgのピークが実質的に現れないアルカリ電池用酸化銀粉末。
  3. 粉末X線回折法にて(111) 面の半価巾から計算される結晶子サイズが250オングストロームを超え1000オングストローム以下である請求項1または2に記載のアルカリ電池用酸化銀粉末。
  4. 二次粒子の平均粒径が1μm以上500μm以下,二次粒子を形成する一次粒子が0.1μm以上10.0μm以下,そして比表面積が5m2/g 以下である請求項1,2または3に記載のアルカリ電池用酸化銀粉末。
  5. 酸化銀中に含まれる硝酸イオン,硫酸イオンの総量が0.01%以下である請求項1ないし4のいずれかに記載のアルカリ電池用酸化銀粉末。
  6. 水中で銀の無機酸塩とアルカリ化合物を中和反応させて酸化銀含有のスラリーを得たあと,該スラリーから固体粒子成分を分離し,得られた固体粒子成分を洗浄することからなる酸化銀粉末の製造方法において,反応母液中の銀イオン濃度が常に10mg/L以上となる条件で前記の中和反応を進行させることを特徴とするアルカリ電池用酸化銀粉末の製造方法。
  7. 請求項3,4または5に記載の酸化銀粉末に,MnO2,NiOOH,CoOOH,AgNiO2,AgCoO2,CaO,MnO,HgO,CdO,CdS,ポリテトラフルオロエチレン,金属銀,AgOおよびカーボンからなる群から選ばれた少なくとも1種の添加剤を配合して成形してなるアルカリ電池用正極合材成形体。
  8. 負極活物質,正極活物質,アルカリ電解液,セパレータ,及び缶体からなるアルカリ電池において,負極活物質としてZnを主成分とする合金,電解液としてNaOH,KOHまたはその混合物を主とする水溶液,正極活物質として請求項1ないし5のいずれかに記載の酸化銀粉末を用いたアルカリ電池。
JP2004035297A 2003-02-13 2004-02-12 アルカリ電池用酸化銀粉末 Expired - Lifetime JP4756189B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035297A JP4756189B2 (ja) 2003-02-13 2004-02-12 アルカリ電池用酸化銀粉末

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003034909 2003-02-13
JP2003034909 2003-02-13
JP2004035297A JP4756189B2 (ja) 2003-02-13 2004-02-12 アルカリ電池用酸化銀粉末

Publications (2)

Publication Number Publication Date
JP2004265865A true JP2004265865A (ja) 2004-09-24
JP4756189B2 JP4756189B2 (ja) 2011-08-24

Family

ID=33133922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035297A Expired - Lifetime JP4756189B2 (ja) 2003-02-13 2004-02-12 アルカリ電池用酸化銀粉末

Country Status (1)

Country Link
JP (1) JP4756189B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015944A (ja) * 2008-07-07 2010-01-21 Sony Corp アルカリ電池
JP2010092770A (ja) * 2008-10-09 2010-04-22 Seiko Instruments Inc 扁平形アルカリ一次電池及びその正極合剤
JP2011198755A (ja) * 2010-02-23 2011-10-06 Dowa Electronics Materials Co Ltd 電池正極材料及び電池正極材料の製造方法
JP2013067860A (ja) * 2011-09-23 2013-04-18 Bayer Intellectual Property Gmbh 酸素消費電極およびその製造方法
JP2013067861A (ja) * 2011-09-23 2013-04-18 Bayer Intellectual Property Gmbh 酸素消費電極およびその製造方法
JP2018154549A (ja) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 酸化銀、酸化銀ケーキおよび酸化銀の製造方法
JP2019019038A (ja) * 2017-07-20 2019-02-07 神島化学工業株式会社 酸化銀及びその製造方法
CN114671455A (zh) * 2022-03-03 2022-06-28 先导薄膜材料(广东)有限公司 一种工业化生产电池用氧化银的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560026A (en) * 1978-10-24 1980-05-06 Tomiji Kobayashi Production of high density silver oxide
JPS5652873A (en) * 1979-10-01 1981-05-12 Hitachi Maxell Ltd Silver-oxide battery
JPS57111956A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery
JPS61271747A (ja) * 1985-05-27 1986-12-02 Matsushita Electric Ind Co Ltd 酸化銀電池
JPH04184867A (ja) * 1990-11-19 1992-07-01 Toshiba Battery Co Ltd 酸化銀電池
JPH0896834A (ja) * 1994-09-29 1996-04-12 Yuasa Corp アルカリ酸化銀−mh蓄電池
JPH10188974A (ja) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd 電池用酸化銀とその製法およびそれを用いた電池
JP2001172017A (ja) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd 電池用酸化銀粉末とその製造法およびそれを用いた電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560026A (en) * 1978-10-24 1980-05-06 Tomiji Kobayashi Production of high density silver oxide
JPS5652873A (en) * 1979-10-01 1981-05-12 Hitachi Maxell Ltd Silver-oxide battery
JPS57111956A (en) * 1980-12-26 1982-07-12 Hitachi Maxell Ltd Silver-oxide secondary battery
JPS61271747A (ja) * 1985-05-27 1986-12-02 Matsushita Electric Ind Co Ltd 酸化銀電池
JPH04184867A (ja) * 1990-11-19 1992-07-01 Toshiba Battery Co Ltd 酸化銀電池
JPH0896834A (ja) * 1994-09-29 1996-04-12 Yuasa Corp アルカリ酸化銀−mh蓄電池
JPH10188974A (ja) * 1996-11-08 1998-07-21 Dowa Mining Co Ltd 電池用酸化銀とその製法およびそれを用いた電池
JP2001172017A (ja) * 1999-12-16 2001-06-26 Dowa Mining Co Ltd 電池用酸化銀粉末とその製造法およびそれを用いた電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015944A (ja) * 2008-07-07 2010-01-21 Sony Corp アルカリ電池
JP2010092770A (ja) * 2008-10-09 2010-04-22 Seiko Instruments Inc 扁平形アルカリ一次電池及びその正極合剤
JP2011198755A (ja) * 2010-02-23 2011-10-06 Dowa Electronics Materials Co Ltd 電池正極材料及び電池正極材料の製造方法
JP2013067860A (ja) * 2011-09-23 2013-04-18 Bayer Intellectual Property Gmbh 酸素消費電極およびその製造方法
JP2013067861A (ja) * 2011-09-23 2013-04-18 Bayer Intellectual Property Gmbh 酸素消費電極およびその製造方法
JP2018154549A (ja) * 2017-03-15 2018-10-04 三菱マテリアル株式会社 酸化銀、酸化銀ケーキおよび酸化銀の製造方法
JP7052411B2 (ja) 2017-03-15 2022-04-12 三菱マテリアル株式会社 酸化銀、酸化銀ケーキおよび酸化銀の製造方法
JP2019019038A (ja) * 2017-07-20 2019-02-07 神島化学工業株式会社 酸化銀及びその製造方法
JP7083235B2 (ja) 2017-07-20 2022-06-10 神島化学工業株式会社 酸化銀及びその製造方法
CN114671455A (zh) * 2022-03-03 2022-06-28 先导薄膜材料(广东)有限公司 一种工业化生产电池用氧化银的方法
CN114671455B (zh) * 2022-03-03 2023-10-17 先导薄膜材料(广东)有限公司 一种工业化生产电池用氧化银的方法

Also Published As

Publication number Publication date
JP4756189B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
EP2545605B1 (en) Alkaline battery including lambda-manganese dioxide
JP6069482B2 (ja) 金属ドープされた酸化ニッケル活性材料を作製する方法
EP3605665B1 (en) Primary alkaline battery
EP2545606B1 (en) Methods of making acid-treated manganese dioxide
JP6262320B2 (ja) 金属ドープされた酸化ニッケル活性材料
US20110219607A1 (en) Cathode active materials and method of making thereof
JP4826147B2 (ja) アルミニウム含有水酸化ニッケル粒子及びその製造方法
EP2828910B1 (en) Metal-doped nickel oxide active materials
US20100272631A1 (en) Silver oxide powder for alkaline battery and method of producing the same
DE112023000119T5 (de) Ternärer Vorläufer mit hoher Klopfdichte und Verfahren zu dessen Herstellung
JP4756189B2 (ja) アルカリ電池用酸化銀粉末
US11646414B2 (en) Positive electrode active material for alkaline storage battery, and method for producing positive electrode active material for alkaline storage battery
US20100068620A1 (en) Alkaline battery
JP3609231B2 (ja) Liイオン二次電池用コバルト−ニッケル水酸化物の製造法
JPH10188975A (ja) 酸化銀電池用陽極材料とその製造方法
US20240217840A1 (en) ACID TREATMENT OF LiNiO2 TO DECREASE GAMMA-NiOOH FORMATION
WO2024145307A1 (en) Processes to reduce gamma-niooh in battery material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4756189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term