JP2004261892A - Resin compound abrasive - Google Patents

Resin compound abrasive Download PDF

Info

Publication number
JP2004261892A
JP2004261892A JP2003052790A JP2003052790A JP2004261892A JP 2004261892 A JP2004261892 A JP 2004261892A JP 2003052790 A JP2003052790 A JP 2003052790A JP 2003052790 A JP2003052790 A JP 2003052790A JP 2004261892 A JP2004261892 A JP 2004261892A
Authority
JP
Japan
Prior art keywords
resin
abrasive
composite abrasive
iron powder
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052790A
Other languages
Japanese (ja)
Inventor
Masanori Hirai
正典 平井
Naoto Kayama
直人 香山
Shigehiko Hayashi
茂彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2003052790A priority Critical patent/JP2004261892A/en
Publication of JP2004261892A publication Critical patent/JP2004261892A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide the resin compound abrasive to be used for blast-washing, deburring, and peeling of a coating film, and having excellent washing effect without damaging a surface of a material to be washed, and having a long service life in repeated usage at a high frequency. <P>SOLUTION: This resin compound abrasive is obtained by distributing 10-60 volume % of atomized iron powder, which has a martensitic phase in the internal organization thereof and which has 10-500 μm of primary mean grain diameter, in the thermoplastic resin. This abrasive has excellent washing effect without damaging a surface of the material to be washed, and crush is hard to be generate even if the abrasive is injected to a surface of the material to be washed. This abrasive has a long service life because it can be repeatedly used at a high frequency. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は樹脂複合研掃材に係り、詳しくは機械、電気、光学部品等の洗浄やバリ取り、金属部品や樹脂部品等の強固な塗膜剥離に使用されるものであり、優れた洗浄効果を有するとともに被洗浄物の表面を疵付けることなく、かつ繰り返し使用頻度が高く寿命が長い樹脂複合研掃材に関する。
【0002】
【従来の技術】
従来、ブラスト洗浄用樹脂系研掃材には、特許文献1にも記載されているようにメラミン樹脂、尿素樹脂、フェノール樹脂、ケトン樹脂、エポキシ樹脂、グアナミン樹脂の1種もしくは2種以上の熱硬化性樹脂にアルミナ、シリカ、カーボンブラック等の無機充填材を所定量配合したものが知られている。このブラスト洗浄とは、被洗浄物に研掃材を衝突させて被洗浄物表面の錆、汚れ、皮膜、そして付着物等を除去するもので、洗浄効果は研掃材の衝突力、硬さおよび形状に影響される。一般には研掃材の衝突力が大きく、硬さが高く、また鋭角多角的な形状の方が研掃効果が優れていると言われている。しかしながら、衝突力が大きすぎたり、硬さが高すぎたり、また形状も鋭角が強すぎると被洗浄物表面を疵付け、研掃材自身が粉砕して製品歩留りが悪くなり、その結果製品寿命が低下するという問題があった。
【0003】
研掃材の衝突エネルギーは、1/2×(研掃材の質量)×(研掃材の速度)で表されるので、衝突エネルギーを増加するためには研掃材の速度および大きさが一定の場合、質量すなわち密度を大きくすることによって可能となる。例えば、密度の大きい材質である鉄粉を含む樹脂複合研掃材は、衝突エネルギーが大きい。
【0004】
また、特許文献2には、シリカ粉末、アルミナ粉末、マイカ粉末、ガラス繊維等の無機質充填材あるいは木粉、プラスチック粉等の有機質充填材をエポキシ樹脂に配合した研掃材が記載されている。更には、ポリアミド樹脂やポリカーボネート樹脂のような比較的軟質な樹脂を用い、この樹脂に金属粉を配合した研掃材が特許文献3に提案されている。
【0005】
【特許文献1】
特開2001−277128号公報
【特許文献2】
特開平10−1547号公報
【特許文献3】
特開2002−1662号公報
【0006】
【発明が解決しようとする課題】
しかし、フェノール樹脂、ユリア樹脂、メラミン樹脂などの熱硬化性樹脂は、常温粉砕が可能であっても、一般に固いために被洗浄物の表面を傷付け、研掃時に粉砕しやすくなって微粉化しやすく、これによりこれらの微粉はもはや洗浄能力がなく、また研掃材の流動性を低下させることになった。このように、樹脂の微紛が多く発生するほど研掃材歩留が低下し、製品寿命が短くなる大きな問題があった。
【0007】
また、樹脂系研掃材の大きさは、粒径として0.1〜1mmが適当であると言われており、これらの粒度を得るために、一般的に押出成形で作製した樹脂ペレットを粉砕機にて粉砕加工していた。他の粉砕として液体窒素等を用いた冷凍粉砕があるが、この方法ではコストの上昇をもたらす問題があった。
【0008】
また、ポリアミド樹脂やポリカーボネート樹脂のような比較的軟質な樹脂に金属紛を混合した研掃材の場合には、樹脂自体による研掃効果は期待できなく、金属粉自体は被洗浄物表面を疵付ける恐れがあり、更には樹脂の常温粉砕も不可能であった。
【0009】
本発明は上記の点に鑑みてなされたものであり、ブラスト洗浄、バリ取り、塗膜剥離等に使用されるものであり、優れた洗浄効果を有するとともに被洗浄物の表面を疵付けることなく、かつ繰り返し使用頻度が高く寿命の長い樹脂複合研掃材を提供することを目的とする。
【0010】
【課題を解決するための手段】
即ち、本願は請求項1の発明では、熱可塑性樹脂中に内部組織がマルテンサイト相を有している一次平均粒子径10〜500μmのアトマイズ鉄粉を10〜60体積%分散させた樹脂複合研掃材にあり、ここで用いる熱可塑性樹脂は軟質であって被研掃物表面を疵付けることなく、更には上記研掃材を被洗浄物の表面へ投射しても粉砕が起こり難く、使用時間も長くなる効果がある。しかも、熱可塑性樹脂中に密度が大きくかつ硬質なアトマイズ鉄粉を分散させることによって、研掃効果を高めた樹脂複合研掃材になる。
【0011】
本願請求項2の発明は、熱可塑性樹脂がポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、そしてポリカーボネート樹脂から選ばれた少なくとも一種である樹脂複合研掃材にある。
【0012】
本願請求項3の発明は、アトマイズ鉄粉が合金鉄である樹脂複合研掃材にある。
【0013】
本願請求項4の発明は、樹脂複合研掃材の粒径が0.1〜3mmである樹脂複合研掃材にある。
【0014】
本願請求項5の発明は、樹脂複合研掃材が押出成形により作製したペレットを粉砕して分級し、粒径が0.1〜3mmである樹脂複合研掃材にある。
【0015】
本願請求項6の発明は、樹脂複合研掃材が押出成形後に水中で冷却しながら切断し、粒径が0.3〜3mmの樹脂複合研掃材を得る樹脂複合研掃材にある。
【0016】
【発明の実施の形態】
本発明の樹脂複合研掃材に使用する熱可塑性樹脂は、軟質であって常温粉砕が可能となり、また被研掃物表面を疵付けることがなく、被洗浄物の表面へ投射しても粉砕が起こり難いものであり、具体的にはポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、そしてポリカーボネート樹脂から選ばれた少なくとも一種であり、より好ましくはポリプロピレン樹脂、ABS樹脂、ポリアミド樹脂がよい。
【0017】
上記熱可塑性樹脂に配合するアトマイズ鉄粉は、内部組織がマルテンサイト相を有している一次平均粒子径10〜500μmのものであり、10μm未満では研掃性能が低くなり、一方500μmを越えると分散状態が悪くなる。
【0018】
一般に、アトマイズ鉄粉は、溶融鉄の流れに高圧の水ジェットを噴霧して得た鉄粉を還元性雰囲気中で焼純して軟質化を行うことによって作製され、多くは粉末冶金分野に供されている。
【0019】
本発明で使用するアトマイズ鉄粉は、合金鉄を溶解した後、細孔から落下させ、この流れに対して高圧の水ジェットを噴射して得た鉄粉を使用する。この鉄粉は合金鉄が急冷されて内部組織がマルテンサイト相という極めて硬質な組織を有しているために、研掃能力に優れ、また噴射後の硬質な鉄粉を使用するために、後工程、即ち乾燥し分級を経て還元炉で焼鈍される軟質化工程が不必要であり、より一層安価な材料確保が可能となる。
【0020】
本発明で使用するアトマイズ鉄粉の化学成分の一例を示す。合金鉄粉には、Cu,Ni,Cr,Mo,そしてCo等の合金元素が含まれており、これらの元素は鉄粉の焼入れを促進し硬さを高くする働きがある。
【0021】
【表1】

Figure 2004261892
【0022】
上記熱可塑性樹脂中にアトマイズ鉄粉を10〜60体積%分散させ、押出成形によりアトマイズ鉄粉を分散した樹脂の複合ペレットを作製した後、該ペレットを粉砕して分級し、粒径が0.1〜1.3mmの粒子を作製する方法、押出成形後に水中で冷却しながら切断する、水中カットペレタイジング法により粒径が0.3〜3mmの粒子を作製する方法によって可能である。
【0023】
また、この粒径を維持する他の方法として、押出成形で作製した複合ペレットを粉砕機にて粉砕加工することもできる。粉砕は常温粉砕と液体窒素等を用いた冷凍粉砕があるが、本発明で使用する熱可塑性樹脂は軟質であるため、本来常温粉砕が難しいが、熱可塑性樹脂に高強度な無機質充填材を分散させることによって硬度を高くすることで常温粉砕が可能になり、コストの上昇を押さえることができる。
【0024】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
【0025】
実施例1〜3、比較例1〜3
表2に各実施例と各比較例について研掃材の配合、粒径および比重を示す。ここで使用するポリプロピレン樹脂としてチッソ社製K7730Rを、マルテンサイト相を有するアトマイズ鉄粉として神戸製鋼所社製アトマイズ鉄粉4100 PO−434(表1のアトマイズ鉄粉I)および4100H PO−433(表1のアトマイズ鉄粉II)で粒度が#200のものを、還元鉄粉として同和鉄粉工業社製NC−200(粒度#200)のものを用いた。アルミナとしては南興セラミックス社製の粒度が#200のものを用いた。アトマイズ鉄粉の硬さは表2に示すように、実施例は比較例に比べて極めて高いことが判る。
【0026】
実施例では、アトマイズ鉄粉の配合量を20体積%とし、粒径を押出成形により作製したペレットを粉砕して0.3〜1mmに分級したもの(実施例1と実施例2)、また押出成形後水中カットペレタイジング法により0.8mm(粒径のばらつきは少ない)にしたもの(実施例3)の2種類を作製した。
【0027】
比較例では還元鉄粉配合量が20および30体積%の2種類(比較例1と比較例2)と、研掃材の中では最も研掃性能が高いもののひとつであるアルミナとこれに比重を実施例と同一にするために還元鉄粉を合せて充填したもの(比較例3)を作製した。この材料は、押出成形により作製したペレットを粉砕し分級して作製し、粒径は0.3〜1mmである。
【0028】
また、全ての材料には鉄粉とポリプロピレン樹脂の接着促進のため、酸変性ポリプロピレン樹脂(三洋化成社製ユーメックス1010)および帯電防止剤(花王社製エレストマスター320)を添加した。表2の研掃材を用いて実施した評価結果を表3に示す。
【0029】
【表2】
Figure 2004261892
【0030】
評価結果では、ゴム用金型に対する研掃能力とSUS304ステンレス試験片に対する算術平均粗さRaを測定した。
【0031】
ゴム用金型に対する研掃能力の測定では、金型洗浄用ブラスト設備を用いてゴム用金型(460mm×280mm)の洗浄を実施した。ブラスト条件は吸引式エアブラストで投射圧力0.4MPa、投射距離10cmで、投射時間は2分とした。その結果、研掃能力として錆び、汚れは取れるがゴム滓が若干残っているものを「△」、錆び、汚れは取れるが強固なゴム滓が若干残っているものを「○」、そして錆び、汚れおよび強固なゴム滓がほとんど取れるものを「◎」にした。
【0032】
ステンレス試験片に対する表面粗さである算術平均粗さRaの測定では、試験片としてステンレス試験片をペーパー仕上げにより予め算術平均粗さRaを0.2μmに仕上げたものを用い、ブラスト条件は吸引式エアブラストで投射圧力0.4MPa、投射距離10cmで、投射時間は1分とした。ブラスト後の算術平均粗さRaは、試験後のステンレス試験片を表面粗さ測定器サーフテスト500(Mitutoyo社製)で測定した。
【0033】
【表3】
Figure 2004261892
【0034】
その結果、研掃能力では、実施例1〜3において全て良好な洗浄状態が得られた。ここで強固なゴム滓とは、長時間使用して発生した腐食孔に食い込んだゴムのことをいうが、本実施例の研掃材は、この強固なゴム滓をほとんど取ることができた。
【0035】
還元鉄を充填した比較例1は実施例に比べて研掃能力が悪く、比較例1より還元鉄粉配合量を増やした比較例2は比較例1と実施例の中間の研掃能力を示した。また、アルミナを充填した比較例3は、研掃能力が実施例1〜3と同様に優れているが、表面粗さRaが大きくなり試験片の表面を大きく粗らした。
【0036】
上述したようにアルミナを充填した比較例3は、表面粗さが著しく大きくなったが、その他の比較例1〜2および実施例1〜3では表面粗さが試験前とほぼ同等かそれ以下であった。
【0037】
【発明の効果】
以上のように本願の各請求項記載の発明によれば、熱可塑性樹脂中に内部組織がマルテンサイト相を有する一次平均粒子径10〜500μmのアトマイズ鉄粉を10〜60体積%分散させた樹脂複合研掃材にあり、被研掃物表面を疵付けることなく、更には上記研掃材を被洗浄物の表面へ投射しても粉砕が起こり難く、優れた洗浄効果を有し、かつ繰り返し使用頻度が高いため寿命が長い樹脂複合研掃材になる効果がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composite cleaning material, and more particularly to cleaning and deburring of mechanical, electrical and optical components, and strong film removal of metal and resin components, and has an excellent cleaning effect. The present invention relates to a resin composite abrasive having a long life and a high frequency of repeated use without scratching the surface of an object to be cleaned.
[0002]
[Prior art]
Conventionally, as described in Patent Document 1, one or more of melamine resin, urea resin, phenol resin, ketone resin, epoxy resin, and guanamine resin have been used as a resin-based abrasive for blast cleaning. It is known that a curable resin is blended with a predetermined amount of an inorganic filler such as alumina, silica, or carbon black. This blast cleaning is to remove the rust, dirt, film, deposits, etc. on the surface of the cleaning object by colliding the cleaning material with the cleaning object. The cleaning effect is the impact force and hardness of the cleaning material. And shape. In general, it is said that the abrasive force of the abrasive material is large, the hardness is high, and the sharp polygonal shape is superior in the abrasive effect. However, if the impact force is too large, the hardness is too high, or the shape is too sharp, the surface of the object to be cleaned will be scratched and the abrasive material itself will be crushed, resulting in poor product yield and, as a result, product life However, there was a problem that was reduced.
[0003]
The collision energy of the blast material is represented by 1/2 × (mass of blast material) × (velocity of blast material) 2 , so that the collision energy can be increased by increasing the velocity and size of the blast material. Is constant, this is possible by increasing the mass or density. For example, a resin composite abrasive containing iron powder which is a material having a high density has a large collision energy.
[0004]
Patent Literature 2 discloses a polishing material in which an inorganic filler such as silica powder, alumina powder, mica powder, and glass fiber or an organic filler such as wood powder and plastic powder is mixed with an epoxy resin. Further, Patent Document 3 proposes an abrasive material using a relatively soft resin such as a polyamide resin or a polycarbonate resin, and mixing a metal powder with the resin.
[0005]
[Patent Document 1]
JP 2001-277128 A [Patent Document 2]
JP-A-10-1547 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2002-1662
[Problems to be solved by the invention]
However, thermosetting resins such as phenolic resin, urea resin, and melamine resin, even if crushable at room temperature, are generally hard, so they damage the surface of the object to be cleaned, and are easily pulverized during polishing so that they are easily pulverized. This resulted in these fines no longer having the cleaning ability and also reducing the flowability of the abrasive. As described above, as the amount of the fine resin powder increases, the yield of the abrasive material decreases, and there is a serious problem that the product life is shortened.
[0007]
It is said that the resin-based abrasive has a suitable particle size of 0.1 to 1 mm, and in order to obtain these particle sizes, resin pellets generally formed by extrusion molding are crushed. It was crushed by a machine. As another pulverization, there is a freeze pulverization using liquid nitrogen or the like, but this method has a problem that the cost is increased.
[0008]
In addition, in the case of a polishing material obtained by mixing a metal powder with a relatively soft resin such as a polyamide resin or a polycarbonate resin, the cleaning effect of the resin itself cannot be expected, and the metal powder itself scratches the surface of the object to be cleaned. There is a possibility that the resin may be attached, and further, it is impossible to pulverize the resin at room temperature.
[0009]
The present invention has been made in view of the above points, and is used for blast cleaning, deburring, coating film peeling, etc., and has an excellent cleaning effect and does not scratch the surface of the object to be cleaned. It is another object of the present invention to provide a resin composite abrasive having a high frequency of repeated use and a long life.
[0010]
[Means for Solving the Problems]
That is, in the present invention, the present invention relates to a resin composite in which an atomized iron powder having a primary average particle diameter of 10 to 500 μm having a martensitic phase is dispersed in a thermoplastic resin by 10 to 60% by volume. In the cleaning material, the thermoplastic resin used here is soft and does not damage the surface of the material to be polished, and furthermore, it is hard to be crushed even when the above-mentioned cleaning material is projected on the surface of the material to be cleaned. This has the effect of increasing the time. In addition, by dispersing a hardened atomized iron powder having a high density in a thermoplastic resin, a resin composite abrasive material having an enhanced abrasive effect can be obtained.
[0011]
The invention of claim 2 of the present application resides in a resin composite abrasive material in which the thermoplastic resin is at least one selected from a polypropylene resin, a polyamide resin, a polyacetal resin, an ABS resin, a polyvinyl chloride resin, a polyethylene resin, and a polycarbonate resin. .
[0012]
The invention of claim 3 of the present application resides in a resin composite abrasive material in which the atomized iron powder is ferromagnetic iron.
[0013]
The invention according to claim 4 of the present application resides in a resin composite abrasive having a particle diameter of 0.1 to 3 mm.
[0014]
The invention of claim 5 of the present application resides in a resin composite abrasive having a particle size of 0.1 to 3 mm, which is obtained by pulverizing and classifying a pellet produced by extrusion of a resin composite abrasive.
[0015]
The invention of claim 6 of the present application resides in a resin composite abrasive which has a particle diameter of 0.3 to 3 mm and is cut while cooling in water after extrusion molding.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermoplastic resin used for the resin composite abrasive material of the present invention is soft and can be pulverized at room temperature, does not damage the surface of the object to be polished, and is pulverized even when projected onto the surface of the object to be cleaned. And specifically, at least one selected from polypropylene resin, polyamide resin, polyacetal resin, ABS resin, polyvinyl chloride resin, polyethylene resin, and polycarbonate resin, more preferably polypropylene resin, ABS Resins and polyamide resins are preferred.
[0017]
The atomized iron powder to be added to the thermoplastic resin has a primary average particle diameter of 10 to 500 μm in which the internal structure has a martensite phase, and if it is less than 10 μm, the polishing performance is low, while if it exceeds 500 μm, Dispersion deteriorates.
[0018]
In general, atomized iron powder is produced by spraying a high-pressure water jet onto a stream of molten iron to refine and soften the iron powder in a reducing atmosphere, and most of it is supplied to the powder metallurgy field. Have been.
[0019]
The atomized iron powder used in the present invention uses iron powder obtained by dissolving alloyed iron, dropping it through pores, and jetting a high-pressure water jet against this flow. This iron powder has an extremely hard structure of a martensitic phase due to the quenching of the alloyed iron, so that it has excellent blasting ability. There is no need for a step, that is, a softening step of drying, classifying, and annealing in a reduction furnace, so that a more inexpensive material can be secured.
[0020]
1 shows an example of chemical components of atomized iron powder used in the present invention. Alloyed iron powder contains alloying elements such as Cu, Ni, Cr, Mo, and Co, and these elements have the function of accelerating the quenching of the iron powder and increasing the hardness.
[0021]
[Table 1]
Figure 2004261892
[0022]
Atomized iron powder is dispersed in the thermoplastic resin in an amount of 10 to 60% by volume, and a composite pellet of the resin in which the atomized iron powder is dispersed is formed by extrusion molding. It is possible by a method of producing particles of 1 to 1.3 mm, a method of cutting while cooling in water after extrusion molding, and a method of producing particles having a particle size of 0.3 to 3 mm by an underwater cut pelletizing method.
[0023]
Further, as another method for maintaining the particle size, a composite pellet produced by extrusion molding can be pulverized by a pulverizer. There are two types of pulverization: normal temperature pulverization and freeze pulverization using liquid nitrogen.However, the thermoplastic resin used in the present invention is soft, so it is difficult to perform normal temperature pulverization, but a high-strength inorganic filler is dispersed in the thermoplastic resin. By increasing the hardness, pulverization at normal temperature becomes possible and the increase in cost can be suppressed.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[0025]
Examples 1-3, Comparative Examples 1-3
Table 2 shows the composition, particle size and specific gravity of the abrasive material for each example and each comparative example. The polypropylene resin used here is K7730R manufactured by Chisso Co., and the atomized iron powder having a martensite phase is atomized iron powder 4100 PO-434 (Atomized iron powder I in Table 1) and 4100H PO-433 (Table 1). No. 1 atomized iron powder II) having a particle size of # 200 and reduced iron powder of NC-200 (particle size # 200) manufactured by Dowa Iron Powder Co., Ltd. were used. Alumina having a particle size of # 200 manufactured by Nanko Ceramics Co., Ltd. was used. As shown in Table 2, the hardness of the atomized iron powder is much higher in the examples than in the comparative examples.
[0026]
In Examples, the amount of atomized iron powder was set to 20% by volume, and the pellets produced by extrusion molding were crushed and classified into 0.3 to 1 mm (Examples 1 and 2). After molding, two types were prepared, which were cut to 0.8 mm (with a small variation in particle size) by an underwater cut pelletizing method (Example 3).
[0027]
In the comparative example, the reduced iron powder content was 20 and 30% by volume (Comparative Example 1 and Comparative Example 2), and among the abrasives, alumina, which had one of the highest abrasive performances, and alumina had a specific gravity. In order to make it the same as in the example, a product filled with reduced iron powder (Comparative Example 3) was produced. This material is produced by pulverizing and classifying pellets produced by extrusion molding, and has a particle size of 0.3 to 1 mm.
[0028]
To all the materials, an acid-modified polypropylene resin (Umex 1010 manufactured by Sanyo Chemical Co., Ltd.) and an antistatic agent (Erestmaster 320 manufactured by Kao Corporation) were added to promote adhesion between the iron powder and the polypropylene resin. Table 3 shows the results of the evaluation performed using the abrasives shown in Table 2.
[0029]
[Table 2]
Figure 2004261892
[0030]
As the evaluation results, the polishing ability for the rubber mold and the arithmetic average roughness Ra for the SUS304 stainless steel test piece were measured.
[0031]
In the measurement of the cleaning ability of the rubber mold, the rubber mold (460 mm × 280 mm) was washed using a mold cleaning blast facility. The blast conditions were a suction type air blast, a projection pressure of 0.4 MPa, a projection distance of 10 cm, and a projection time of 2 minutes. As a result, the rust as the cleaning ability, "△" indicates that some dirt can be removed but some rubber residue remains, and "○" indicates that the rust and dirt can be removed but some strong rubber residue remains, and rust, A sample from which dirt and strong rubber slag were almost removed was marked with “◎”.
[0032]
In the measurement of the arithmetic average roughness Ra, which is the surface roughness of a stainless steel test piece, a stainless steel test piece whose arithmetic mean roughness Ra was previously finished to 0.2 μm by paper finishing was used as a test piece, and the blast condition was a suction type. The projection pressure was 0.4 MPa, the projection distance was 10 cm, and the projection time was 1 minute by air blast. The arithmetic average roughness Ra after the blast was measured on a stainless steel test piece after the test using a surface roughness measuring device Surf Test 500 (manufactured by Mitutoyo).
[0033]
[Table 3]
Figure 2004261892
[0034]
As a result, in the cleaning ability, in Examples 1 to 3, all good cleaning states were obtained. Here, the strong rubber scum refers to the rubber that has penetrated into the corrosion holes generated by use for a long time, and the abrasive material of the present example was able to remove most of the strong rubber scum.
[0035]
Comparative Example 1 in which the reduced iron was filled had poorer cleaning ability than that of the Example, and Comparative Example 2 in which the amount of the reduced iron powder was increased from Comparative Example 1 showed an intermediate cleaning ability between Comparative Example 1 and the Example. Was. Comparative Example 3, which was filled with alumina, had the same excellent polishing ability as Examples 1 to 3, but the surface roughness Ra was large, and the surface of the test piece was largely roughened.
[0036]
Comparative Example 3, which was filled with alumina as described above, had a remarkably large surface roughness. However, in Comparative Examples 1 to 2 and Examples 1 to 3, the surface roughness was almost equal to or less than that before the test. there were.
[0037]
【The invention's effect】
As described above, according to the invention described in each claim of the present application, a resin in which atomized iron powder having a primary average particle diameter of 10 to 500 μm having a martensite phase is dispersed in a thermoplastic resin by 10 to 60% by volume. In the compound abrasive material, without scratching the surface of the object to be polished, even if the abrasive material is projected onto the surface of the object to be cleaned, pulverization hardly occurs, having an excellent cleaning effect, and repeating Since it is frequently used, it has the effect of being a resin composite abrasive having a long life.

Claims (6)

熱可塑性樹脂中に内部組織がマルテンサイト相を有している一次平均粒子径10〜500μmのアトマイズ鉄粉を10〜60体積%分散させたことを特徴とする樹脂複合研掃材。A resin composite abrasive material characterized in that 10 to 60% by volume of atomized iron powder having a primary average particle diameter of 10 to 500 μm having an internal structure having a martensite phase is dispersed in a thermoplastic resin. 熱可塑性樹脂がポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、そしてポリカーボネート樹脂から選ばれた少なくとも一種である請求項1記載の樹脂複合研掃材。The resin composite abrasive according to claim 1, wherein the thermoplastic resin is at least one selected from a polypropylene resin, a polyamide resin, a polyacetal resin, an ABS resin, a polyvinyl chloride resin, a polyethylene resin, and a polycarbonate resin. アトマイズ鉄粉が合金鉄である請求項1記載の樹脂複合研掃材。The resin composite abrasive according to claim 1, wherein the atomized iron powder is ferromagnetic iron. 樹脂複合研掃材の粒径が0.1〜3mmである請求項記載1〜3の何れかに記載の樹脂複合研掃材。The resin composite abrasive according to any one of claims 1 to 3, wherein the particle diameter of the resin composite abrasive is 0.1 to 3 mm. 樹脂複合研掃材が押出成形により作製したペレットを粉砕して分級し、粒径が0.1〜3mmである請求項記載1〜3の何れかに記載の樹脂複合研掃材。The resin composite abrasive material according to any one of claims 1 to 3, wherein the resin composite abrasive material is obtained by pulverizing and classifying a pellet produced by extrusion molding, and has a particle size of 0.1 to 3 mm. 樹脂複合研掃材が押出成形後に水中で冷却しながら切断し、粒径が0.3〜3mmである請求項記載1〜3の何れかに記載の樹脂複合研掃材。The resin composite abrasive according to any one of claims 1 to 3, wherein the resin composite abrasive is cut while cooling in water after extrusion molding, and has a particle size of 0.3 to 3 mm.
JP2003052790A 2003-02-28 2003-02-28 Resin compound abrasive Pending JP2004261892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052790A JP2004261892A (en) 2003-02-28 2003-02-28 Resin compound abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052790A JP2004261892A (en) 2003-02-28 2003-02-28 Resin compound abrasive

Publications (1)

Publication Number Publication Date
JP2004261892A true JP2004261892A (en) 2004-09-24

Family

ID=33117571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052790A Pending JP2004261892A (en) 2003-02-28 2003-02-28 Resin compound abrasive

Country Status (1)

Country Link
JP (1) JP2004261892A (en)

Similar Documents

Publication Publication Date Title
KR860001465B1 (en) Method for removing flashes from molded resin product
TW200913825A (en) Method for producing metal mask for screen printing
JP2008229809A (en) Substrate treatment method of coating film forming part
TWI390025B (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
JPS59227970A (en) Abrasive
JP2007197665A (en) Powder for grinding and grinding method
JP2003266313A (en) Projecting material and blast processing method
JP3117808B2 (en) Coating removal method
JP2004261892A (en) Resin compound abrasive
WO2016143413A1 (en) Projectile material
JP2003306664A (en) Resin composite abrasive material
JP2004263005A (en) Method for producing resin-composited grinding cleanser
WO2023286478A1 (en) Elastic polishing material and method for producing same
JP2001277131A (en) Blasting material and blasting process
JP4337245B2 (en) Projection material and blasting method
JP4049848B2 (en) Abrasive
JPS6234779A (en) Polishing material
JP2002114968A (en) Abrasive and abrasion method using the abrasive
JP2000127045A (en) Projection material for sand blast
WO2005002796A1 (en) Blasting method
TWI284586B (en) A composite material of the sand spurt
JP4437286B2 (en) Projection material
JP2001277124A (en) Blasting material and blasting process
JPS61152371A (en) Synthetic resinous abrasive
JPH0360631B2 (en)